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C H A P T E R  1 

OVERVIEW OF  
NEURAL NETWORKS 

Introduction 

Throughout the years, the computational changes have brought growth to new 
technologies. Such is the case of artificial neural networks, that over the years, 
they have given various solutions to the industry. 

 Designing and implementing intelligent systems has become a crucial 
factor for the innovation and development of better products for society. 
Such is the case of the implementation of artificial life as well as giving 
solution to interrogatives that linear systems are not able resolve.  

 A neural network is a parallel system, capable of resolving paradigms that 
linear computing cannot. A particular case is for considering which I will cite. 
During summer of 2006, an intelligent crop protection system was required by 
the government. This system would protect a crop field from season plagues. 
The system consisted on a flying vehicle that would inspect crop fields by flying 
over them. 

 Now, imagine how difficult this was. Anyone that could understand such a 
task would say that this project was designated to a multimillionaire enterprise 
capable of develop such technology. Nevertheless, it wasn’t like that. The 
selected company was a small group of graduated engineers. Regardless the 
lack of experience, the team was qualified. The team was divided into 4 sections 
in which each section was designed to develop specific sub-systems. The leader 
was an electronics specialist. She developed the electronic system. Another 
member was a mechanics and hydraulics specialist. He developed the drive 
system. The third member was a system engineer who developed all software, 
and the communication system. The last member was designed to develop all 
related to avionics and artificial intelligence. 
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 Everything was going fine. When time came to put the pieces together, all 
fitted perfectly until they find out the robot had no knowledge about its task. 
What happened? The one designated to develop all artificial intelligent forgot to 
“teach the system”. The solution would be easy; however, training a neural 
network required additional tools. The engineer designated to develop the 
intelligent system passed over this inconvenient. 

History of Neural Networks 

The study of the human brain dates back thousands of years. But it has only 
been with the dawn of modern day electronics that man has begun to try and 
emulate the human brain and its thinking processes. The modern era of neural 
network research is credited with the work done by neuro-physiologist, Warren 
McCulloch and young mathematical prodigy Walter Pitts in 1943. McCulloch 
had spent 20 years of life thinking about the "event" in the nervous system that 
allowed to us to think, feel, etc. It was only until the two joined forces that they 
wrote a paper on how neurons might work, and they designed and built a 
primitive artificial neural network using simple electric circuits. They are 
credited with the McCulloch-Pitts Theory of Formal Neural Networks.  
(Haykin, 1994, pg: 36) (http://www.helsinki.fi) 

 The next major development in neural network technology arrived in 1949 
with a book, "The Organization of Behavior" written by Donald Hebb. The 
book supported and further reinforced McCulloch-Pitts's theory about neurons 
and how they work. A major point brought forward in the book described how 
neural pathways are strengthened each time they were used. As we shall see, 
this is true of neural networks, specifically in training a network. (Haykin, 1994, 
pg: 37)(http://www.dacs.dtic.mil) 

 During the 1950's traditional computing began, and as it did, it left research 
into neural networks in the dark. However certain individuals continued 
research into neural networks. In 1954 Marvin Minsky wrote a doctorate thesis, 
"Theory of Neural-Analog Reinforcement Systems and its Application to the 
Brain-Model Problem", which was concerned with the research into neural 
networks. He also published a scientific paper entitled, "Steps Towards 
Artificial Intelligence" which was one of the first papers to discuss Artificial 
Intelligence in detail. The paper also contained a large section on what 
nowadays is known as neural networks. In 1956 the Dartmouth Summer 
Research Project on Artificial Intelligence began researching Artificial 
Intelligence, what was to be the primitive beginnings of neural network 
research. (http://www.dacs.dtic.mil) 

 Years later, John von Neumann thought of imitating simplistic neuron 
functions by using telegraph relays or vacuum tubes. This led to the invention of 
the von Neumann machine. About 15 years after the publication of McCulloch 
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and Pitt's pioneer paper, a new approach to the area of neural network research 
was introduced. In 1958 Frank Rosenblatt, a neuro-biologist at Cornell 
University began working on the Perceptron. The perceptron was the first 
"practical" artificial neural network. It was built using the somewhat primitive 
and "ancient" hardware of that time. The perceptron is based on research done 
on a fly's eye. The processing which tells a fly to flee when danger is near is 
done in the eye. One major downfall of the perceptron was that it had limited 
capabilities and this was proven by Marvin Minsky and Seymour Papert's book 
of 1969 entitled, "Perceptrons". (http://www.dacs.dtic.mil) (Masters, 1993,               
pg: 4-6) 

 Between 1959 and 1960, Bernard Wildrow and Marcian Hoff of Stanford 
University, in the USA developed the ADALINE (ADAptive LINear Elements) 
and MADALINE (Multiple ADAptive LINear Elements) models. These were 
the first neural networks that could be applied to real problems. The ADALINE 
model is used as a filter to remove echoes from telephone lines. The capabilities 
of these models were again proven limited by Minsky and Papert (1969). 
(http://www.dacs.dtic.mil). 

 The period between 1969 and 1981 resulted in much attention towards neural 
networks. The capabilities of artificial neural networks were completely blown 
out of proportion by writers and producers of books and movies. People 
believed that such neural networks could do anything, resulting in 
disappointment when people realized that this was not so. Asimov's television 
series on robots highlighted humanity's fears of robot domination as well as the 
moral and social implications if machines could do mankind's work. Writers of 
best-selling novels like "Space Oddesy 2001" created fictional sinister 
computers. These factors contributed to large-scale critique of Artificial 
Intelligence and neural networks, and thus funding for research projects came to 
a near halt. (Haykin, 1994, pg: 38) (http://www.dacs.dtic.mil)  

 An important aspect that did come forward in the 1970's was that of self-
organizing maps (SOM's). Self-organizing maps will be discussed later in this 
project (Haykin, 1994, pg: 39). In 1982 John Hopfield of Caltech presented a 
paper to the scientific community in which he stated that the approach to 
Artificial Intelligence should not be to purely imitate the human brain but 
instead to use its concepts to build machines that could solve dynamic problems. 
He showed what such networks were capable of and how they would work. It 
was his articulate, likeable character and his vast knowledge of mathematical 
analysis that convinced scientists and researchers at the National Academy of 
Sciences to renew interest into the research of Artificial Intelligence and neural 
networks. His ideas gave birth to a new class of neural networks that over time 
became known as the Hopfield Model (http://www.dacs.dtic.mil) (Haykin, 
1994, pg: 39). 
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 At about the same time at a conference in Japan about neural networks, 
Japan announced that they had again begun exploring the possibilities of neural 
networks. The United States feared that they would be left behind in terms of 
research and technology and almost immediately began funding for AI and 
neural network projects (http://www.dacs.dtic.mil). 

  1986 saw the first annual Neural Networks for Computing conference that 
drew more than 1800 delegates. In 1986 Rumelhart, Hinton and Williams 
reported back on the developments of the back-propagation algorithm. The 
paper discussed how back-propagation learning had emerged as the most 
popular learning set for the training of multi-layer perceptrons. With the dawn 
of the 1990's and the technological era, many advances into the research and 
development of artificial neural networks are occurring all over the world. 
Nature itself is living proof that neural networks do in actual fact work. The 
challenge today lies in finding ways to electronically implement the principles 
of neural network technology. Electronics companies are working on three types 
of neuro-chips namely, digital, analog, and optical. With the prospect that these 
chips may be implemented in neural network design, the future of neural 
network technology looks very promising. 

1.1 BIOLOGICAL VS. ELECTRICAL BRAINS 

Biological and electrical brains are very similar in some aspects and very 
different in others.  One of the main similarities is the modeling of neurons. A 
biological brain is a collection of individual neurons that send electric pulses to 
one another based on reactions and pulses perceived.  An electrical brain is very 
similar in which “nodes” send electrical signals to one another through electric 
wires. These pulses then enact different responses in the various neurons 
influenced by them. A minor difference does lie in the pulses though, while a 
biological brain can vary the electric pulse in amplitude, most electric brains are 
stuck inside a specific voltage range. 

 The big difference between a biological brain and an electric brain is the 
ability of the biological brain to radically alter its structure while learning.  A 
human brain on the other hand, learns by re-arranging the structure of the brain.  
A neuron in a human brain can alter its paths and electric charge to affect those 
around it.  On the other hand, an electric brain must store information and give 
certain paths different weights.  Paths never change or disappear, inside they 
grow stronger or weaker.  Simply put, a biological brain’s hardware can change, 
while neural networks hardware cannot. Learning in general is a very hard 
concept for the electrically brain to grasp. This occurs because a set of 
guidelines and rules must be laid out for the electronic brains so it understands 
what must be remember and what must be committed to memory. 
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1.1.1  LAYERS 

There are 3 main layers in a neural network.  The first of these layers is the 
input layer.  In the input layer, data is gathered from external sources.  These 
external sources can be sensors, manually inputted data, or data generated by 
other neural networks or the same network.  The input layer then passes the data 
to a hidden layer.  Because the input layer accepts data, it often acts as a buffer 
for the hidden layer.  The hidden layer serves two functions.  The first function 
is processing the data.  Here equations are solved, or answers are formulated.  
The second function of the hidden layer is to determine what is learned and 
what is forgotten.  Here the learning rules and laws are applied, and the 
“structure” of the neural network is updated.  Lastly, there is the output layer.  
The output layer is where the processing and data meet the external world.  The 
output layer could be a set of lights, or a computer screen, even a voice 
synthesizer.  This layer just like the input layer is one way.  This one way 
creates a buffer that can protect the more sensitive hidden layers. 

1.1.2  COMMUNICATIONS 

An important aspect in a neural network is how the neurons communicate with 
one another.  There are three different types of communication.  The first is 
inter-layer connections.  These are the communication lines used to 
communicate this from one layer to the next.  When using this type of 
communication, the sending layer cannot vary by from the receiving layer by 
more than a difference of one.  In other words, this means layer 1 can talk to 
only layer 0 or 2, using inter-layer communications. 

 The next type of communications is the intra-layer communications.  This is 
where neurons within the same layer communicate with one another.  Besides, 
neurons talking to other neurons, there are self-connections, which are when a 
neuron talks to itself.  These connections are considered a special type of intra-
layer communications.  Lastly, there is the supra layer communications.  These 
are the communications that occur when a neuron needs to talk to another 
neuron or layer that is more than a difference of 1 away.  For example, layer 1 
sending a message to layer 5, would be considered a supra layer 
communication.  All three of these communications are required for a 
successful neural network. 

 Communications between neurons and layers are often weighted.  

1.1.3  INTER-LAYER 

Taking a more in-depth look at inter-layer communication, it can be seen that 
there are two different types of connections.  The first type of connection is the 
full connection.  A full connection is one that tries to maximize the number of 
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connections between neurons.  A specific definition cannot be developed, due to 
the fact that learning methods influence, which connections are valid and which 
ones are not.  Three variations are possible with full connections. The most 
common is the fully interlayer-connected network. This communication method 
is where all possible connections are present between layers, but no intra or 
supra layer connections exist (Figure 1.2). Another method, which many people 
think of when fully connected is mentioned is the plenary neural network.  This 
network communication method has all possible connections, including those 
found in the intra and supra layers (Figure 1.2).  Lastly, the third method is a 
plenary network that doesn’t employ self-connections.  This reduction in self-
connections, increases the speed of the network, but does have an impact on the 
ability of neurons to learn. 

1.2 INTRODUCTION TO BIOLOGICAL NEURON 

Artificial Neural Networks (ANNs) are computer systems (software1 or 
hardware) that are biologically inspired in that they attempt to simulate the 
processing capabilities of the networks of neurons in the human brain.  

 The number of applications of ANNs to real world problems is immense and 
they permeate industry and commerce. ANNs perform particularly well where 
there is a large amount of historical data, where the application involves 
recognizing patterns in the data or where the problem is one of classification. 
ANNs fit into the general area of computational intelligence2 and rank 
alongside fuzzy logic as the most successful.  

 The biological inspiration for ANNs is motivated by the fact that the human 
brain is capable of so much when compared with a computer. Although 
computers can very quickly process numbers and carry out complex 
mathematical calculations they are unable to reason in a similar manner to 
human beings. So, the suggestion is that we should simulate some of the 
physical processes that provide the ability to reason and tackle difficult 
problems that computers allied to mathematical techniques are unable to solve 
well. The basic premise is that we should borrow from nature. 

 The eventual aim is to emulate the way human beings think. This is still only 
a pipe dream but currently ANNs are able to tackle complex real world 
problems that mathematical and statistical techniques are often unable to handle. 
In particular ANNs are able to deal with ‘noisy’ data and have strong 
generalisation capabilities. Noisy data is real world data that does not, for 

                                                           
1 The vast majority of applications are software implementations of ANNs. 
2 Computational Intelligence is a term used to cover three techniques – artificial neural 

networks, fuzzy logic and genetic algorithms – that attempt to imbue computers with 
some ‘intelligence’. 
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example, fit exactly to a mathematical function but contains random variations. 
Generalisation is the ability to handle examples that the network hasn’t seen 
before. We are still unsure exactly how the brain operates but we understand 
enough to enable us to mimic the basic operations and interactions between 
neurons. The human brain is made up of approximately 1 × 1011 neurons with of 
the order of 1 × 1015 connections between them. Figure 1.1 provides a schematic 
diagram for a biological neuron and the connections between neurons. 

 

Figure 1.1   The Biological Neuron (Wasserman, 1989). 

 Each neuron in the brain possesses the capability to take electrochemical 
signals, as input, and process them before sending new signals via the 
connections between neurons, known as the dendrites. The cell body receives 
these signals at the synapse. When the cell body receives the signals they are 
summed – some signals excite the cells whilst others will inhibit the cell. On 
exceeding a threshold, a signal is sent via the dendrites to other cells. It is this 
receiving of signals and summation procedure that is emulated by the artificial 
neuron. 

 The biological neuron is only an inspiration for the artificial neuron. The 
artificial neuron is clearly a simplification of the way the biological neuron 
operates and indeed much is still not known about the way the brain operates for 
us to carry the analogy too far. ANNs, then, are an approach for modelling a 
simplification of the biological neuron – we are not modelling the brain but 
merely using it as an inspiration. 
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We can summarise this section in the following way. 

 ANNs learn from data, are biologically inspired and are based on a 
network of artificial neurons; 

 ANNs handle noisy data and are able to generalise in that they can cope 
with examples of problems that they have not experienced before. 

1.3 ARTIFICIAL NEURON 

The artificial neuron is the basic building block of ANNs (from now on we will 
use neuron to mean artificial neuron). There are a number of variations on this 
basic neuron but they all have the same simple design. Figure 2.2 shows the 
basic structure.  

 
Figure 1.2  The Basic Artificial Neuron. 

 Each neuron receives inputs, x1, x2, …, xn, which are connected to the input 
side of the neuron. Attached to every connection is a weight wi which represents 
the connection strength for that input.  

 The cell node then calculates the weighted sum of the inputs given by 

       
1


n

i i
i

S w x  

 An activation function, F, takes the signal, S, as input to produce the output, 
O, of the neuron. In other words 
       O = F(S) 

 There are a number of functions that could be employed. For example it may 
simply be a threshold 

       O = 
1  where  

0  otherwise
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where T is a constant threshold. This can be interpreted to mean that if the 
weighted sum is above T then the node ‘fires’. 
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 Another commonly adopted activation function is the logistic or sigmoidal 
function given by 

        
1

 
1

     
 –S

O ( S )
e

       …..(1.2) 

 This has the effect of limiting the output of the neuron to a minimum of zero 
and a maximum of S. Figure 2.3 shows the effect of applying the sigmoidal 
function.  

 

Figure 1.3  The Sigmoidal Activation Function. 

 As you can see, this has the effect of compressing the value of O to between 
zero and one. This function also has the effect of introducing nonlinearity into 
the network. 

 There are a number of other functions that are employed in real applications. 
Choosing an activation function is one of the many decisions faced by a neural 
network developer. 

 In this basic description of a neuron, we have already come across the notion 
of a weight. It’s not too simplistic to say that the problem of developing an 
ANN is primarily to find a method for learning or estimating these weights. You 
will see this more clearly later.  

1.3.1  THE PERCEPTRON 

Neural networks research started in the 1940s when McCulloch and Pitts (1943) 
introduced the idea of the perceptron. The original perceptron consisted of a 
single layer of neurons that had a threshold activation function as described 
above. An example is shown in Figure 1.4. 
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2x O O   O2

nx O O   On

 

Figure 1.4  The Perceptron. 

 The input layer feeds the data through to the output layer where the neurons 
process the inputs and weights using the threshold activation function as 
described by eq. 1.1. The two layers are fully connected in that each input node 
is connected to each output node. The perceptron carries out pattern 
classification by learning the weights between the layers by supervised 
learning where the network is supplied with known input and output data. The 
differences between supervised and unsupervised learning will be discussed in 
Section 4.  

 A typical problem that was tackled in the early days of the perceptron is 
where the input and output data is binary (i.e. 0 or 1) and we have a set of inputs 
and outputs. This is an example of a training data set and each pair of inputs and 
outputs is known as a pair of training patterns. The perceptron learns the 
weights in the following way. 

1. The weights are randomly initialised to small values.  

2. For the first input pattern the network output is calculated using eq. 1.1. 
Denote this output by Ojp for input pattern p and output unit j. 

3. The error is calculated as Tjp – Ojp where Tjp represents the known output. 

4. A simple learning rule for the weights might be  

          ( )  new
ji ji jp jp iw w c T O a  

  where 

   c is a constant (0 < c < 1) representing the learning rate 

   ai is the value of input unit i 

   wji is the weight from node j to node i 
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   new
jiw  is the new weight from node j to node i. 

 5. The process is repeated for the next input pattern. 

 This process is repeated until there is an acceptable error in the classification, 
where the error is usually a root-mean-square measure such as 

2

1 1

( )
 


p on n

jp jp
p j

p o

T O

n n
 

where np is the number of patterns in the training set and no is the number of 
output units. 

 The exciting fact about this approach is that it was proved that this algorithm 
could learn anything it could represent. In other words the weights could be 
adjusted to simulate any function that could be represented by inputs and 
outputs. However there was a problem. In 1969 Professor Minsky found a 
whole class of problems that a perceptron could not simulate – problems that are 
not linearly separable. The best example of this is the exclusive-OR function. 
This is where we have two inputs, x and y, and an output, out; the relationships 
are given in Table 1.1 and the graphical representation is in Figure 2.5. 

Table 1.1  The Exclusive-OR Problem 

x y Out 

0 0 0 

1 0 1 

0 1 1 

1 1 0 

y

1  out = 1  out = 0

0
out = 0


out = 1

0 x


 

Figure 1.5  Graphical Representation of the Exclusive-OR Problem. 



12 NE U R A L  NET W O R K S  A N D  FU Z Z Y  LOG I C  

 For a single neuron with threshold activation function with two inputs and 
one output it can be shown that there are no two weights that will produce a 
solution. It is not linearly separable in that there is no straight line which will 
‘split’ the points with output values of 1 from those with output values of 0. 
Unfortunately, it seems that most real world problems are not linearly separable. 
This caused the development of neural networks to be put on hold until 
Rumelhart and McClelland (1986) put forward the notion of the multilayered 
perceptron with three layers of neurons. These networks form the basis for 
much of the success of neural networks today. In particular, multilayered neural 
networks that use the backpropagation algorithm (see Section 2.3) are 
employed in most successful ANN applications.  

1.4 THE HODGKIN-HUXLEY MODEL  

It is evident that Hodgkin and Huxley's theory and mathematical model for the 
generation of the action potential, published in complete form in 1952, was 
widely admired and received careful consideration, as shown in several 
references. Some of the historical and elementary theoretical background will be 
reviewed here. The intent is to present a simple, clear picture of the action 
potential and its associated refractory periods, for use later in studying the 
dynamics of small reverberatory networks. Perhaps this point of view will also 
be helpful to others, such as retired engineers, who would like to contribute to 
neuroscience as amateurs. 

     Hodgkin and Huxley's work was an experimental and theoretical triumph, 
but it developed out of a gradually clarifying view of neural processes, to which 
many people contributed. Some of these are mentioned by Hille (1984,                   
pp.  24-28). 

1.4.1  RESTING POTENTIAL 

Bernstein used Walter Nernst's equation, which is based on thermodynamic 
principles, to calculate the resting potential inside the membrane from the 
concentration gradient for potassium. The qualitative explanation of this effect 
is that the membrane is semipermeable to potassium (but supposedly not to 
sodium) so that potassium tends to leak out, and in doing so the potassium ions 
leave a negative charge in the cytoplasm inside the neuron. This sets up a 
potential difference between inside and outside, which tends to drive potassium 
ions back in. An equilibrium is established between this and the concentration 
gradient driving them out. The Nernst equation gives the potassium equilibrium 
potential as 

                                  EK = (RT/zF) ln ([K+]o/[K
+]i) 
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where R and F are physical constants, z is valence, and T is the absolute 
temperature (degrees K). [K+]o is the outer concentration of K+, and [K+]i is the 
inner concentration. 

1.4.2  THE EQUIVALENT CIRCUIT 

To facilitate complete description of the factors determining resting potential in 
neurons, an electrical equivalent circuit can be used. This circuit  represents a 
short cylindrical section of an axon, over which the membrane potential is 
approximately uniform. The equivalent circuit is shown in Fig. 1.6. The 
potential at one node, labeled Vm, corresponds to the uniform potential. The 
membrane has the distributed properties of conductance (the inverse of 
resistance) and capacitance, both of which are represented by discrete elements 
in the circuit.  Biologically, there is a mechanism called the Na+-K+ pump, which 
metabolically establishes concentration gradients for sodium and potassium ions 
across the membrane. This is not represented by a circuit element; it simply 
maintains approximately fixed concentrations for sodium and potassium ions.   

 

Figure 1.6  The conductances GNa, GK, and GCl (Cl for chloride) are small, so 
that the axon membrane is approximately an insulator separating two 
conductors: the cytoplasm and the external fluid.   The cytoplasm is 

represented by the node with the membrane potential Vm. The external fluid 
corresponds to the lower node connected to the ground symbol. The ground 

indicates that the potential of the external fluid is being taken as the 
reference potential, and is therefore zero. 

1.4.3  THE RESTING CONDUCTANCE 

The conductances GNa, GK, and GCl are total values representing a great many 
individual ion channels. They are constants during the resting potential. Later, 
in modeling the action potential, GNa and GK will be taken as variables 
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dependent on Vm and time. The individual ion channels are diverse as well as 
numerous. Studies of the genes that encode ion channels indicate that a great 
many combinations of properties are possible, so that channels can serve a 
variety of special purposes. For the study of membrane potential in axons, ion 
channels can be divided into resting channels, which are always open, and 
voltage-gated channels which only open during the action potential. Thus, in the 
discussion of the resting potential, the symbols GNa, GK, and GCl only represent 
the totals of the resting channels of the three ionic types in Fig. 1.7. The three 
can be added together to give the total resting membrane conductance GM. 

                        GM = 1/3333.3 = 3.0000 × 10–4 mho/cm2 = 0.30000 mmho/cm2 

 
Figure 1.7  Resting Potential. 

1.4.4 THE ACTION POTENTIAL 
An action potential is shown in Fig. 1.8. This is taken from the Squid tutorial in 
Bower and Beeman (1998), which represents a section of axon with membrane 
properties similar to those of the squid giant axon. The figure is only part of a 
window in the Squid display. It can be seen that after the spike there is an after-
potential which drops below 0 mV (This is the resting potential, taken as zero to 
conform with Hodgkin and Huxley; considered – 70 mV elsewhere) before 
settling down. This is the time interval in which there is a refractory period. 

 Hodgkin and Huxley's outstanding achievement was the quantitative 
explanation of the action potential. Their work was based on the sodium 
hypothesis presented by Hodgkin and Katz (1949). This proposed that, during 
activity after stimulation above the threshold, the membrane becomes 
selectively highly permeable to sodium ions, so that the inward flow of sodium 
through the membrane briefly eclipses the outward flow of potassium, and the 
internal membrane potential goes positive past zero (103 – 70 = +33 mV), and 
rises toward the sodium equilibrium potential. Then the sodium permeability 
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declines and the potassium permeability becomes large, until the spike is 
completed.  

 

Fig. 1.8  The initial inflection in the curve cannot be well fit by a simple 
exponential (dotted line) that rises linearly from zero. Successively higher 

powers of p (p =2: dot-dashed; p = 3: dashed line) result in a better fit to the 
initial inflection. In this case, p = 4 (solid line) gives the best fit 

      For quantitative application of the sodium hypothesis to calculate the action 
potential, values for the sodium and potassium conductances as functions of 
voltage and time were needed. Hodgkin and Huxley obtained these by means of 
a voltage-clamp technique, which is described by Johnston and Wu (1995) on 
pages 143-145. Two silver-wire electrodes were inserted axially through one 
end of a length of axon. One electrode measured the membrane potential Vm, 
and a circuit  compared it with a command voltage which had been set by the 
experimenter. If  Vm deviated from the command voltage, a current was injected 
at the second electrode to eliminate the deviation. Thus Vm was clamped to the 
command value. 

      The experiments started from a holding voltage which was apparently 
intended to equal the resting potential. Hodgkin and Huxley (1952a), page 455 
mention estimates of – 60 to – 65 mV for the actual resting potential, depending 
on factors such as junction potential, which modify the measured value (Their 
signs are reversed, being given as + 60 to + 65, conforming to the choice 
mentioned in Hodgkin, Huxley, and Katz (1952), page 425). A range of values 
for the command voltage was used. Following the account in Johnston and Wu, 
the starts were from a holding voltage of – 60 mV relative to the external fluid, 
followed by a voltage step to a command voltage, which was then maintained 
for 8 msec.  
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 The injected current required to maintain the command voltage was recorded 
as a function of time. The injected currents used in the above procedure pass 
through the membrane to return to the external circuit. Thus they are equal to 
sums of the sodium and potassium currents flowing through the membrane. To 
separate the twos, the experiments can be repeated with one or the other type of 
channels blocked. The sodium channels will be blocked if the extracellular Na+ 

concentration is reduced to its inside value, so that the Na+ equilibrium potential 
is zero. They can also be blocked with tetrodotoxin. The potassium channels can 
be blocked by removing intracellular K+, or with tetraethylammonium. The 
result is a family of curves for sodium current INa as a function of time with Vm 

as parameter, and a similar family for IK. 

     Johnston and Wu (1995, pp. 145-147) describe how it was demonstrated that 
the instantaneous relation between current and voltage in the above experiments 
is linear; that is, that it follows Ohm’s law, so that 

                                                   INa = GNa (Vm – ENa ) 

and                                             IK  = GK (Vm – EK ). 

 Thus the conductances GNa and GK can be obtained as functions of Vm and 
time t by dividing the respective currents by their driving voltages. 

     The foregoing procedures give GNa and GK as functions of Vm and t over the 
range of discrete values of Vm and t which were tested. For use in simulation 
calculations of the action potential, the discrete data points must be fitted with 
continuous functions. Hodgkin and Huxley tried to relate the complex curve 
forms at particular values of Vm to exponentials, and in doing so were led to 
express them in terms of maximum values of GNa and GK which are multiplied 
by coefficients ranging between zero and 1. The coefficients turned out to be 
small integral powers of exponentials. The theoretical significance of these 
forms is discussed in Johnston and Wu (1995, pp. 149-154), and in Bower and 
Beeman (1998, pp. 37-38). The equations for approximating the voltage 
dependence are described in Bower and Beeman (1998, pp. 44-47). 

     Having constructed expressions for calculating the sodium and potassium 
conductances, Hodgkin and Huxley proceeded to use them to calculate the 
action potential. It was 1951, and the early Cambridge University computer was 
down for about 6 months for modification. Huxley managed to carry out 
numerical integrations of the differential equations with a hand-operated 
mechanical calculator. They were excited to see the action potential come out 
with the right shape. They saw that explanation of the action potential in the 
squid axon in terms of sodium and potassium conductances is fundamental, and 
that therefore it might be expected that similar explanations would apply to 
other excitable tissues, perhaps with different values for parameters. 
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1.4.5   COMPUTER SIMULATION OF NEURAL BEHAVIOR 

The Hodgkin-Huxley theory provides a foundation for modeling neurons. It is 
especially suited to simulations on digital computers, since they handle the 
numerical integrations easily. The fundamental character of the theory gives 
assurance of a close correspondence to biological reality, and this gives the 
simulations value as natural experiments. 

      The GENESIS computer program for computational neuroscience (Bower 
and Beeman, 1998) is a flexible system for simulation, providing building 
blocks for simulations both below and above the level of the whole neuron. 
With GENESIS scripting, users can also design their own extended building 
blocks. The GENESIS tutorial named Squid, which is flexible in itself, 
embodies the classical Hodgkin-Huxley model of the giant axon. The Squid 
tutorial is of special interest here, because the chapter in Bower and Beeman 
(1998) which covers it includes Exercise 7 (p. 49) for investigating the 
refractory periods. 

1.5 WHY SPIKING NEURONS?  

Models of spiking neurons have been called the 3rd generation of artificial 
neural network (Maass 1997), as in  

 Generation 1: Binary networks (activation of 0 or 1) such as implemented 
by McCulloch and Pitts’ neurons and the Hopfield network.  

 Generation 2: Real-valued networks, where activation is representative of 
the 'mean firing rate' of a neuron, such as Backpropagation networks and 
Kohonen self-organising maps. 

 Generation 3: Spiking neural networks (SNNs).  

 Networks of the earlier generations have proven effective at modelling some 
cognitive processes and have been successful in many engineering applications. 
However the fidelity of these models with regards to neurophysiological data is 
minimal and this has several drawbacks.  

 Neurophysiological knowledge cannot be integrated easily into the 
models and as such cannot be tested for applicability to or effect upon 
neural computation.  

 Real neurons exhibit a very broad range of behaviours (tonic (continuous) 
and phasic (once-off) spiking, bursting, spike latency, spike frequency 
adaptation, resonance, threshold variability, input accommodation and 
bistability (Izhikevich 2004)). It's unlikely that these behaviours have no 
computational significance.  
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 There are specific interesting processes occurring at the spike level (such 
as Spike Timing Dependent Plasticity (Bi and Poo 1998)) that cannot be 
modelled without spikes.  

 The dynamics of spiking networks are much richer, allowing for example  
o oscillations in network activity which could implement multiple 

concurrent processing streams (Izhikevich 1999), figure/ground 
segmentation and binding (Csibra, Davis et al. 2000; Engel, Fries et 
al. 2001), short term memory (Jensen, Idiart et al. 1996; Jensen, 
Gelfand et al. 2002) etc  

o much increased (perhaps by orders of magnitude) memory capacity 
(Izhikevich 2005). Transmission delays are very significant for 
computation particularly because they are random or Gaussian for real 
neurons - this causes the formation of polychronous (as against 
synchronous) spiking neuron groups which could possibly store many 
more population-encoded memories than there are synaptic weights. 
This idea is still to be fully researched and analysed. 

 One of the most exciting characteristics of spiking neural networks, with the 
potential to create a step-change in our knowledge of neural computation, is that 
they are innately embedded in time (Maass 2001). Spike latencies, axonal 
conduction delays, refractory periods, neuron resonance and network 
oscillations all give rise to an intrinsic ability to process time-varying data in a 
more natural and computationally powerful way than is available to 2nd 
generation models. Real brains are embedded in a time-varying environment; 
almost all real-world data and human or animal mental processing has a 
temporal dimension. Evidence is growing that rhythmic brain oscillations are 
strongly connected to cognitive processing (Klimesch 1999; Basar, Basar-
Eroglu et al. 2001; Engel, Fries et al. 2001; Kahana, Seelig et al. 2001; Ward 
2003). So utilising Spiking Neural Networks may be one of the first steps 
needed to bridge the current divide between existing ANN models and more 
flexible, realistic and, dare I say, intelligent, behaviour from artificial systems. 

1.5.1 POTENTIAL DISADVANTAGES  

 Processing time: Until recently, biologically realistic spiking models 
have required intensive computations for even small amounts of 
simulated time, making simulations of large networks or long time 
periods impractical in most situations. However this is no longer of such 
great concern with the formulation of a model which is both biologically 
realistic and computationally efficient (see the next section: What spiking 
neuron models are available?) 

 Complex dynamics: One of the advantages may also be a disadvantage 
in that the complex behaviour needs to be understood and effectively 
managed. Although there are analogs to basins of attraction for networks 
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of spiking neurons on a global scale as long as noise is present in the 
system (Gerstner 1995), there is no such thing as a 'stable state' on a local 
neuron scale unless the entire network is completely inactive, so the 
network is always dynamically changing at some level.  

 Limited knowledge: Much less is known about networks of spiking 
neurons than the more established ANN paradigms, and many well-
accepted methodologies need to be adapted or possibly replaced. For 
instance with the right choice of parameters, STDP appears to be able to 
intrinsically support Hebbian learning with no need for arbitrary weight 
bounds or explicit weight or firing rate normalisation (van Rossum, Bi et 
al. 2000).  

1.5.2 WHAT SPIKING NEURON MODELS ARE AVAILABLE?  

Models fall into 3 broad categories ranging from complex to simple.  

1. Systems of coupled equations of 2 or more variables using parameters 
with real biophysical correlates.  

2. Systems of coupled equations of 2 or more variables using parameters 
with no biophysical correlates.  

3. Integrate and Fire models.  

 These categories are not entirely mutually exclusive; some overlap is 
evident. Discussion of each follows.  

1.5.3 COUPLED EQUATIONS USING PARAMETERS  
WITH REAL BIOPHYSICAL CORRELATES  

Although it was published more than 50 years ago, the definitive model here 
remains the Hodgkin-Huxley model (Hodgkin and Huxley 1952). Its advantage 
is that it completely describes neuron behaviour in terms of all known 
biophysical parameters and as such is theoretically able to model any possible 
neuron behaviour. In practice, the parameter values can be difficult to 
determine, and in fact the values required to successfully emulate several known 
neuron types using this model are yet to be found (Izhikevich 2004). The model 
also has excessive computational requirements and hence cannot be used to 
simulate large networks over long time scales.  

 There are several simplified HH models available (Morris and Lecar 1981; 
Kistler, Gerstner et al. 1997; Wilson 1999); however any simplification always 
comes with consequent reduction in biological fidelity and/or simulated neuron 
behavioural repertoire.  

1.5.4 COUPLED EQUATIONS USING PARAMETERS WITH NO  
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BIOPHYSICAL CORRELATES  

If we assume that there is only one property of a neuron that needs to be modelled 
in order to capture everything about how one neuron influences others,                     
and how neurons compute in general, then that property would be the membrane 
potential. In this case, the system of coupled equations can be greatly simplified 
while still exhibiting the rich set of spiking behaviors and sub-threshold 
characteristics of real neurons. The most successful model for this is the 
Izhikevich simple spiking neuron model (Izhikevich 2003), where success is 
measured in terms of both modelling efficiency and spiking behaviour. In fact, 
Izhikevich states that this is the simplest model possible which still exhibits all 
the required behaviours (Figure 1.9). It consists of just 2 equations and only 1 
nonlinear term, so is computationally efficient – almost 100 times faster than the 
HH model to simulate. Studies have shown that the correspondence between a 
similar model of two variables (fitted to the data) and the HH models’ spike 
timing predictions is very close – about 96% within 2 ms of each other (Brette 
and Gerstner 2005). The subthreshold dynamics of Izhikevich model neurons 
matches very closely those of HH (Boardman 2005). 

  

Figure 1.9 Top row – Izhikevich spiking neuron model. Bottom two rows – 8 of 
the 20 or so known neuron behaviours that can be emulated by the model.  

The assumption that membrane potential is the only quantity needed for simulation of 
neural computation is arguable. A likely counter example is incorporation of synaptic 
plasticity into the model, which depends on concentrations of certain neurotransmitters 
and ions around the synapse (Urakubo and Watanabe 2002). However this doesn’t rule 
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out the possibility that these values could be reliably approximated by some simple 
function of the membrane potential or spike timings, keeping the model equally simple 
while maintaining functional fidelity. This is the approach taken in (Izhikevich 2005). 

 A range of other models exist that lie somewhere between Izhikevich and 
Hodgkin-Huxley, e.g., (FitzHugh 1961; Rose and Hindmarsh 1989), often by 
trying to simplify the HH computations while modelling more known physical 
neuron properties than just membrane potential. In general, it can be said that 
the more properties modelled, the more computation is required; it is therefore 
an implementation-dependent trade-off as to which model should be chosen. 
However, with its ability to exhibit all known biological neuron behaviours 
whilst remaining computationally economical, the Izhikevich model is the 
current standout choice. 

1.6  INTEGRATE AND FIRE MODELS  

The simplest integrate and fire (I&F) model – the leaky I&F neuron – was 
originally developed when dominant thinking stated that neuron function can be 
well-enough approximated by simply integrating input and then firing at a given 
threshold. Other properties like spike frequency adaptation, bursting, resonance, 
latency and variable thresholds were incorporated into models as needs arose 
and dominant thinking changed (see (Izhikevich 2004) for a review); however 
unfortunately no single I&F model displays all these characteristics. 

 The underlying assumption of all I&F models is that of neurons being 
integrators, which we now know is not always the case (e.g., resonance, 
bistability, inhibition-induced spiking). However they are computationally 
efficient, even more so than the Izhikevich model, and should be considered if 
the full range of spiking behaviour is not required.   

1.6.1 SPIKING NEURAL NETWORKS – WHAT DO WE KNOW?  

1.6.1.1 Delay coding and universal approximation 

All Generation 2 neural networks (ie with continuous real-valued activation 
functions) can be emulated by SNNs, using delay coding (Maass 1997), also 
called latency or, somewhat confusingly, temporal or firing order coding. The 
process of delay coding is 

 Determine the minimum and maximum activation levels of the Gen 2 
neurons. 

 Determine a suitable ‘time-slice’ length for the Gen 3 network that will 
equate to an iteration (one step) of the Gen 2 network. The Gen 3 network 
runs in continuous time made up of consecutive time-slices. 
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 Within each time-slice, fire each neuron at a time proportional to its Gen 

2 activation level – e.g., neurons with maximum activation fire at the start 

of the time-slice and neurons with minimum fire at the end; neurons with 

¼ activation level fire ¾ of the way through the time-slice, and so on. 

 Postsynaptic neurons decode the presynaptic activation level based on the 

firing delay within the time-slice. 

 Two obvious consequences of the fact that all ANNs can be emulated by 

SNNs are that 

 Generation 2 ANNs are a subset of SNNs. 

 SNNs are universal approximators (because Gen 2 ANNs are). 

 Another consequence is that 

 Since any continuous function can be approximated with arbitrarily high 

reliability by an SNN with a single hidden layer (as can an MLP trained 

with back propagation), then with biologically realistic choices of spiking 

neuron parameters, any continuous function can be computed by an SNN 

within 20 ms (Maass 2001). 

1.6.2   SPIKE TIMING DEPENDENT PLASTICITY (STDP) 

STDP is a generalisation and refinement of Hebbian learning, stating that an 

increase (potentiation) in synaptic efficacy occurs if a presynaptic neuron fires 

immediately prior to the postsynaptic, and a decrease (depression) occurs if 

postsynaptic firing immediately precedes presynaptic. The effect was observed 

by Bi and Poo in hippocampal neurons in 1998 (Figure 1.10). The time course 

and magnitude of the effect vary between experimental studies, but it seems to 

last 10-50 ms either side of the postsynaptic spike and is maximal at or near the 

time of the spike, decaying exponentially to 0 by the end of the time course (Bi 

and Poo 1998; Kepecs, van Rossum et al. 2002; Urakubo and Watanabe 2002). 

It operates on excitatory synapses only and is less effective at potentiating 

already-strong synapses, although when synaptic depression occurs, the existing 

synaptic strength has less bearing on the result. 
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Figure 1.10  Change in Excitatory Post-Synaptic Current subsequent to 
different pre- and  postsynaptic spike timings (tpost – tpre). Exponential curves 

are shown for reference in red. Adapted from (Bi and Poo 1998). 

 Experimental data on the plasticity of inhibitory synapses on the other hand 
is scant (Swiercz, Cios et al. 2006), but often they are modelled more like 
Hebb’s original rule whereby potentiation occurs if the two neurons fire closely 
together independent of the order of firing (Paugam-Moisy 2006). Others 
believe that inhibitory plasticity is computationally ill-advised and is not 
widespread in nervous systems (McBain, Freund et al. 1999). 

 STDP can be of itself lead to the stable development of network 
representations with no need for any form of weight or firing rate normalisation 
(Kempter, Gerstner et al. 1999; Song, Miller et al. 2000; van Rossum, Bi et al. 
2000; Abbott and Gerstner 2004). However neurons are known to perform 
synaptic scaling in order to actively maintain a fixed long term average firing 
rate (Baddeley 1997); combined with standard Hebbian learning, this results in 
an implementation of Oja’s rule, equivalent to principal components analysis or 
PCA (Oja 1982). STDP can be mathematically derived from several different 
starting constraints (Bohte and Mozer 2005). A multidisciplinary (molecular , 
biological and computational) and multiscale (of both temporal and spatial 
dimensions) review of STDP can be found in (Worgotter and Porr 2005). 

 Importantly, recent work has come up with the spiking neuron convergence 
conjecture (Legenstein, Naeger et al. 2005) which predicts that STDP can 
implement any input/output mapping that an SNN could ever potentially 
perform. They prove that the perceptron convergence theorem holds in the 
average case for STDP with Poisson input spike trains, then show through 
simulations that it holds in the test cases for more-realistic neurons and more-
general input distributions. This endows STDP with universal learning 
capabilities. 
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1.6.3 NETWORK ARCHITECTURES 

Neurons within nervous systems tend to have low average firing rates and be 
sparsely connected (Feldman and Ballard 1982; Brunel 2000; Reyes 2003), with 
synapses having a wide range of delays from one to several tens of milliseconds 
(Swadlow 1985). Rather than being a biological irrelevance, these appear to be 
crucial properties that affect how nervous systems perform computations. The 
concept of a temporal grouping of cells is central (Abeles 1991; Bienenstock 
1995; Abeles 2002; Beggs and Plenz 2003; Ikegaya, Aaron et al. 2004), also see 
the very early paper (Rochester, Holland et al. 1956)! Temporal groups extend 
earlier ideas of grandmother cells, population coding, cell assemblies (Hebb 
1949; Freeman 1991; Reilly 2001) and synfire chains (Abeles 1991) into the 
time domain since a group may not be a synchronously-firing collection of cells, 
but rather cells that fire in given order with known timings. Izhikevich calls this 
property ‘polychrony’ as against synchrony (Izhikevich 2005). Temporal groups 
come about due to sparse connectivity, spiking dynamics and particularly, 
random delays, and play a vital role in information processing by nervous 
systems, or in fact are the physical manifestation of the processing of 
information. So spiking neurons and their typical connectivity together support 
computation using SNNs, and it becomes arguably impossible, or at least 
unwise, to separate them. 

 The significance of the random delays for network function cannot be 
overstated. It’s now well known that a sparsely connected network with random 
synaptic delays can easily have more states than the number of nodes (n) in the 
network (Izhikevich 2005) – remember a state in this terminology is not an 
attractor or stable state; rather it is a grouping of neurons that tend to fire in a 
given order over time. Contrast this to the Hopfield net (Hopfield 1982) where 
memories begin breaking down when just 0.13n for n = 100 (in general                  
n/(4 log n) (McEliece, Posner et al. 1987)) are stored. In an SNN with well-
chosen synaptic delays, there can actually be many more potential states than 
synapses in the entire network (Izhikevich 2005), which is an unprecedented 
memory capacity. Unfortunately, for systems of high-dimensional non-linear 
temporal interactions such as these, it is very difficult to conduct any rigorous 
mathematical analysis (Maass 2001), so no upper bound on memory capacity is 
known and no formal predictions of network behaviour can be made. Indeed, 
from a mathematical point of view, systems with temporal delays are infinite-
dimensional. Despite the inability of off-the-shelf mathematics to provide 
analysis, it’s clear that SNNs have unparalleled memory capacity. 

 Even randomly connected networks (or randomly connected satisfying 
certain constraints) with fixed (unitary) transmission delays exhibit potential to 
perform powerful computations, as long as there is a means to extract useful 
information from them. This is the basis of both Echo State Networks (Jaeger 
2001) and Liquid State Machines (Maass, Natschlager et al. 2002), two closely 
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related architectures that use random recurrent networks as their computational 
engines. Put very simply, their strategy is this: 

 Pass the input into a highly re-entrant random network, which converts 
the input into a high dimensional dynamical representation. The weights 
and delays in the network are fixed, not trained, but in general there will 
be many more neurons than inputs. 

 Simply train the output layer with least mean squares, linear regression or 
even a simple delta-rule variant. 

 These networks have been used to solve some quite difficult benchmark non-
linear learning problems. The effectiveness of such a simple strategy is 
testament to the underlying computational power of recurrent networks, even 
random untrained ones. Put even more simply, the rationale behind their 
functioning is that, in any random network of useful yet still tractable size, the 
dynamics are rich enough that at least one neuron will have acquired close to 
any desired representation. 

1.6.4 SPIKE CODING 

The classic notion that spiking neurons encode information through their 
average spike rate over some time window (called a rate code) is obviously 
correct in some circumstances and obviously incorrect in others (Rieke, 
Steveninck et al. 1997). Sensory cells such as in the cochlear and the retina use 
a rate code (Izhikevich 2005), however response time in the visual cortex is 
known to be too fast to continue processing with this coding regime (Thorpe, 
Fize et al. 1996; Thorpe, Delorme et al. 2001) – each neuron in the visual 
processing hierarchy only has time to fire one or occasionally two spikes prior 
to recognition, so clearly the visual cortex cannot be using a rate code, but is 
instead somehow utilising the presence and/or the timing of spikes (called a 
temporal code, not to be confused with delay coding as described above, which 
is one form of temporal coding). Spike timing has been long-established as the 
information encoding principle used in the auditory system of bats for 
echolocation (Kuwabara and Suga 1993) and in the visual system of flies 
(Bialek, Rieke et al. 1991), for example. 

 There are a number of different coding strategies possible using spike times, 
shown below in increasing order of information encoding capacity (Thorpe, 
Delorme et al. 2001). 

 Count coding: counts the total number of spikes of a neuron population 
in a given time – similar to rate coding except it entails one spike from 
each of many neurons instead of many spikes from one neuron; however 
the information capacity of rate coding is the same (very small). 
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 Binary coding: encodes a binary number, each digit represented by the 
presence (1) or absence (0) of a spike. 

 Rank order coding: the order of firing of the neurons encodes the 
information. 

 Delay coding: as described earlier. 

 Each of these coding strategies has very different information capacities 
summarized in the Table 1.2. In the table, n is the number of neurons under 
consideration, T is the time window over which each neuron can fire either 0 or 
1 spikes, and p is the precision, which is the minimum interspike interval which 
can be discerned by postsynaptic neurons. In the row of the table labeled 
Example 1 it is assumed that n = 10 neurons, T = 10 ms and p = 1 ms. In 
Example 2, n = 1000 neurons while T and p remain unchanged, although this 
would overstate the information capacity of rank order coding since there are 
not n! discernable outcomes using this strategy in this case, as with 1 ms 
precision many spikes will appear to be simultaneous. In this case the number of 
discernable outcomes for rank order coding will actually be log2(

1000C100 × 
900C100 × 800C100 × … × 100C100) = 3280 bits (notice for Example 1 this 
degenerates to log2 (

10C1 × 9C1 × 8C1 × … × 1C1) = log2(10!)). The information 
capacity of rank order coding is approaching that of delay coding (= 3320 bits) 
here because, with 1ms precision and 1000 spikes to squeeze into 10 ms, delays 
don’t add a lot of extra information. Note that rank order coding also becomes 
indistinguishable from delay coding as the precision p approaches the mean 
interspike interval. 

Table 1.2  Various descriptions and performance parameters 

 Count coding 
Binary 
coding 

Rank order coding Delay coding 

Description 
Counts the 

total number 
of spikes 

A binary 
number 

The order the neurons 
fire 

The order and 
delays both 

encode 
information 

Information 
capacity 

(bits) 
log2(n+1) n log2(n!) n.log2(T/p) 

Example 1 3.6 10.0 21.8 33.2 

Example 2 10.0 1000 ?3 (should be 3280) 3320 

                                                           
3 The stated information capacity for rank order coding is not accurate when n > T/p 
since there cannot be n! discernible states in T milliseconds. See text for a more correct 
statement of information capacity in this case. 
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 So which of the above temporal code strategies does the brain use when not 
using rate coding? For fast visual processing, rank order coding appears to 
suffice. For implementing STDP, delay coding would seem to be required in 
order to reliably control synaptic efficacy based on spike timings; however in 
nervous systems the distinction between order and delay coding may be blurred, 
since a delay of, for example, several hundred milliseconds between spikes from 
two neurons, does not change the order, yet is not likely to be interpreted as part 
of a single rank order code instance (i.e., even in order coding there are practical 
bounds on the delays). 

 Transmission delays in nervous systems display high variability even within 
connections that run in parallel, i.e., two connections that originate in one brain 
area, terminate in another brain area and follow very similar paths can have very 
different transmission delays. Conversely, some connection types such as thalamo-
cortical can have very similar transmission delays irrespective of their length (Salami, 
Itami et al. 2003). It seems that nervous systems are able to exert purposeful control 
over these delays in situations where they may have computational significance. 
Some experimental data is shown in the Table 1.3 (Izhikevich 2005). 

Table 1.3  Experimental Data based on Delay 

Connection Delay (ms) Reference 

Cat Layer 6 – LGN 1.0 – 44 (Ferster and Lindstrom 1983) 

Rabbit Layer 6 – LGN 1.7 – 32 (Swadlow 1994) 
Rabbit Cortico-cortical 1.0 – 35 (Swadlow 1985) 

Rabbit Cortico-cortical 1.2 – 19 (Swadlow 1994) 

Rabbit Cortico-(ipsi)cortical 2.2 – 32.5 (Swadlow 1994) 

Rabbit Layer 5 – LGN 0.6 – 2.3 (Swadlow 1994) 

Cat Cortico-collicular 0 – 3 (Ferster and Lindstrom 1983) 

Mouse VB – Layer 4 2 (Salami, Itami et al. 2003) 

 Despite the high variability between connections in many brain areas, the 
delay in any given connection is consistently reproducible with sub-millisecond 
precision. The overarching theme here is that variable transmission delays are a 
fundamental property and a computational requirement of nervous systems, and 
hence should not be overlooked in SNN models. 

1.6.5 COMPLEXITY 

Interesting results have been obtained in analyses of the VC-dimension of 
spiking neurons (Maass and Schmitt 1997): 

 The VC dimension of a threshold gate with n variable weights is Ω(n). 
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 The VC dimension of a spiking neuron with n variable delays is 
Ω(n.log(n)), even with fixed weights. 

 So the discriminatory power of variable delays is greater than that of variable 
weights. This implies that 

 Networks with synaptic delays are potentially able to perform more 
powerful computations (Maass 1997; Maass 1997). 

 Powerful learning algorithms could be formulated by adjusting synaptic 
delays in addition to or rather than synaptic weights. 

 Non-learnability results have been derived for SNNs that put the learning 
complexity of spiking neurons into the NP class of problems (Maass and 
Schmitt 1997). However due to the limitations of the mathematical tools that are 
used to conduct these rigorous analyses, simplifying assumptions must be made, 
and while these results mean it will be difficult to formally prove that learning 
algorithms work, it doesn’t necessarily mean that they will be difficult to 
formulate. 

1.6.6 SPIKING NEURAL NETWORKS – WHAT DON'T WE KNOW?  

Despite the quite large body of knowledge expounded above, we still know very 
little about the dynamics, learning algorithms and computational abilities of 
SNNs. Obvious gaping holes in our knowledge include: 

 Broad mathematical analyses: SNNs are high dimensional nonlinear 
dynamical systems. Consequently we generally cannot prove 
convergence for learning algorithms, and have little knowledge of upper 
bounds on memory capacities or of the dynamical behaviour of SNNs in 
differing circumstances. Given the richness of potential neuron 
behaviours, Izhikevich states in (Izhikevich 2004) “What happens when 
only tens (let alone billions) of such neurons are coupled together is 
beyond our comprehension”. The (inadequate) alternative is to 
demonstrate these properties through exhaustive numerical simulation; 
however this proves nothing and it is difficult or impossible to generalise 
from these results. 

 Training of synaptic delays: Given the computational power afforded by 
transmission delays in SNNs, there has been surprisingly little research 
published on mechanisms of training them. This may be partly due to the 
fact that there is dissent on whether or not the brain actually modifies 
delays as a facilitator of computational function (see (Eurich, Pawelzik et 
al. 1999) vs (Senn, Schneider et al. 2002) for example). However it has 
been shown that simple Hebbian-like learning rules can progressively 
modify synaptic delays so that spikes that arrive at different times within 
a given time window can ultimately be synchronised at the postsynaptic 
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neuron, and produce stable representations of temporal input (Huning, 
Glunder et al. 1998; Eurich, Pawelzik et al. 1999). These rules function 
by adding to a delay if the presynaptic neuron fires some time before the 
postsynaptic, and subtracting from a delay if the presynaptic neuron fires 
some time later. Biological mechanisms for controlling the delay can 
include changing the thicknesses of axons and dendrites or the extent of 
myelination (Fields 2005). An alternative to actively adapting 
transmission delays is to simply select appropriate delays from an initial 
over-abundance of random delays; delays that by chance closely match 
the input train are strengthened by normal Hebbian learning, while the 
remaining ineffective delays are depressed by the same mechanism and 
may ultimately vanish. It is well known that the juvenile brain contains 
many more synapses than the adult, but whether selection of delays is one 
reason for this reduction over time, and whether delay training is also 
undertaken by the brain, are still open questions. 

 How does the brain compute? Transmission delays, spike coding, 
temporal grouping, nested oscillations, phase precession – irrespective of 
what we do or don’t know about spiking neurons, some of the most 
fundamental attributes of the brain are still almost complete mysteries to 
us. Although SNNs are the next step towards a full understanding of 
nervous system computation and can help us to model many of these till-
now neglected properties, they are not likely to be the ultimate level of 
detail required to model all of brain function, and we may yet need 
Generation 4 and beyond neural networks for this task. 

1.6.7 WHO IS USING SPIKING NEURONS? 

Work with spiking neurons and SNNs has been going on at the periphery of 
neural network research for many years. This includes: 

 A considerable amount of theoretical work by mathematicians and 
physicists, some of which has been discussed above; see (Rieke, 
Steveninck et al. 1997) for more information. 

 Obviously all neuroscientists, who are most interested in the physical 
mechanisms of spiking, STDP etc, hence use spiking neuron models with 
high biological realism. 

 Brain region modelling – deep but not broad models of targeted brain 
regions operating in specific modalities e.g., hippocampus in a specific 
navigation task (Hasselmo, Bodelon et. al., 2002). 

 Cognitive modelling – understandably, there is a disconnect between 
higher level brain models and models of individual spikes (solving this 
completely is arguably solving AI!) 
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 Some applications – currently dominated by auditory (mostly speech) 
processing (Hopfield and Brody 2000; Hopfield and Brody 2001; 
Loiselle, Rouat et al. 2005; Verstraeten, Schrauwen et al. 2005) and 
visual processing (Perrinet and Samuelides 2002; Azhar, Iftekharuddin et 
al. 2005; Kornprobst, Vieille et al. 2005); SpikeNet Technology is a 
commercialised vision package (Thorpe and Gautrais 1997; Thorpe, 
Guyonneau et al. 2004), also see http://www.spikenet-technology.com. 
Robotics with SNNs is just beginning to heat up (Di Paolo 2002; Nielsen 
and Lund 2003; Roggen, Hofmann et al. 2003; Floreano, Epars et al. 
2005; Floreano, Zufferey et al. 2005), although most current robotics 
implementations depend on evolutionary algorithms to create the SNNs. 

1.6.8 CONCLUSION 

With the knowledge we are currently obtaining of the fundamental importance 
of spike timings and oscillations to neural processing, 2nd generation ANNs can 
no longer provide a viable basis for neural modelling. Spiking Neural Networks 
present many new challenges but also afford many new opportunities for 
breaking entirely new ground in artificial intelligence research. 

1.7 APPLICATIONS OF ANN 

Let us suppose we wish to train an ANN to recognize handwriting. For our 
purposes we wish to train it to recognize the letters H and C. More exactly for 
this simple application we would be happy for it to be able to identify an H or a 
C. Handwriting recognition is a problem that neural networks have been able to 
tackle very well. The issues that arise here are common to all neural network 
classification problems. 

 The first activity is to represent the letters for input to the ANN. Typically 
we draw a grid over the letter and represent the inputs as zero or one depending 
on whether the hand-written letter goes through the cell in the grid. Figure 1.11 
gives an example for an H and a C. 

 The inputs will be strings of zeros and ones. The string is achieved by going 
from the top left-hand corner across to the right and then left to right a row at a 
time, where a 1 indicates that the letter goes through that square of the grid. In 
the example shown, the inputs will be 110111011 for H and 110100111 for C. 
We would only need one output for this particular problem. We could             
perhaps give it a value of 1 for an H and 0 for a C. So there are nine inputs and one 
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Figure 1.11  Letter Recognition – an H and a C 

output. For most applications we only require one hidden layer. As to how many 
neurons there should be in the hidden layer this is still a case of ‘trial and error’. 
Typically you experiment from, say, about 7 down to 2. Suppose we have 4 in 
the hidden layer. This is called a 9-4-1 network. This network has, therefore, 40 
[i.e. (9 × 4) + (4 × 1)] weights that have to be learned. For a neural network to 
have good generalisation capabilities (to be able to classify inputs it has not seen 
before) the literature reports that you need approximately 5-10 times as many 
training pairs as weights. So in this example we would need about 200 letters 
with approximately 100 Hs and 100 Cs. As you can see, if you dropped to 2 
neurons in the hidden layer you would need only 100 data sets. The questions 
that need answering then are: 

1. How do we represent the data for input? 

2. How many neurons should be in the output layer and, in the case of 
classification problems, what values will those neurons take? 

3. How many neurons should be in the hidden layer? 

4. What activation function should we use for the neuron? 

5. What is an acceptable error rate? 

 This section has introduced you to the most common paradigm in neural 
network applications – the feed-forward, multilayered perceptron with the 
backpropagation algorithm. This approach is just one example of a supervised 
algorithm. 

SUMMARY OF ANN 

Artificial Neural Networks – What are They good for? 
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 It would not be possible to list all the applications of ANNs here. An ANN 
approach will often be an option where the problem being tackled has the 
following features. 

 The type of problem:  
o is one of recognising patterns in the data. 
o requires classification of data into, for example, classes. 
o is one of monitoring of equipment in real time. 

 There is a large amount of data that may be ‘noisy’. 

 Some example applications are: 
 Monitoring of engine condition in a fleet of vehicles. 
 Signal processing – recognising patterns in signals. 
 Face recognition. Neural networks are particularly good at recognising 

shapes, e.g. fingerprints, signatures, tanks on an horizon. 
 Process control - using ANNs to monitor equipment. 
 Forecasting corporate bankruptcy based on financial indicators. 
 Credit scoring to assess credit worthiness when considering giving a 

loan. 
 We know how neural networks work and the types of applications for 

which they are suitable.   

Artificial Neural Networks - What are the Drawbacks? 

 They require large amounts of historical data that accurately reflects the 
make-up of the population under consideration. 

 They are ‘black box’. Unlike expert systems, they are incapable of 
explaining why they make a particular decision. This is a major problem 
when trying to ‘sell’ neural network technology to management. The only 
way to test the efficacy of an ANN solution is to test the trained network 
with many examples that it has not seen before. 

 There are a large number of parameters that the ANN developer has to 
make decisions about. For example he/she has to decide on the learning 
rate, activation functions, the network structure or topology, how to 
represent the problem, etc. 

 In summary, ANNs are a powerful, practical solution to many problems 
faced by industry and commerce and should be considered as one of the tools in 
the armoury of the professional trying to find solutions to difficult problems.   
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