
Introduction to Computers 1

1.1 INTRODUCTION

A computer is a device capable of performing computations and making logical decisions at
speeds of millions and even billions of times faster than human beings can. For example, many
of today’s personal computers can perform hundreds of millions of arithmetic and logical
operations per second. A person operating a desk calculator might require decades to complete
the same number of calculations that a powerful personal computer can perform in one second.
Today’s fastest supercomputers can perform hundreds of billions of additions per second –
about as many calculations as hundreds of thousands of people could perform in one year!
Moreover, trillion instruction-per-second computers are already in use in research laboratories!

Computers process data under the control of sets of instructions called computer programs.
These programs guide the computer through orderly sets of actions specified by people called
computer programmers.

1.2 COMPUTER SYSTEMS

A computer comprises of various devices such as keyboard, screen, mouse, disks, memory,
CD-ROM and processing units that are referred to as hardware. The computer programs that
run on a computer are referred to as software. Hardware costs have been declining dramatically

1

1

Introduction to Computers



C & Data Structures2

in recent years, to the point that personal computers have been rising steadily as programmers
develop more powerful and complex applications.

1.2.1 Hardware

Regardless of differences in physical appearances, virtually every computer may be divided
into six logical units as shown in the Fig. 1.1.

Fig.1.1 Block diagram of computer system

1. Input unit

This is the receiving section of the computer. It obtains information (data and computer
programs) from various input devices and places this information at the disposal of the
other units so that the information may be processed. Most information is entered into
computers today through keyboards and mouse devices. Information can also be entered
by speaking to your computer and by scanning images.

2. Output unit

This section of the computer takes information that has been processed by the computer
and places it on various output devices to make the information available for use outside
the computer. Most information output from computers today is displayed on screens,
printed on paper, or used to control other devices.



Introduction to Computers 3

3. Memory unit

It retains information that has been entered through the input unit so that it may be made
immediately available for processing when it is needed. The memory unit also retains
processed information until that information can be placed on output devices by the output
unit. The memory unit is often called either Memory or Primary Memory.

4. Arithmetic and logic unit

This section of computer is responsible for performing calculations such as addition,
subtraction, multiplication and division. It contains decision mechanisms that allow the
computer to complete tasks such as comparing two items from the memory unit to determine
whether or not they are equal. Usually ALU is a part of CPU.

5. Central Processing Unit (CPU)

This section of the computer is responsible for supervising the operation of the other
sections. The CPU tells the input unit when information should be read into the memory
unit, tells the arithmetic and logic unit (ALU) when information from the memory unit
should be used in calculations and tells the output unit when to send information from
the memory unit to certain output devices.

6. Secondary storage unit

This is the long term, high capacity storage section of the computer. Programs or data not
actively being used by the other units are normally placed on secondary devices (such as
disks) until they are again needed, possibly hours, days, months or even years later.
Information in secondary storage takes much longer to access than information in primary
memory. The cost per unit secondary storage is much less than the cost per unit of primary
memory.

1.2.2 Software

A set of instructions to the computer (or physical components of the computer) is called
programs or software. These sets of instruction or programs can be mainly divided into System
Software (Operating System) and Application Software.

1. System Software (Operating System)

Early computer were capable of performing only on job or task at a time. This form of
computer operation is often called single-user batch processing. The computer runs a single
program at a time while processing data in groups or batches. In these early systems, users
generally submitted their jobs to a computer center on decks of punched cards. Users often
had to wait hours or even days before printouts were returned to their desks.



C & Data Structures4

Software systems called operating systems were developed to help make it more convenient
to use computers. Early operating systems managed to transition between jobs. This
minimized the time it took for the computer operators to switch between jobs and hence
increased the amount of work or throughput, computers could process.

As computers became more powerful, it became evident that single user batch processing
rarely utilized the computer’s resources efficiently because most of the time was spent
waiting for slow input/output devices to complete their tasks. Instead, it was thought that
many jobs or tasks could be made to share the resources of the computer to achieve better
utilization. This is called multiprogramming. Multiprogramming involves the simultaneous
operation of many jobs on the computer – the computer shares its resources among the
jobs competing for its attention. With early multiprogramming operating systems, users
still submitted jobs on decks of punched cards and waited hours or days for results.

In the 1960s, several groups in industry and the universities pioneered timesharing operating
systems. Timesharing is a special case of multiprogramming in which users access the
computer through terminals, typically devices with keyboards and screens, sharing the
computer at once. The computer does not actually run jobs of all the users simultaneously.
Rather, it runs a small portion of one user’s job and then moves on to service the next user.
The computer does this so quickly that it may provide service to each user several times per
second. Thus the users programs appear to be running simultaneously. An advantage of
timesharing is that the user receives almost immediate responses to requests rather than
having to wait long periods for results as with previous modes of computing.

2. Application Software

Programs or set of instruction to the computer which will assist the user in performing
specific tasks are called Application Software. Some examples of application software are MS
Office, Tally, Oracle, and Adobe Photoshop. MS Office is used for creating documents,
spread sheets, presentations, database creation etc... Tally is used for accounting purposes
in business applications. Oracle is used for database creation and maintenance. Adobe
Photoshop is used for photo editing and creation.

1.3 COMPUTING ENVIRONMENTS

Computers can be used in different environments. An environment describes a situation.
There are basically three types of computing environments depending on the way the computer
are used. They are:

• Personal Computing

• Distributed Computing

• Client/Server Computing



Introduction to Computers 5

1.3.1 Personal Computing

In 1977, Apple Computer popularized the concept of personal computing. Initially, it was a
hobbyist’s dream. Computers became economical enough for people to buy them for their
own personal or business use. In 1981, IBM, the world’s largest computer vendor, introduced
the IBM Personal Computer. Literally overnight, personal computing became legitimate in
business, industry and government organizations.

1.3.2 Distributed Computing

Computers were stand-alone units – people did their work on their own machines and then
transported disks back and forth to share information (this is often called sneaker net). Although
early personal computers were not powerful enough to timeshare several users, these machines
could be linked together in computer networks, sometimes over telephone lines and sometimes
in local area networks (LANs) within an organization. This led to the concept of distributed
computing, in which an organization’s computing, instead of being performed strictly at a
central computer installation, is distributed computers were powerful enough to handle the
computing requirements of individual users and to handle the basic communications tasks of
passing information back and forth electronically.

1.3.3 Client/Server Computing

Today’s most powerful personal computers are as powerful as the million dollar machines of
just a decade ago. The most powerful desktop machines – called workstations – provide
individual users with enormous capabilities. Information is easily shared across computer
networks, where computers called file servers offer a common store of programs and data that
may be used by client computers distributed throughout the networks, hence the term client/
server computing. C and C++ have become the programming languages of choice for writing
software for operating systems, which include UNIX, LINUX AND MICROSOFT
WINDOWS – based systems.

1.4 COMPUTER LANGUAGES

Programmers write instructions in various programming languages, some directly
understandable by the computer and others that require intermediate translation steps.
Hundreds of computer languages are in use today. These may be divided into three general
types:

1. Machine Languages

2. Assembly Languages

3. High-level Languages



C & Data Structures6

1.4.1 Machine Languages

Any computer can directly understand only its own machine language; machine language is
the natural language of a particular computer. It is defined by the hardware design of the
computer. Machine languages generally consist of strings of numbers (ultimately reduced to
1s and 0s) that instruct computers to perform their most elementary operations one at a time.
Machine languages are machine dependent, i.e., a particular machine language can be used
on only one type of computer. Machine languages are cumbersome for humans and therefore
can not be easily used for programming. For example, a machine level program to add allowance
to basic pay could comprises of series of instructions with 0s and 1s.

1.4.2 Assembly Languages

As computers became more popular; it became apparent that machine language programming
was too slow, tedious and error prone. Instead of using strings of numbers that computers
could directly understand, programmers began using English-like abbreviations formed the
basis of assembly languages. Translators programs called assemblers were developed to convert
assembly language programs to machine language at computer speeds. The following section
of an assembly language program also adds allowance to basic pay and stores the result in gross
pay, but more clearly than is done in machine language.

LOAD BASEPAY

ADD ALLOWANCE

STORE GROSSPAY

Although such code is clearer to humans, it is incomprehensible to computers until
translated to machine language.

1.4.3 High-level Languages

Computer usage increased rapidly with the advent of assembly languages, but these still
required many instructions to accomplish even the simplest tasks. To speed the programming
process, high-level languages, in which single statements accomplish substantial tasks, were
developed. Translator programs called compilers convert high-level language programs into
machine language. High-level languages allow programmers to write instructions that look
almost like everyday English and contain commonly used mathematical notations. A payroll
program written in a high level language might contain a statement such as:

grosspay=basepay+allowance

Obviously, high-level languages are much more desirable from the programmer’s stand
point than either machine languages or assembly languages. C and C++ are among the most
powerful and most widely used high-level languages.



Introduction to Computers 7

1.5 CREATING AND RUNNING PROGRAMS

The process of compiling a high-level language program into machine language can take a
considerable amount of computer time. This problem was solved by the development of
interpreter programs that can directly execute high-level language programs without needing
to compile them into machine language. Although compiled programs execute faster than
interpreted programs, interpreters are popular in program development environments in which
programs are changed frequently as new features are added and errors are corrected. Once a
program is develop, a compiled version can be produced to run most efficiently.

What is an Interpreter?
An interpreter reads an executable source program written in high level programming language
as well as data for this program, and it runs the program against the data to produce some
results. Interpreter executes one instruction at a time as you enter the instruction.

Eg. Unix Shell Interpreter, which runs operating system commands interactively and Visual
Basic Interpreter.

What is a Compiler?
A compiler is a program that translates a source program written in some high level
programming language (such as C) into machine code for some computer architecture (such
as the Intel Pentium architecture). The generated machine code can be later executed many
times against different data each time.

Eg. Turbo ‘C’ Compiler and Borland ‘C’ Compiler.

1.6 SOFTWARE DEVELOPMENT STEPS

Before we go further it is better we look at a systematic program development and problem
solving.  In order to accomplish computerizing the solution to a problem the following six
steps are needed:

1. Specifying requirements: The problem whose solution is to implemented on a computer
through a program should be thoroughly specified and understood.

2. Analysis: The problem must be analyzed to determine the inputs and outputs needed.

3. Designing algorithm: A solution must be conceived and must be represented step by step
by using algorithmic/pseudo code notations or flow chart symbols. This will help thoroughly
verifying the correctness of the solution to the problem.

4. Implementation: The flow charts and algorithms developed in the previous steps are converted
into actual programs in the high level languages like C. Next translate the program in high
level language into machine code. This process is known as Compilation.



C & Data Structures8

Syntactic errors are found quickly at the time of compiling the program. These errors occur
due to the usage of wrong syntaxes for the statements.

Eg. x=a*y+b

There is a syntax error in this statement, since, each and every statement in ‘C’ language
ends with a semicolon(;).

Most of high level language compiler implementations will generate diagnostic messages
when syntax errors are detected during compilation.

5. Testing: This deals with the proper and correct execution of the program. The program is
executed with input data. In this phase, we may encounter two types of errors.

Runtime errors:

These errors may occur during the execution or programs even though the program is
successfully compiled without syntax errors. The most common types of runtime errors
are:

Eg. 1. Array range out of bound

2. Divided by zero

Logical errors:

These errors occur due to incorrect usage of the instructions in the program. These errors
are neither detected during compilation or execution nor cause any stoppage to the program
execution. They only produce incorrect outputs. When the program ends up with incorrect
outputs the logical errors are to be identified and rectified.

6. Maintenance and updation: After the software is delivered to the customer and installed at
the premises of the customer, the customer may ask for some changes after using the
software for some time. This calls for updation of the software with some changes.

This approach makes us to visualize the logic involved in the solution to the problem and
further allows you to complete the task of program writing and successful execution.

1.7 ALGORITHM/PSEUDOCODE

Pseudocode is an artificial and informal language that helps programmers develop algorithms.
An algorithm is a step-by-step procedure for solving a problem using a psedocode. The
pseudocode we present here is particularly useful for developing algorithms that will be converted
to structured C programs.

Pseudocode is similar to everyday English; it is convenient and user-friendly although it is
not an actual computer programming language.  Pseudocode programs are not actually executed
on computers.  Rather, they merely help the programmer “think out” a program before attempting
to writ it in a programming language such as C.



Introduction to Computers 9

Example 1. An Algorithm / pseudo code to add two numbers.

Step 1 : Start
Step 2 : Read the two numbers into a, b
Step 3 : c = a + b
Step 4 : Write/print c
Step 5 : Stop.

Example 2. An Algorithm/ Pseudo code to find whether a given number is odd
number or a even number.

Step 1 : Start
Step 2 : Read the number n
Step 3 : If (n % 2) = 0 (i.e. the remainder is zero) then.

Write ‘n is even number’ Go to step 5
Step 4 : Write ‘n is odd number’
Step 5 : Stop.

Example 3. An algorithm/pseudocode to read three numbers and to determine the

maximum, second highest and the minimum.

Step 1 : Read the three numbers into a, b, c
Step 2 : If a > b and a > c

Max = a;
If b > c

Max2 = b, Min = c
Else

Max2 = c, Min = b
Goto Step 5

Else
Goto Step 3

Step 3 : If b > c then do the following else goto Step 4
Max = b;
If( a > c )

Max2 = a, Min = c
Else

Max2 = c, Min = b;
Goto Step 5

Step 4 : Max = c;
If ( a > b )

Max2 = a, Min = b
Else

Max2 = b, Min = a
Goto Step 5.

Step 5 : Print Min, Max2, Max;
Step 6 : Stop.



C & Data Structures10

1.8 FLOW CHART

A flowchart is a graphical representation of an algorithm or a portion of an algorithm.
Flowcharts are drawn using certain special-purpose symbols such as rectangles, diamonds, ovals
and small circles as shown in Table 1.1.  These symbols are connected by arrows called flowlines.
Like pseudocode, flowcharts are useful for developing and representing algorithms, although,
pseudocode is preferred by most programmers.  Flowcharts clearly visually show how control structures
operate in a program.  The most common symbols used in drawing flow charts are in Table 1.1.

Table 1.1  Flow Chart Sysmbols

Oval Terminal Start/Stop/Begin/End.

Parallelogram Input/Output Making Data available for
processing ( Input ) or recording
of the processed Information
( Output ).

Document Print Out Show Data Output in the form
of Document.

Rectangle Process Any Processing to be done.  A
Process changes or moves Data.
An Assignment Operation.

Diamond Decision Decision or Switching type of
Operations.

Circle Connector Used to connect different parts
of Flowchart.

Arrow Flow Joins two symbols and also
represents flow of Execution.



Introduction to Computers 11

Start

 

Read n

  
if ((n%2) ==0 Write “n is even number”

 
Yes

No

Stop

 

Write “n is odd number”

Start

 

Read a, b

c = a + b

 

Write c

Stop

Example 1. Flowchart for addition of two numbers.

Example 2. Flowchart to find whether a given number is odd or even.



C & Data Structures12

1.9 SOFTWARE DEVELOPMENT LIFE CYCLE

The Systems Development Life Cycle (SDLC) or Software Development Life Cycle in software
engineering is the process of creating or altering systems (softwares) and the models and
methodologies that people use to develop these systems (softwares).

Different phases of SDLC are as follows:

1. Initiation/Planning and requirements collection
2. Analysis
3. Design
4. Build or coding
5. Testing
6. Maintenance and updation

These steps are similar to what we have discussed in earlier section. In software engineering
the SDLC concept supports many kinds of software development methodologies (models).
These methodologies form the framework for planning and controlling the creation of an
information system. One such model, which is frequently used and very much similar to
SDLC is Water Fall Model.

Water fall model is a sequential software development model in which progress is seen
as flowing steadily downwards (like a waterfall) through the phases of initiation or planning
and requirements collection, analysis, design, build or coding, testing and maintenance and
updation. The phases SDLC in water fall model are represented in the Fig. 1.2.

Fig.1.2 Representation of SDLC phases in water fall model

1.10 APPLICATION OF SOFTWARE DEVELOPMENT METHOD

An example problem is presented in this section to illustrate how to apply software development
method. After the problem statement in the analysis we identify the data requirements of the



Introduction to Computers 13

problem including the inputs and desired outputs. Next an algorithm is designed and refined
to solve the problem.

Finally we implement the algorithm as a program written in C language. We also indicate
how to test the program. Though the problem being taken is a trivial one, the student is urged
to observe the process and adopt similar steps in solving other problems.

Problem:

You would like design a program that converts temperature in Fahrenheit to temperature in
centigrade.

Analysis:

You should be very clear about the problem before you try to solve it. In this problem we are
asked to convert the measurement of temperature from one system to another. You should be
clear that the convention is from Fahrenheit to centigrade and not vice-a-versa. Therefore the
problem input is temperature in o

F
 and the problem output is temperature in o

C
. The data

requirements and the conversion formula are listed below:

Data requirements
Input: temperature in oF(f )

Output: temperature in oC(c)

Conversion formula: c=((f-32)x5)÷9

Design:

We now need to formulate the algorithm (step by step procedure)

Algorithm:

Begin

Step 1: Read the temperature in oF

Step 2: Convert the temperature into oC

Step 3: Display the temperature in oC

End

The above is the 1st phase of the design. We observe that Step 2 can be further subdivided into

2.1 Subtract 32 from oF

2.2 Multiply the result of Step 2.1 by 5

2.3 Divide the result of Step 2.2 by 9

Thus incorporating the method of conversion from oF to oC.



C & Data Structures14

Flow Chart:

Phase 1:
START 

Read the temperature in oF 

Display the temperature in oC 

Convert the temperature into oC 

STOP 

After Refinement
 

Convert the temperature into oC 

Subtract 32 from oF 

Multiply the result by 5 

Divide the result by 9 

START 

Read the temperature in oF 

Display the temperature in oC 

STOP 

Fig.1.3 Temperature conversion flow chart

Fig.1.4 Retined temperature conversion flowchart



Introduction to Computers 15

Implementation:

The next step is implementation where we convert the algorithm/flow chart into a C program.

1. #include<stdio.h>

2. void main()

3. {

4. float f,c;

5. printf(“Enter the temperature in Fahrenheit:”);

6. scanf(“%f”, &f );

7. c=f-32;

8. c=c*5;

9. c=c/9;

10. printf(“Celsius=%f\n”,c);

11. }

Output:

Enter the temperature in Fahrenheit:60

Celsius=15.555555

Fig.  1.5  Sample program with, sample execution results

Fig. 1.5. shows the C program with sample execution results. However the above c
program can be refined as the three steps at lines 7 to 9 can be combined to one line since the
conversion formula can be directly coded as an expression. Fig. 1.6. shows the revised.

1. #include<stdio.h>

2. void main()

3. {

4. float f,c;

5. printf(“Enter the temperature in Fahrenheit:”);

6. scanf(“%f ”, &f);

7. c=((f-32)*5)/9;

8. printf(“Celsius=%f\n”,c);

9. }

Fig.  1.6  Refined sample program



C & Data Structures16

Testing:

To verify that the program works properly, enter a few more values of temperature in oF
 
and

verify whether you are getting the correct results or not. You may try some negative temperature
also. Typical test cases are to be designed for more complex programs to unearth any runtime
or logical errors that may occur.

Maintain and update:

This deals with the proper maintenance of the software after delivering it to the customer.
And if there are any requirements that are found while maintaining the software they can be
programmed and updation of the software is done.

This is how the software development method can be applied to any problem to solve
it using computers (computer programming language (high-level language)).

PROBLEMS & EXERCISES

1. Write algorithm/pseudo code and flow charts for the following problems.

(a) Finding largest number in two numbers.

(b) Roots of quadratic equation.

(c) To generate all even numbers between two given numbers.

(d) Finding the average of n numbers.


	ch_1_01
	ch_1_02
	ch_1_03
	ch_1_04
	ch_1_05
	ch_1_06
	ch_1_07
	ch_1_08
	ch_1_09
	ch_1_10
	ch_1_11
	ch_1_12
	ch_1_13
	ch_1_14
	ch_1_15
	ch_1_16

