
1

C H A P T E R 1

OVERVIEW OF
NEURAL NETWORKS

Introduction

Throughout the years, the computational changes have brought growth to new
technologies. Such is the case of artificial neural networks, that over the years,
they have given various solutions to the industry.

 Designing and implementing intelligent systems has become a crucial
factor for the innovation and development of better products for society.
Such is the case of the implementation of artificial life as well as giving
solution to interrogatives that linear systems are not able resolve.

 A neural network is a parallel system, capable of resolving paradigms that
linear computing cannot. A particular case is for considering which I will cite.
During summer of 2006, an intelligent crop protection system was required by
the government. This system would protect a crop field from season plagues.
The system consisted on a flying vehicle that would inspect crop fields by flying
over them.

 Now, imagine how difficult this was. Anyone that could understand such a
task would say that this project was designated to a multimillionaire enterprise
capable of develop such technology. Nevertheless, it wasn’t like that. The
selected company was a small group of graduated engineers. Regardless the
lack of experience, the team was qualified. The team was divided into 4 sections
in which each section was designed to develop specific sub-systems. The leader
was an electronics specialist. She developed the electronic system. Another
member was a mechanics and hydraulics specialist. He developed the drive
system. The third member was a system engineer who developed all software,
and the communication system. The last member was designed to develop all
related to avionics and artificial intelligence.

2 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 Everything was going fine. When time came to put the pieces together, all
fitted perfectly until they find out the robot had no knowledge about its task.
What happened? The one designated to develop all artificial intelligent forgot to
“teach the system”. The solution would be easy; however, training a neural
network required additional tools. The engineer designated to develop the
intelligent system passed over this inconvenient.

History of Neural Networks

The study of the human brain dates back thousands of years. But it has only
been with the dawn of modern day electronics that man has begun to try and
emulate the human brain and its thinking processes. The modern era of neural
network research is credited with the work done by neuro-physiologist, Warren
McCulloch and young mathematical prodigy Walter Pitts in 1943. McCulloch
had spent 20 years of life thinking about the "event" in the nervous system that
allowed to us to think, feel, etc. It was only until the two joined forces that they
wrote a paper on how neurons might work, and they designed and built a
primitive artificial neural network using simple electric circuits. They are
credited with the McCulloch-Pitts Theory of Formal Neural Networks.
(Haykin, 1994, pg: 36) (http://www.helsinki.fi)

 The next major development in neural network technology arrived in 1949
with a book, "The Organization of Behavior" written by Donald Hebb. The
book supported and further reinforced McCulloch-Pitts's theory about neurons
and how they work. A major point brought forward in the book described how
neural pathways are strengthened each time they were used. As we shall see,
this is true of neural networks, specifically in training a network. (Haykin, 1994,
pg: 37)(http://www.dacs.dtic.mil)

 During the 1950's traditional computing began, and as it did, it left research
into neural networks in the dark. However certain individuals continued
research into neural networks. In 1954 Marvin Minsky wrote a doctorate thesis,
"Theory of Neural-Analog Reinforcement Systems and its Application to the
Brain-Model Problem", which was concerned with the research into neural
networks. He also published a scientific paper entitled, "Steps Towards
Artificial Intelligence" which was one of the first papers to discuss Artificial
Intelligence in detail. The paper also contained a large section on what
nowadays is known as neural networks. In 1956 the Dartmouth Summer
Research Project on Artificial Intelligence began researching Artificial
Intelligence, what was to be the primitive beginnings of neural network
research. (http://www.dacs.dtic.mil)

 Years later, John von Neumann thought of imitating simplistic neuron
functions by using telegraph relays or vacuum tubes. This led to the invention of
the von Neumann machine. About 15 years after the publication of McCulloch

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 3

and Pitt's pioneer paper, a new approach to the area of neural network research
was introduced. In 1958 Frank Rosenblatt, a neuro-biologist at Cornell
University began working on the Perceptron. The perceptron was the first
"practical" artificial neural network. It was built using the somewhat primitive
and "ancient" hardware of that time. The perceptron is based on research done
on a fly's eye. The processing which tells a fly to flee when danger is near is
done in the eye. One major downfall of the perceptron was that it had limited
capabilities and this was proven by Marvin Minsky and Seymour Papert's book
of 1969 entitled, "Perceptrons". (http://www.dacs.dtic.mil) (Masters, 1993,
pg: 4-6)

 Between 1959 and 1960, Bernard Wildrow and Marcian Hoff of Stanford
University, in the USA developed the ADALINE (ADAptive LINear Elements)
and MADALINE (Multiple ADAptive LINear Elements) models. These were
the first neural networks that could be applied to real problems. The ADALINE
model is used as a filter to remove echoes from telephone lines. The capabilities
of these models were again proven limited by Minsky and Papert (1969).
(http://www.dacs.dtic.mil).

 The period between 1969 and 1981 resulted in much attention towards neural
networks. The capabilities of artificial neural networks were completely blown
out of proportion by writers and producers of books and movies. People
believed that such neural networks could do anything, resulting in
disappointment when people realized that this was not so. Asimov's television
series on robots highlighted humanity's fears of robot domination as well as the
moral and social implications if machines could do mankind's work. Writers of
best-selling novels like "Space Oddesy 2001" created fictional sinister
computers. These factors contributed to large-scale critique of Artificial
Intelligence and neural networks, and thus funding for research projects came to
a near halt. (Haykin, 1994, pg: 38) (http://www.dacs.dtic.mil)

 An important aspect that did come forward in the 1970's was that of self-
organizing maps (SOM's). Self-organizing maps will be discussed later in this
project (Haykin, 1994, pg: 39). In 1982 John Hopfield of Caltech presented a
paper to the scientific community in which he stated that the approach to
Artificial Intelligence should not be to purely imitate the human brain but
instead to use its concepts to build machines that could solve dynamic problems.
He showed what such networks were capable of and how they would work. It
was his articulate, likeable character and his vast knowledge of mathematical
analysis that convinced scientists and researchers at the National Academy of
Sciences to renew interest into the research of Artificial Intelligence and neural
networks. His ideas gave birth to a new class of neural networks that over time
became known as the Hopfield Model (http://www.dacs.dtic.mil) (Haykin,
1994, pg: 39).

4 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 At about the same time at a conference in Japan about neural networks,
Japan announced that they had again begun exploring the possibilities of neural
networks. The United States feared that they would be left behind in terms of
research and technology and almost immediately began funding for AI and
neural network projects (http://www.dacs.dtic.mil).

 1986 saw the first annual Neural Networks for Computing conference that
drew more than 1800 delegates. In 1986 Rumelhart, Hinton and Williams
reported back on the developments of the back-propagation algorithm. The
paper discussed how back-propagation learning had emerged as the most
popular learning set for the training of multi-layer perceptrons. With the dawn
of the 1990's and the technological era, many advances into the research and
development of artificial neural networks are occurring all over the world.
Nature itself is living proof that neural networks do in actual fact work. The
challenge today lies in finding ways to electronically implement the principles
of neural network technology. Electronics companies are working on three types
of neuro-chips namely, digital, analog, and optical. With the prospect that these
chips may be implemented in neural network design, the future of neural
network technology looks very promising.

1.1 BIOLOGICAL VS. ELECTRICAL BRAINS

Biological and electrical brains are very similar in some aspects and very
different in others. One of the main similarities is the modeling of neurons. A
biological brain is a collection of individual neurons that send electric pulses to
one another based on reactions and pulses perceived. An electrical brain is very
similar in which “nodes” send electrical signals to one another through electric
wires. These pulses then enact different responses in the various neurons
influenced by them. A minor difference does lie in the pulses though, while a
biological brain can vary the electric pulse in amplitude, most electric brains are
stuck inside a specific voltage range.

 The big difference between a biological brain and an electric brain is the
ability of the biological brain to radically alter its structure while learning. A
human brain on the other hand, learns by re-arranging the structure of the brain.
A neuron in a human brain can alter its paths and electric charge to affect those
around it. On the other hand, an electric brain must store information and give
certain paths different weights. Paths never change or disappear, inside they
grow stronger or weaker. Simply put, a biological brain’s hardware can change,
while neural networks hardware cannot. Learning in general is a very hard
concept for the electrically brain to grasp. This occurs because a set of
guidelines and rules must be laid out for the electronic brains so it understands
what must be remember and what must be committed to memory.

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 5

1.1.1 LAYERS

There are 3 main layers in a neural network. The first of these layers is the
input layer. In the input layer, data is gathered from external sources. These
external sources can be sensors, manually inputted data, or data generated by
other neural networks or the same network. The input layer then passes the data
to a hidden layer. Because the input layer accepts data, it often acts as a buffer
for the hidden layer. The hidden layer serves two functions. The first function
is processing the data. Here equations are solved, or answers are formulated.
The second function of the hidden layer is to determine what is learned and
what is forgotten. Here the learning rules and laws are applied, and the
“structure” of the neural network is updated. Lastly, there is the output layer.
The output layer is where the processing and data meet the external world. The
output layer could be a set of lights, or a computer screen, even a voice
synthesizer. This layer just like the input layer is one way. This one way
creates a buffer that can protect the more sensitive hidden layers.

1.1.2 COMMUNICATIONS

An important aspect in a neural network is how the neurons communicate with
one another. There are three different types of communication. The first is
inter-layer connections. These are the communication lines used to
communicate this from one layer to the next. When using this type of
communication, the sending layer cannot vary by from the receiving layer by
more than a difference of one. In other words, this means layer 1 can talk to
only layer 0 or 2, using inter-layer communications.

 The next type of communications is the intra-layer communications. This is
where neurons within the same layer communicate with one another. Besides,
neurons talking to other neurons, there are self-connections, which are when a
neuron talks to itself. These connections are considered a special type of intra-
layer communications. Lastly, there is the supra layer communications. These
are the communications that occur when a neuron needs to talk to another
neuron or layer that is more than a difference of 1 away. For example, layer 1
sending a message to layer 5, would be considered a supra layer
communication. All three of these communications are required for a
successful neural network.

 Communications between neurons and layers are often weighted.

1.1.3 INTER-LAYER

Taking a more in-depth look at inter-layer communication, it can be seen that
there are two different types of connections. The first type of connection is the
full connection. A full connection is one that tries to maximize the number of

6 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

connections between neurons. A specific definition cannot be developed, due to
the fact that learning methods influence, which connections are valid and which
ones are not. Three variations are possible with full connections. The most
common is the fully interlayer-connected network. This communication method
is where all possible connections are present between layers, but no intra or
supra layer connections exist (Figure 1.2). Another method, which many people
think of when fully connected is mentioned is the plenary neural network. This
network communication method has all possible connections, including those
found in the intra and supra layers (Figure 1.2). Lastly, the third method is a
plenary network that doesn’t employ self-connections. This reduction in self-
connections, increases the speed of the network, but does have an impact on the
ability of neurons to learn.

1.2 INTRODUCTION TO BIOLOGICAL NEURON

Artificial Neural Networks (ANNs) are computer systems (software1 or
hardware) that are biologically inspired in that they attempt to simulate the
processing capabilities of the networks of neurons in the human brain.

 The number of applications of ANNs to real world problems is immense and
they permeate industry and commerce. ANNs perform particularly well where
there is a large amount of historical data, where the application involves
recognizing patterns in the data or where the problem is one of classification.
ANNs fit into the general area of computational intelligence2 and rank
alongside fuzzy logic as the most successful.

 The biological inspiration for ANNs is motivated by the fact that the human
brain is capable of so much when compared with a computer. Although
computers can very quickly process numbers and carry out complex
mathematical calculations they are unable to reason in a similar manner to
human beings. So, the suggestion is that we should simulate some of the
physical processes that provide the ability to reason and tackle difficult
problems that computers allied to mathematical techniques are unable to solve
well. The basic premise is that we should borrow from nature.

 The eventual aim is to emulate the way human beings think. This is still only
a pipe dream but currently ANNs are able to tackle complex real world
problems that mathematical and statistical techniques are often unable to handle.
In particular ANNs are able to deal with ‘noisy’ data and have strong
generalisation capabilities. Noisy data is real world data that does not, for

1 The vast majority of applications are software implementations of ANNs.
2 Computational Intelligence is a term used to cover three techniques – artificial neural

networks, fuzzy logic and genetic algorithms – that attempt to imbue computers with
some ‘intelligence’.

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 7

example, fit exactly to a mathematical function but contains random variations.
Generalisation is the ability to handle examples that the network hasn’t seen
before. We are still unsure exactly how the brain operates but we understand
enough to enable us to mimic the basic operations and interactions between
neurons. The human brain is made up of approximately 1 × 1011 neurons with of
the order of 1 × 1015 connections between them. Figure 1.1 provides a schematic
diagram for a biological neuron and the connections between neurons.

Figure 1.1 The Biological Neuron (Wasserman, 1989).

 Each neuron in the brain possesses the capability to take electrochemical
signals, as input, and process them before sending new signals via the
connections between neurons, known as the dendrites. The cell body receives
these signals at the synapse. When the cell body receives the signals they are
summed – some signals excite the cells whilst others will inhibit the cell. On
exceeding a threshold, a signal is sent via the dendrites to other cells. It is this
receiving of signals and summation procedure that is emulated by the artificial
neuron.

 The biological neuron is only an inspiration for the artificial neuron. The
artificial neuron is clearly a simplification of the way the biological neuron
operates and indeed much is still not known about the way the brain operates for
us to carry the analogy too far. ANNs, then, are an approach for modelling a
simplification of the biological neuron – we are not modelling the brain but
merely using it as an inspiration.

8 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

We can summarise this section in the following way.

 ANNs learn from data, are biologically inspired and are based on a
network of artificial neurons;

 ANNs handle noisy data and are able to generalise in that they can cope
with examples of problems that they have not experienced before.

1.3 ARTIFICIAL NEURON

The artificial neuron is the basic building block of ANNs (from now on we will
use neuron to mean artificial neuron). There are a number of variations on this
basic neuron but they all have the same simple design. Figure 2.2 shows the
basic structure.

Figure 1.2 The Basic Artificial Neuron.

 Each neuron receives inputs, x1, x2, …, xn, which are connected to the input
side of the neuron. Attached to every connection is a weight wi which represents
the connection strength for that input.

 The cell node then calculates the weighted sum of the inputs given by

1

n

i i
i

S w x

 An activation function, F, takes the signal, S, as input to produce the output,
O, of the neuron. In other words
 O = F(S)

 There are a number of functions that could be employed. For example it may
simply be a threshold

 O =
1 where

0 otherwise

S T
 …..(1.1)

where T is a constant threshold. This can be interpreted to mean that if the
weighted sum is above T then the node ‘fires’.

 1 x 1 w

 2 x 2 w

 F(S)O

n w

n x

Sxw ii

Artificial Neuron

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 9

 Another commonly adopted activation function is the logistic or sigmoidal
function given by

1

1

 –S

O (S)
e

 …..(1.2)

 This has the effect of limiting the output of the neuron to a minimum of zero
and a maximum of S. Figure 2.3 shows the effect of applying the sigmoidal
function.

Figure 1.3 The Sigmoidal Activation Function.

 As you can see, this has the effect of compressing the value of O to between
zero and one. This function also has the effect of introducing nonlinearity into
the network.

 There are a number of other functions that are employed in real applications.
Choosing an activation function is one of the many decisions faced by a neural
network developer.

 In this basic description of a neuron, we have already come across the notion
of a weight. It’s not too simplistic to say that the problem of developing an
ANN is primarily to find a method for learning or estimating these weights. You
will see this more clearly later.

1.3.1 THE PERCEPTRON

Neural networks research started in the 1940s when McCulloch and Pitts (1943)
introduced the idea of the perceptron. The original perceptron consisted of a
single layer of neurons that had a threshold activation function as described
above. An example is shown in Figure 1.4.

10 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

1x O O O1

2x O O O2

nx O O On

Figure 1.4 The Perceptron.

 The input layer feeds the data through to the output layer where the neurons
process the inputs and weights using the threshold activation function as
described by eq. 1.1. The two layers are fully connected in that each input node
is connected to each output node. The perceptron carries out pattern
classification by learning the weights between the layers by supervised
learning where the network is supplied with known input and output data. The
differences between supervised and unsupervised learning will be discussed in
Section 4.

 A typical problem that was tackled in the early days of the perceptron is
where the input and output data is binary (i.e. 0 or 1) and we have a set of inputs
and outputs. This is an example of a training data set and each pair of inputs and
outputs is known as a pair of training patterns. The perceptron learns the
weights in the following way.

1. The weights are randomly initialised to small values.

2. For the first input pattern the network output is calculated using eq. 1.1.
Denote this output by Ojp for input pattern p and output unit j.

3. The error is calculated as Tjp – Ojp where Tjp represents the known output.

4. A simple learning rule for the weights might be

 () new
ji ji jp jp iw w c T O a

 where

 c is a constant (0 < c < 1) representing the learning rate

 ai is the value of input unit i

 wji is the weight from node j to node i

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 11

 new
jiw is the new weight from node j to node i.

 5. The process is repeated for the next input pattern.

 This process is repeated until there is an acceptable error in the classification,
where the error is usually a root-mean-square measure such as

2

1 1

()

p on n

jp jp
p j

p o

T O

n n

where np is the number of patterns in the training set and no is the number of
output units.

 The exciting fact about this approach is that it was proved that this algorithm
could learn anything it could represent. In other words the weights could be
adjusted to simulate any function that could be represented by inputs and
outputs. However there was a problem. In 1969 Professor Minsky found a
whole class of problems that a perceptron could not simulate – problems that are
not linearly separable. The best example of this is the exclusive-OR function.
This is where we have two inputs, x and y, and an output, out; the relationships
are given in Table 1.1 and the graphical representation is in Figure 2.5.

Table 1.1 The Exclusive-OR Problem

x y Out

0 0 0

1 0 1

0 1 1

1 1 0

y

1 out = 1 out = 0

0
out = 0

out = 1

0 x

Figure 1.5 Graphical Representation of the Exclusive-OR Problem.

12 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 For a single neuron with threshold activation function with two inputs and
one output it can be shown that there are no two weights that will produce a
solution. It is not linearly separable in that there is no straight line which will
‘split’ the points with output values of 1 from those with output values of 0.
Unfortunately, it seems that most real world problems are not linearly separable.
This caused the development of neural networks to be put on hold until
Rumelhart and McClelland (1986) put forward the notion of the multilayered
perceptron with three layers of neurons. These networks form the basis for
much of the success of neural networks today. In particular, multilayered neural
networks that use the backpropagation algorithm (see Section 2.3) are
employed in most successful ANN applications.

1.4 THE HODGKIN-HUXLEY MODEL

It is evident that Hodgkin and Huxley's theory and mathematical model for the
generation of the action potential, published in complete form in 1952, was
widely admired and received careful consideration, as shown in several
references. Some of the historical and elementary theoretical background will be
reviewed here. The intent is to present a simple, clear picture of the action
potential and its associated refractory periods, for use later in studying the
dynamics of small reverberatory networks. Perhaps this point of view will also
be helpful to others, such as retired engineers, who would like to contribute to
neuroscience as amateurs.

 Hodgkin and Huxley's work was an experimental and theoretical triumph,
but it developed out of a gradually clarifying view of neural processes, to which
many people contributed. Some of these are mentioned by Hille (1984,
pp. 24-28).

1.4.1 RESTING POTENTIAL

Bernstein used Walter Nernst's equation, which is based on thermodynamic
principles, to calculate the resting potential inside the membrane from the
concentration gradient for potassium. The qualitative explanation of this effect
is that the membrane is semipermeable to potassium (but supposedly not to
sodium) so that potassium tends to leak out, and in doing so the potassium ions
leave a negative charge in the cytoplasm inside the neuron. This sets up a
potential difference between inside and outside, which tends to drive potassium
ions back in. An equilibrium is established between this and the concentration
gradient driving them out. The Nernst equation gives the potassium equilibrium
potential as

 EK = (RT/zF) ln ([K+]o/[K
+]i)

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 13

where R and F are physical constants, z is valence, and T is the absolute
temperature (degrees K). [K+]o is the outer concentration of K+, and [K+]i is the
inner concentration.

1.4.2 THE EQUIVALENT CIRCUIT

To facilitate complete description of the factors determining resting potential in
neurons, an electrical equivalent circuit can be used. This circuit represents a
short cylindrical section of an axon, over which the membrane potential is
approximately uniform. The equivalent circuit is shown in Fig. 1.6. The
potential at one node, labeled Vm, corresponds to the uniform potential. The
membrane has the distributed properties of conductance (the inverse of
resistance) and capacitance, both of which are represented by discrete elements
in the circuit. Biologically, there is a mechanism called the Na+-K+ pump, which
metabolically establishes concentration gradients for sodium and potassium ions
across the membrane. This is not represented by a circuit element; it simply
maintains approximately fixed concentrations for sodium and potassium ions.

Figure 1.6 The conductances GNa, GK, and GCl (Cl for chloride) are small, so
that the axon membrane is approximately an insulator separating two
conductors: the cytoplasm and the external fluid. The cytoplasm is

represented by the node with the membrane potential Vm. The external fluid
corresponds to the lower node connected to the ground symbol. The ground

indicates that the potential of the external fluid is being taken as the
reference potential, and is therefore zero.

1.4.3 THE RESTING CONDUCTANCE

The conductances GNa, GK, and GCl are total values representing a great many
individual ion channels. They are constants during the resting potential. Later,
in modeling the action potential, GNa and GK will be taken as variables

14 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

dependent on Vm and time. The individual ion channels are diverse as well as
numerous. Studies of the genes that encode ion channels indicate that a great
many combinations of properties are possible, so that channels can serve a
variety of special purposes. For the study of membrane potential in axons, ion
channels can be divided into resting channels, which are always open, and
voltage-gated channels which only open during the action potential. Thus, in the
discussion of the resting potential, the symbols GNa, GK, and GCl only represent
the totals of the resting channels of the three ionic types in Fig. 1.7. The three
can be added together to give the total resting membrane conductance GM.

 GM = 1/3333.3 = 3.0000 × 10–4 mho/cm2 = 0.30000 mmho/cm2

Figure 1.7 Resting Potential.

1.4.4 THE ACTION POTENTIAL
An action potential is shown in Fig. 1.8. This is taken from the Squid tutorial in
Bower and Beeman (1998), which represents a section of axon with membrane
properties similar to those of the squid giant axon. The figure is only part of a
window in the Squid display. It can be seen that after the spike there is an after-
potential which drops below 0 mV (This is the resting potential, taken as zero to
conform with Hodgkin and Huxley; considered – 70 mV elsewhere) before
settling down. This is the time interval in which there is a refractory period.

 Hodgkin and Huxley's outstanding achievement was the quantitative
explanation of the action potential. Their work was based on the sodium
hypothesis presented by Hodgkin and Katz (1949). This proposed that, during
activity after stimulation above the threshold, the membrane becomes
selectively highly permeable to sodium ions, so that the inward flow of sodium
through the membrane briefly eclipses the outward flow of potassium, and the
internal membrane potential goes positive past zero (103 – 70 = +33 mV), and
rises toward the sodium equilibrium potential. Then the sodium permeability

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 15

declines and the potassium permeability becomes large, until the spike is
completed.

Fig. 1.8 The initial inflection in the curve cannot be well fit by a simple
exponential (dotted line) that rises linearly from zero. Successively higher

powers of p (p =2: dot-dashed; p = 3: dashed line) result in a better fit to the
initial inflection. In this case, p = 4 (solid line) gives the best fit

 For quantitative application of the sodium hypothesis to calculate the action
potential, values for the sodium and potassium conductances as functions of
voltage and time were needed. Hodgkin and Huxley obtained these by means of
a voltage-clamp technique, which is described by Johnston and Wu (1995) on
pages 143-145. Two silver-wire electrodes were inserted axially through one
end of a length of axon. One electrode measured the membrane potential Vm,
and a circuit compared it with a command voltage which had been set by the
experimenter. If Vm deviated from the command voltage, a current was injected
at the second electrode to eliminate the deviation. Thus Vm was clamped to the
command value.

 The experiments started from a holding voltage which was apparently
intended to equal the resting potential. Hodgkin and Huxley (1952a), page 455
mention estimates of – 60 to – 65 mV for the actual resting potential, depending
on factors such as junction potential, which modify the measured value (Their
signs are reversed, being given as + 60 to + 65, conforming to the choice
mentioned in Hodgkin, Huxley, and Katz (1952), page 425). A range of values
for the command voltage was used. Following the account in Johnston and Wu,
the starts were from a holding voltage of – 60 mV relative to the external fluid,
followed by a voltage step to a command voltage, which was then maintained
for 8 msec.

16 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 The injected current required to maintain the command voltage was recorded
as a function of time. The injected currents used in the above procedure pass
through the membrane to return to the external circuit. Thus they are equal to
sums of the sodium and potassium currents flowing through the membrane. To
separate the twos, the experiments can be repeated with one or the other type of
channels blocked. The sodium channels will be blocked if the extracellular Na+

concentration is reduced to its inside value, so that the Na+ equilibrium potential
is zero. They can also be blocked with tetrodotoxin. The potassium channels can
be blocked by removing intracellular K+, or with tetraethylammonium. The
result is a family of curves for sodium current INa as a function of time with Vm

as parameter, and a similar family for IK.

 Johnston and Wu (1995, pp. 145-147) describe how it was demonstrated that
the instantaneous relation between current and voltage in the above experiments
is linear; that is, that it follows Ohm’s law, so that

 INa = GNa (Vm – ENa)

and IK = GK (Vm – EK).

 Thus the conductances GNa and GK can be obtained as functions of Vm and
time t by dividing the respective currents by their driving voltages.

 The foregoing procedures give GNa and GK as functions of Vm and t over the
range of discrete values of Vm and t which were tested. For use in simulation
calculations of the action potential, the discrete data points must be fitted with
continuous functions. Hodgkin and Huxley tried to relate the complex curve
forms at particular values of Vm to exponentials, and in doing so were led to
express them in terms of maximum values of GNa and GK which are multiplied
by coefficients ranging between zero and 1. The coefficients turned out to be
small integral powers of exponentials. The theoretical significance of these
forms is discussed in Johnston and Wu (1995, pp. 149-154), and in Bower and
Beeman (1998, pp. 37-38). The equations for approximating the voltage
dependence are described in Bower and Beeman (1998, pp. 44-47).

 Having constructed expressions for calculating the sodium and potassium
conductances, Hodgkin and Huxley proceeded to use them to calculate the
action potential. It was 1951, and the early Cambridge University computer was
down for about 6 months for modification. Huxley managed to carry out
numerical integrations of the differential equations with a hand-operated
mechanical calculator. They were excited to see the action potential come out
with the right shape. They saw that explanation of the action potential in the
squid axon in terms of sodium and potassium conductances is fundamental, and
that therefore it might be expected that similar explanations would apply to
other excitable tissues, perhaps with different values for parameters.

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 17

1.4.5 COMPUTER SIMULATION OF NEURAL BEHAVIOR

The Hodgkin-Huxley theory provides a foundation for modeling neurons. It is
especially suited to simulations on digital computers, since they handle the
numerical integrations easily. The fundamental character of the theory gives
assurance of a close correspondence to biological reality, and this gives the
simulations value as natural experiments.

 The GENESIS computer program for computational neuroscience (Bower
and Beeman, 1998) is a flexible system for simulation, providing building
blocks for simulations both below and above the level of the whole neuron.
With GENESIS scripting, users can also design their own extended building
blocks. The GENESIS tutorial named Squid, which is flexible in itself,
embodies the classical Hodgkin-Huxley model of the giant axon. The Squid
tutorial is of special interest here, because the chapter in Bower and Beeman
(1998) which covers it includes Exercise 7 (p. 49) for investigating the
refractory periods.

1.5 WHY SPIKING NEURONS?

Models of spiking neurons have been called the 3rd generation of artificial
neural network (Maass 1997), as in

 Generation 1: Binary networks (activation of 0 or 1) such as implemented
by McCulloch and Pitts’ neurons and the Hopfield network.

 Generation 2: Real-valued networks, where activation is representative of
the 'mean firing rate' of a neuron, such as Backpropagation networks and
Kohonen self-organising maps.

 Generation 3: Spiking neural networks (SNNs).

 Networks of the earlier generations have proven effective at modelling some
cognitive processes and have been successful in many engineering applications.
However the fidelity of these models with regards to neurophysiological data is
minimal and this has several drawbacks.

 Neurophysiological knowledge cannot be integrated easily into the
models and as such cannot be tested for applicability to or effect upon
neural computation.

 Real neurons exhibit a very broad range of behaviours (tonic (continuous)
and phasic (once-off) spiking, bursting, spike latency, spike frequency
adaptation, resonance, threshold variability, input accommodation and
bistability (Izhikevich 2004)). It's unlikely that these behaviours have no
computational significance.

18 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 There are specific interesting processes occurring at the spike level (such
as Spike Timing Dependent Plasticity (Bi and Poo 1998)) that cannot be
modelled without spikes.

 The dynamics of spiking networks are much richer, allowing for example
o oscillations in network activity which could implement multiple

concurrent processing streams (Izhikevich 1999), figure/ground
segmentation and binding (Csibra, Davis et al. 2000; Engel, Fries et
al. 2001), short term memory (Jensen, Idiart et al. 1996; Jensen,
Gelfand et al. 2002) etc

o much increased (perhaps by orders of magnitude) memory capacity
(Izhikevich 2005). Transmission delays are very significant for
computation particularly because they are random or Gaussian for real
neurons - this causes the formation of polychronous (as against
synchronous) spiking neuron groups which could possibly store many
more population-encoded memories than there are synaptic weights.
This idea is still to be fully researched and analysed.

 One of the most exciting characteristics of spiking neural networks, with the
potential to create a step-change in our knowledge of neural computation, is that
they are innately embedded in time (Maass 2001). Spike latencies, axonal
conduction delays, refractory periods, neuron resonance and network
oscillations all give rise to an intrinsic ability to process time-varying data in a
more natural and computationally powerful way than is available to 2nd
generation models. Real brains are embedded in a time-varying environment;
almost all real-world data and human or animal mental processing has a
temporal dimension. Evidence is growing that rhythmic brain oscillations are
strongly connected to cognitive processing (Klimesch 1999; Basar, Basar-
Eroglu et al. 2001; Engel, Fries et al. 2001; Kahana, Seelig et al. 2001; Ward
2003). So utilising Spiking Neural Networks may be one of the first steps
needed to bridge the current divide between existing ANN models and more
flexible, realistic and, dare I say, intelligent, behaviour from artificial systems.

1.5.1 POTENTIAL DISADVANTAGES

 Processing time: Until recently, biologically realistic spiking models
have required intensive computations for even small amounts of
simulated time, making simulations of large networks or long time
periods impractical in most situations. However this is no longer of such
great concern with the formulation of a model which is both biologically
realistic and computationally efficient (see the next section: What spiking
neuron models are available?)

 Complex dynamics: One of the advantages may also be a disadvantage
in that the complex behaviour needs to be understood and effectively
managed. Although there are analogs to basins of attraction for networks

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 19

of spiking neurons on a global scale as long as noise is present in the
system (Gerstner 1995), there is no such thing as a 'stable state' on a local
neuron scale unless the entire network is completely inactive, so the
network is always dynamically changing at some level.

 Limited knowledge: Much less is known about networks of spiking
neurons than the more established ANN paradigms, and many well-
accepted methodologies need to be adapted or possibly replaced. For
instance with the right choice of parameters, STDP appears to be able to
intrinsically support Hebbian learning with no need for arbitrary weight
bounds or explicit weight or firing rate normalisation (van Rossum, Bi et
al. 2000).

1.5.2 WHAT SPIKING NEURON MODELS ARE AVAILABLE?

Models fall into 3 broad categories ranging from complex to simple.

1. Systems of coupled equations of 2 or more variables using parameters
with real biophysical correlates.

2. Systems of coupled equations of 2 or more variables using parameters
with no biophysical correlates.

3. Integrate and Fire models.

 These categories are not entirely mutually exclusive; some overlap is
evident. Discussion of each follows.

1.5.3 COUPLED EQUATIONS USING PARAMETERS
WITH REAL BIOPHYSICAL CORRELATES

Although it was published more than 50 years ago, the definitive model here
remains the Hodgkin-Huxley model (Hodgkin and Huxley 1952). Its advantage
is that it completely describes neuron behaviour in terms of all known
biophysical parameters and as such is theoretically able to model any possible
neuron behaviour. In practice, the parameter values can be difficult to
determine, and in fact the values required to successfully emulate several known
neuron types using this model are yet to be found (Izhikevich 2004). The model
also has excessive computational requirements and hence cannot be used to
simulate large networks over long time scales.

 There are several simplified HH models available (Morris and Lecar 1981;
Kistler, Gerstner et al. 1997; Wilson 1999); however any simplification always
comes with consequent reduction in biological fidelity and/or simulated neuron
behavioural repertoire.

1.5.4 COUPLED EQUATIONS USING PARAMETERS WITH NO

20 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

BIOPHYSICAL CORRELATES

If we assume that there is only one property of a neuron that needs to be modelled
in order to capture everything about how one neuron influences others,
and how neurons compute in general, then that property would be the membrane
potential. In this case, the system of coupled equations can be greatly simplified
while still exhibiting the rich set of spiking behaviors and sub-threshold
characteristics of real neurons. The most successful model for this is the
Izhikevich simple spiking neuron model (Izhikevich 2003), where success is
measured in terms of both modelling efficiency and spiking behaviour. In fact,
Izhikevich states that this is the simplest model possible which still exhibits all
the required behaviours (Figure 1.9). It consists of just 2 equations and only 1
nonlinear term, so is computationally efficient – almost 100 times faster than the
HH model to simulate. Studies have shown that the correspondence between a
similar model of two variables (fitted to the data) and the HH models’ spike
timing predictions is very close – about 96% within 2 ms of each other (Brette
and Gerstner 2005). The subthreshold dynamics of Izhikevich model neurons
matches very closely those of HH (Boardman 2005).

Figure 1.9 Top row – Izhikevich spiking neuron model. Bottom two rows – 8 of
the 20 or so known neuron behaviours that can be emulated by the model.

The assumption that membrane potential is the only quantity needed for simulation of
neural computation is arguable. A likely counter example is incorporation of synaptic
plasticity into the model, which depends on concentrations of certain neurotransmitters
and ions around the synapse (Urakubo and Watanabe 2002). However this doesn’t rule

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 21

out the possibility that these values could be reliably approximated by some simple
function of the membrane potential or spike timings, keeping the model equally simple
while maintaining functional fidelity. This is the approach taken in (Izhikevich 2005).

 A range of other models exist that lie somewhere between Izhikevich and
Hodgkin-Huxley, e.g., (FitzHugh 1961; Rose and Hindmarsh 1989), often by
trying to simplify the HH computations while modelling more known physical
neuron properties than just membrane potential. In general, it can be said that
the more properties modelled, the more computation is required; it is therefore
an implementation-dependent trade-off as to which model should be chosen.
However, with its ability to exhibit all known biological neuron behaviours
whilst remaining computationally economical, the Izhikevich model is the
current standout choice.

1.6 INTEGRATE AND FIRE MODELS

The simplest integrate and fire (I&F) model – the leaky I&F neuron – was
originally developed when dominant thinking stated that neuron function can be
well-enough approximated by simply integrating input and then firing at a given
threshold. Other properties like spike frequency adaptation, bursting, resonance,
latency and variable thresholds were incorporated into models as needs arose
and dominant thinking changed (see (Izhikevich 2004) for a review); however
unfortunately no single I&F model displays all these characteristics.

 The underlying assumption of all I&F models is that of neurons being
integrators, which we now know is not always the case (e.g., resonance,
bistability, inhibition-induced spiking). However they are computationally
efficient, even more so than the Izhikevich model, and should be considered if
the full range of spiking behaviour is not required.

1.6.1 SPIKING NEURAL NETWORKS – WHAT DO WE KNOW?

1.6.1.1 Delay coding and universal approximation

All Generation 2 neural networks (ie with continuous real-valued activation
functions) can be emulated by SNNs, using delay coding (Maass 1997), also
called latency or, somewhat confusingly, temporal or firing order coding. The
process of delay coding is

 Determine the minimum and maximum activation levels of the Gen 2
neurons.

 Determine a suitable ‘time-slice’ length for the Gen 3 network that will
equate to an iteration (one step) of the Gen 2 network. The Gen 3 network
runs in continuous time made up of consecutive time-slices.

22 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 Within each time-slice, fire each neuron at a time proportional to its Gen

2 activation level – e.g., neurons with maximum activation fire at the start

of the time-slice and neurons with minimum fire at the end; neurons with

¼ activation level fire ¾ of the way through the time-slice, and so on.

 Postsynaptic neurons decode the presynaptic activation level based on the

firing delay within the time-slice.

 Two obvious consequences of the fact that all ANNs can be emulated by

SNNs are that

 Generation 2 ANNs are a subset of SNNs.

 SNNs are universal approximators (because Gen 2 ANNs are).

 Another consequence is that

 Since any continuous function can be approximated with arbitrarily high

reliability by an SNN with a single hidden layer (as can an MLP trained

with back propagation), then with biologically realistic choices of spiking

neuron parameters, any continuous function can be computed by an SNN

within 20 ms (Maass 2001).

1.6.2 SPIKE TIMING DEPENDENT PLASTICITY (STDP)

STDP is a generalisation and refinement of Hebbian learning, stating that an

increase (potentiation) in synaptic efficacy occurs if a presynaptic neuron fires

immediately prior to the postsynaptic, and a decrease (depression) occurs if

postsynaptic firing immediately precedes presynaptic. The effect was observed

by Bi and Poo in hippocampal neurons in 1998 (Figure 1.10). The time course

and magnitude of the effect vary between experimental studies, but it seems to

last 10-50 ms either side of the postsynaptic spike and is maximal at or near the

time of the spike, decaying exponentially to 0 by the end of the time course (Bi

and Poo 1998; Kepecs, van Rossum et al. 2002; Urakubo and Watanabe 2002).

It operates on excitatory synapses only and is less effective at potentiating

already-strong synapses, although when synaptic depression occurs, the existing

synaptic strength has less bearing on the result.

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 23

Figure 1.10 Change in Excitatory Post-Synaptic Current subsequent to
different pre- and postsynaptic spike timings (tpost – tpre). Exponential curves

are shown for reference in red. Adapted from (Bi and Poo 1998).

 Experimental data on the plasticity of inhibitory synapses on the other hand
is scant (Swiercz, Cios et al. 2006), but often they are modelled more like
Hebb’s original rule whereby potentiation occurs if the two neurons fire closely
together independent of the order of firing (Paugam-Moisy 2006). Others
believe that inhibitory plasticity is computationally ill-advised and is not
widespread in nervous systems (McBain, Freund et al. 1999).

 STDP can be of itself lead to the stable development of network
representations with no need for any form of weight or firing rate normalisation
(Kempter, Gerstner et al. 1999; Song, Miller et al. 2000; van Rossum, Bi et al.
2000; Abbott and Gerstner 2004). However neurons are known to perform
synaptic scaling in order to actively maintain a fixed long term average firing
rate (Baddeley 1997); combined with standard Hebbian learning, this results in
an implementation of Oja’s rule, equivalent to principal components analysis or
PCA (Oja 1982). STDP can be mathematically derived from several different
starting constraints (Bohte and Mozer 2005). A multidisciplinary (molecular ,
biological and computational) and multiscale (of both temporal and spatial
dimensions) review of STDP can be found in (Worgotter and Porr 2005).

 Importantly, recent work has come up with the spiking neuron convergence
conjecture (Legenstein, Naeger et al. 2005) which predicts that STDP can
implement any input/output mapping that an SNN could ever potentially
perform. They prove that the perceptron convergence theorem holds in the
average case for STDP with Poisson input spike trains, then show through
simulations that it holds in the test cases for more-realistic neurons and more-
general input distributions. This endows STDP with universal learning
capabilities.

24 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

1.6.3 NETWORK ARCHITECTURES

Neurons within nervous systems tend to have low average firing rates and be
sparsely connected (Feldman and Ballard 1982; Brunel 2000; Reyes 2003), with
synapses having a wide range of delays from one to several tens of milliseconds
(Swadlow 1985). Rather than being a biological irrelevance, these appear to be
crucial properties that affect how nervous systems perform computations. The
concept of a temporal grouping of cells is central (Abeles 1991; Bienenstock
1995; Abeles 2002; Beggs and Plenz 2003; Ikegaya, Aaron et al. 2004), also see
the very early paper (Rochester, Holland et al. 1956)! Temporal groups extend
earlier ideas of grandmother cells, population coding, cell assemblies (Hebb
1949; Freeman 1991; Reilly 2001) and synfire chains (Abeles 1991) into the
time domain since a group may not be a synchronously-firing collection of cells,
but rather cells that fire in given order with known timings. Izhikevich calls this
property ‘polychrony’ as against synchrony (Izhikevich 2005). Temporal groups
come about due to sparse connectivity, spiking dynamics and particularly,
random delays, and play a vital role in information processing by nervous
systems, or in fact are the physical manifestation of the processing of
information. So spiking neurons and their typical connectivity together support
computation using SNNs, and it becomes arguably impossible, or at least
unwise, to separate them.

 The significance of the random delays for network function cannot be
overstated. It’s now well known that a sparsely connected network with random
synaptic delays can easily have more states than the number of nodes (n) in the
network (Izhikevich 2005) – remember a state in this terminology is not an
attractor or stable state; rather it is a grouping of neurons that tend to fire in a
given order over time. Contrast this to the Hopfield net (Hopfield 1982) where
memories begin breaking down when just 0.13n for n = 100 (in general
n/(4 log n) (McEliece, Posner et al. 1987)) are stored. In an SNN with well-
chosen synaptic delays, there can actually be many more potential states than
synapses in the entire network (Izhikevich 2005), which is an unprecedented
memory capacity. Unfortunately, for systems of high-dimensional non-linear
temporal interactions such as these, it is very difficult to conduct any rigorous
mathematical analysis (Maass 2001), so no upper bound on memory capacity is
known and no formal predictions of network behaviour can be made. Indeed,
from a mathematical point of view, systems with temporal delays are infinite-
dimensional. Despite the inability of off-the-shelf mathematics to provide
analysis, it’s clear that SNNs have unparalleled memory capacity.

 Even randomly connected networks (or randomly connected satisfying
certain constraints) with fixed (unitary) transmission delays exhibit potential to
perform powerful computations, as long as there is a means to extract useful
information from them. This is the basis of both Echo State Networks (Jaeger
2001) and Liquid State Machines (Maass, Natschlager et al. 2002), two closely

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 25

related architectures that use random recurrent networks as their computational
engines. Put very simply, their strategy is this:

 Pass the input into a highly re-entrant random network, which converts
the input into a high dimensional dynamical representation. The weights
and delays in the network are fixed, not trained, but in general there will
be many more neurons than inputs.

 Simply train the output layer with least mean squares, linear regression or
even a simple delta-rule variant.

 These networks have been used to solve some quite difficult benchmark non-
linear learning problems. The effectiveness of such a simple strategy is
testament to the underlying computational power of recurrent networks, even
random untrained ones. Put even more simply, the rationale behind their
functioning is that, in any random network of useful yet still tractable size, the
dynamics are rich enough that at least one neuron will have acquired close to
any desired representation.

1.6.4 SPIKE CODING

The classic notion that spiking neurons encode information through their
average spike rate over some time window (called a rate code) is obviously
correct in some circumstances and obviously incorrect in others (Rieke,
Steveninck et al. 1997). Sensory cells such as in the cochlear and the retina use
a rate code (Izhikevich 2005), however response time in the visual cortex is
known to be too fast to continue processing with this coding regime (Thorpe,
Fize et al. 1996; Thorpe, Delorme et al. 2001) – each neuron in the visual
processing hierarchy only has time to fire one or occasionally two spikes prior
to recognition, so clearly the visual cortex cannot be using a rate code, but is
instead somehow utilising the presence and/or the timing of spikes (called a
temporal code, not to be confused with delay coding as described above, which
is one form of temporal coding). Spike timing has been long-established as the
information encoding principle used in the auditory system of bats for
echolocation (Kuwabara and Suga 1993) and in the visual system of flies
(Bialek, Rieke et al. 1991), for example.

 There are a number of different coding strategies possible using spike times,
shown below in increasing order of information encoding capacity (Thorpe,
Delorme et al. 2001).

 Count coding: counts the total number of spikes of a neuron population
in a given time – similar to rate coding except it entails one spike from
each of many neurons instead of many spikes from one neuron; however
the information capacity of rate coding is the same (very small).

26 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 Binary coding: encodes a binary number, each digit represented by the
presence (1) or absence (0) of a spike.

 Rank order coding: the order of firing of the neurons encodes the
information.

 Delay coding: as described earlier.

 Each of these coding strategies has very different information capacities
summarized in the Table 1.2. In the table, n is the number of neurons under
consideration, T is the time window over which each neuron can fire either 0 or
1 spikes, and p is the precision, which is the minimum interspike interval which
can be discerned by postsynaptic neurons. In the row of the table labeled
Example 1 it is assumed that n = 10 neurons, T = 10 ms and p = 1 ms. In
Example 2, n = 1000 neurons while T and p remain unchanged, although this
would overstate the information capacity of rank order coding since there are
not n! discernable outcomes using this strategy in this case, as with 1 ms
precision many spikes will appear to be simultaneous. In this case the number of
discernable outcomes for rank order coding will actually be log2(

1000C100 ×
900C100 × 800C100 × … × 100C100) = 3280 bits (notice for Example 1 this
degenerates to log2 (

10C1 × 9C1 × 8C1 × … × 1C1) = log2(10!)). The information
capacity of rank order coding is approaching that of delay coding (= 3320 bits)
here because, with 1ms precision and 1000 spikes to squeeze into 10 ms, delays
don’t add a lot of extra information. Note that rank order coding also becomes
indistinguishable from delay coding as the precision p approaches the mean
interspike interval.

Table 1.2 Various descriptions and performance parameters

 Count coding
Binary
coding

Rank order coding Delay coding

Description
Counts the

total number
of spikes

A binary
number

The order the neurons
fire

The order and
delays both

encode
information

Information
capacity

(bits)
log2(n+1) n log2(n!) n.log2(T/p)

Example 1 3.6 10.0 21.8 33.2

Example 2 10.0 1000 ?3 (should be 3280) 3320

3 The stated information capacity for rank order coding is not accurate when n > T/p
since there cannot be n! discernible states in T milliseconds. See text for a more correct
statement of information capacity in this case.

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 27

 So which of the above temporal code strategies does the brain use when not
using rate coding? For fast visual processing, rank order coding appears to
suffice. For implementing STDP, delay coding would seem to be required in
order to reliably control synaptic efficacy based on spike timings; however in
nervous systems the distinction between order and delay coding may be blurred,
since a delay of, for example, several hundred milliseconds between spikes from
two neurons, does not change the order, yet is not likely to be interpreted as part
of a single rank order code instance (i.e., even in order coding there are practical
bounds on the delays).

 Transmission delays in nervous systems display high variability even within
connections that run in parallel, i.e., two connections that originate in one brain
area, terminate in another brain area and follow very similar paths can have very
different transmission delays. Conversely, some connection types such as thalamo-
cortical can have very similar transmission delays irrespective of their length (Salami,
Itami et al. 2003). It seems that nervous systems are able to exert purposeful control
over these delays in situations where they may have computational significance.
Some experimental data is shown in the Table 1.3 (Izhikevich 2005).

Table 1.3 Experimental Data based on Delay

Connection Delay (ms) Reference

Cat Layer 6 – LGN 1.0 – 44 (Ferster and Lindstrom 1983)

Rabbit Layer 6 – LGN 1.7 – 32 (Swadlow 1994)
Rabbit Cortico-cortical 1.0 – 35 (Swadlow 1985)

Rabbit Cortico-cortical 1.2 – 19 (Swadlow 1994)

Rabbit Cortico-(ipsi)cortical 2.2 – 32.5 (Swadlow 1994)

Rabbit Layer 5 – LGN 0.6 – 2.3 (Swadlow 1994)

Cat Cortico-collicular 0 – 3 (Ferster and Lindstrom 1983)

Mouse VB – Layer 4 2 (Salami, Itami et al. 2003)

 Despite the high variability between connections in many brain areas, the
delay in any given connection is consistently reproducible with sub-millisecond
precision. The overarching theme here is that variable transmission delays are a
fundamental property and a computational requirement of nervous systems, and
hence should not be overlooked in SNN models.

1.6.5 COMPLEXITY

Interesting results have been obtained in analyses of the VC-dimension of
spiking neurons (Maass and Schmitt 1997):

 The VC dimension of a threshold gate with n variable weights is Ω(n).

28 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 The VC dimension of a spiking neuron with n variable delays is
Ω(n.log(n)), even with fixed weights.

 So the discriminatory power of variable delays is greater than that of variable
weights. This implies that

 Networks with synaptic delays are potentially able to perform more
powerful computations (Maass 1997; Maass 1997).

 Powerful learning algorithms could be formulated by adjusting synaptic
delays in addition to or rather than synaptic weights.

 Non-learnability results have been derived for SNNs that put the learning
complexity of spiking neurons into the NP class of problems (Maass and
Schmitt 1997). However due to the limitations of the mathematical tools that are
used to conduct these rigorous analyses, simplifying assumptions must be made,
and while these results mean it will be difficult to formally prove that learning
algorithms work, it doesn’t necessarily mean that they will be difficult to
formulate.

1.6.6 SPIKING NEURAL NETWORKS – WHAT DON'T WE KNOW?

Despite the quite large body of knowledge expounded above, we still know very
little about the dynamics, learning algorithms and computational abilities of
SNNs. Obvious gaping holes in our knowledge include:

 Broad mathematical analyses: SNNs are high dimensional nonlinear
dynamical systems. Consequently we generally cannot prove
convergence for learning algorithms, and have little knowledge of upper
bounds on memory capacities or of the dynamical behaviour of SNNs in
differing circumstances. Given the richness of potential neuron
behaviours, Izhikevich states in (Izhikevich 2004) “What happens when
only tens (let alone billions) of such neurons are coupled together is
beyond our comprehension”. The (inadequate) alternative is to
demonstrate these properties through exhaustive numerical simulation;
however this proves nothing and it is difficult or impossible to generalise
from these results.

 Training of synaptic delays: Given the computational power afforded by
transmission delays in SNNs, there has been surprisingly little research
published on mechanisms of training them. This may be partly due to the
fact that there is dissent on whether or not the brain actually modifies
delays as a facilitator of computational function (see (Eurich, Pawelzik et
al. 1999) vs (Senn, Schneider et al. 2002) for example). However it has
been shown that simple Hebbian-like learning rules can progressively
modify synaptic delays so that spikes that arrive at different times within
a given time window can ultimately be synchronised at the postsynaptic

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 29

neuron, and produce stable representations of temporal input (Huning,
Glunder et al. 1998; Eurich, Pawelzik et al. 1999). These rules function
by adding to a delay if the presynaptic neuron fires some time before the
postsynaptic, and subtracting from a delay if the presynaptic neuron fires
some time later. Biological mechanisms for controlling the delay can
include changing the thicknesses of axons and dendrites or the extent of
myelination (Fields 2005). An alternative to actively adapting
transmission delays is to simply select appropriate delays from an initial
over-abundance of random delays; delays that by chance closely match
the input train are strengthened by normal Hebbian learning, while the
remaining ineffective delays are depressed by the same mechanism and
may ultimately vanish. It is well known that the juvenile brain contains
many more synapses than the adult, but whether selection of delays is one
reason for this reduction over time, and whether delay training is also
undertaken by the brain, are still open questions.

 How does the brain compute? Transmission delays, spike coding,
temporal grouping, nested oscillations, phase precession – irrespective of
what we do or don’t know about spiking neurons, some of the most
fundamental attributes of the brain are still almost complete mysteries to
us. Although SNNs are the next step towards a full understanding of
nervous system computation and can help us to model many of these till-
now neglected properties, they are not likely to be the ultimate level of
detail required to model all of brain function, and we may yet need
Generation 4 and beyond neural networks for this task.

1.6.7 WHO IS USING SPIKING NEURONS?

Work with spiking neurons and SNNs has been going on at the periphery of
neural network research for many years. This includes:

 A considerable amount of theoretical work by mathematicians and
physicists, some of which has been discussed above; see (Rieke,
Steveninck et al. 1997) for more information.

 Obviously all neuroscientists, who are most interested in the physical
mechanisms of spiking, STDP etc, hence use spiking neuron models with
high biological realism.

 Brain region modelling – deep but not broad models of targeted brain
regions operating in specific modalities e.g., hippocampus in a specific
navigation task (Hasselmo, Bodelon et. al., 2002).

 Cognitive modelling – understandably, there is a disconnect between
higher level brain models and models of individual spikes (solving this
completely is arguably solving AI!)

30 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 Some applications – currently dominated by auditory (mostly speech)
processing (Hopfield and Brody 2000; Hopfield and Brody 2001;
Loiselle, Rouat et al. 2005; Verstraeten, Schrauwen et al. 2005) and
visual processing (Perrinet and Samuelides 2002; Azhar, Iftekharuddin et
al. 2005; Kornprobst, Vieille et al. 2005); SpikeNet Technology is a
commercialised vision package (Thorpe and Gautrais 1997; Thorpe,
Guyonneau et al. 2004), also see http://www.spikenet-technology.com.
Robotics with SNNs is just beginning to heat up (Di Paolo 2002; Nielsen
and Lund 2003; Roggen, Hofmann et al. 2003; Floreano, Epars et al.
2005; Floreano, Zufferey et al. 2005), although most current robotics
implementations depend on evolutionary algorithms to create the SNNs.

1.6.8 CONCLUSION

With the knowledge we are currently obtaining of the fundamental importance
of spike timings and oscillations to neural processing, 2nd generation ANNs can
no longer provide a viable basis for neural modelling. Spiking Neural Networks
present many new challenges but also afford many new opportunities for
breaking entirely new ground in artificial intelligence research.

1.7 APPLICATIONS OF ANN

Let us suppose we wish to train an ANN to recognize handwriting. For our
purposes we wish to train it to recognize the letters H and C. More exactly for
this simple application we would be happy for it to be able to identify an H or a
C. Handwriting recognition is a problem that neural networks have been able to
tackle very well. The issues that arise here are common to all neural network
classification problems.

 The first activity is to represent the letters for input to the ANN. Typically
we draw a grid over the letter and represent the inputs as zero or one depending
on whether the hand-written letter goes through the cell in the grid. Figure 1.11
gives an example for an H and a C.

 The inputs will be strings of zeros and ones. The string is achieved by going
from the top left-hand corner across to the right and then left to right a row at a
time, where a 1 indicates that the letter goes through that square of the grid. In
the example shown, the inputs will be 110111011 for H and 110100111 for C.
We would only need one output for this particular problem. We could
perhaps give it a value of 1 for an H and 0 for a C. So there are nine inputs and one

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 31

Figure 1.11 Letter Recognition – an H and a C

output. For most applications we only require one hidden layer. As to how many
neurons there should be in the hidden layer this is still a case of ‘trial and error’.
Typically you experiment from, say, about 7 down to 2. Suppose we have 4 in
the hidden layer. This is called a 9-4-1 network. This network has, therefore, 40
[i.e. (9 × 4) + (4 × 1)] weights that have to be learned. For a neural network to
have good generalisation capabilities (to be able to classify inputs it has not seen
before) the literature reports that you need approximately 5-10 times as many
training pairs as weights. So in this example we would need about 200 letters
with approximately 100 Hs and 100 Cs. As you can see, if you dropped to 2
neurons in the hidden layer you would need only 100 data sets. The questions
that need answering then are:

1. How do we represent the data for input?

2. How many neurons should be in the output layer and, in the case of
classification problems, what values will those neurons take?

3. How many neurons should be in the hidden layer?

4. What activation function should we use for the neuron?

5. What is an acceptable error rate?

 This section has introduced you to the most common paradigm in neural
network applications – the feed-forward, multilayered perceptron with the
backpropagation algorithm. This approach is just one example of a supervised
algorithm.

SUMMARY OF ANN

Artificial Neural Networks – What are They good for?

32 NE U R A L NET W O R K S A N D FU Z Z Y LOG I C

 It would not be possible to list all the applications of ANNs here. An ANN
approach will often be an option where the problem being tackled has the
following features.

 The type of problem:
o is one of recognising patterns in the data.
o requires classification of data into, for example, classes.
o is one of monitoring of equipment in real time.

 There is a large amount of data that may be ‘noisy’.

 Some example applications are:
 Monitoring of engine condition in a fleet of vehicles.
 Signal processing – recognising patterns in signals.
 Face recognition. Neural networks are particularly good at recognising

shapes, e.g. fingerprints, signatures, tanks on an horizon.
 Process control - using ANNs to monitor equipment.
 Forecasting corporate bankruptcy based on financial indicators.
 Credit scoring to assess credit worthiness when considering giving a

loan.
 We know how neural networks work and the types of applications for

which they are suitable.

Artificial Neural Networks - What are the Drawbacks?

 They require large amounts of historical data that accurately reflects the
make-up of the population under consideration.

 They are ‘black box’. Unlike expert systems, they are incapable of
explaining why they make a particular decision. This is a major problem
when trying to ‘sell’ neural network technology to management. The only
way to test the efficacy of an ANN solution is to test the trained network
with many examples that it has not seen before.

 There are a large number of parameters that the ANN developer has to
make decisions about. For example he/she has to decide on the learning
rate, activation functions, the network structure or topology, how to
represent the problem, etc.

 In summary, ANNs are a powerful, practical solution to many problems
faced by industry and commerce and should be considered as one of the tools in
the armoury of the professional trying to find solutions to difficult problems.

 REFERENCES

1. Aarts, E.H., F.M.J. de Bont, E. H. A. Haberrs, P.J. M. Laarhoven.
(1986), "A Parallel Statistical Cooling Algorithm", Lecture Note in
Computer Science 210, pp 87

 CH AP T E R 1 OVE R V I E W O F NE U R A L NET WO R K S 33

2. Aarts E., anf J. Korst, (1989), Simulated Annealing and Boltzmann
Machines: A Stochastic Approach to Combinatorial Optimization and
Neural Computing, New York: Wiley

3. Abe S. (1989) "Theories of the Hopfield Neural Networks", Proc.
International Joint Conference on Neural Networks (IJCNN'89),
Washington D.C., Vol. I, pp 557- 564, June

4. Abe S. (1991) "Determining Weights of the Hopfield Neural
Networks", Proc.International Conference on Artificial Neural
Networks (ICANN'91) Helsinki, pp 1507-1510, June

5. Abe S. "Global Convergence and Supression of Spurious States of the
Hopfield Neural Networks ", Trans. IEEE Circuits & Systems,

6. Abraham, R.H., and C.D. Shaw, (1992), Dynamics of the Geometry of
Behavior, Reading, MA, Addison-Wesley.

7. Aiyer, S.V.B., M. Niranjan, F. Fallside, (1990), "On the Optimization
Properties of the Hopfield Model", Proc. International Conference on
Neural Networks (ICNN'90), pp 245-249

8. Aiyer S.V.B., N. Niranjan and F. Fallside, (1990), "A Theoretical
Investigation into the Performance of the Hopfield Model.", IEEE
Transactions on Neural Networks 15, 15, 204-215

9. Akiyema et al, (1991) "The Gaussian Machine: A stochastic Neural
Network for Solving Assignment Problems", Journal of Neural
Network Computing, Winter, pp 43-51

10. Allwright, J.R.A. and D.B. Carpenter, (1989), "A Distributed
Implementation of Simulated Annealing for the Traveling Salesman
Problem", Parallel Computing 10, pp 335, North Holland

