Chapter 1

Sequences and Series

- Sequences and Series
- Convergence of Infinite Series
- Tests of Convergence
 - P-Series Test
 - Comparison Tests
 - Ratio test
 - Raabe's test
 - Cauchy's Root test
 - Integral test
 - Leibnitz's test
- Absolute Convergence
 - Conditional convergence
 - Power series and Interval of convergence
- Summary of all Tests
- Solved University Questions (JNTU)
- Objective type of Questions

1.1 Sequence

A function $f:N \to S$, where S is any nonempty set is called a *Sequence* i.e., for each $n \in N$, \exists a unique element $f(n) \in S$. The sequence is written as f(1), f(2), f(3),, f(n)..., and is denoted by $\{f(n)\}$, or $\langle f(n) \rangle$, or (f(n)). If $f(n) = a_n$, the sequence is written as a_1, a_2, \ldots, a_n and denoted by , $\{a_n\} or \langle a_n \rangle or(a_n)$. Here f(n) or a_n are the n^{th} terms of the Sequence.

2. The range of a sequence is almost a countable set.

1.1.1 Kinds of Sequences

- **1. Finite Sequence:** A sequence $\langle a_n \rangle$ in which $a_n = 0 \forall n > m \in N$ is said to be a finite Sequence. i.e., A finite Sequence has a finite number of terms.
- 2. Infinite Sequence: A sequence, which is not finite, is an infinite sequence.

1.1.2 Bounds of a Sequence and Bounded Sequence

1. If \exists a number 'M' $\ni a_n \leq M$, $\forall n \in N$, the Sequence $\langle a_n \rangle$ is said to be bounded above or bounded on the right.

Ex.
$$1, \frac{1}{2}, \frac{1}{3}, \dots$$
 here $a_n \le 1 \ \forall n \in \mathbb{N}$

2. If \exists a number 'm' $\ni a_n \ge m, \forall n \in \mathbb{N}$, the sequence $\langle a_n \rangle$ is said to be bounded below or bounded on the left.

Ex. 1, 2, 3,....here $a_n \ge 1 \forall n \in \mathbb{N}$

3. A sequence which is bounded above and below is said to be bounded.

Ex. Let
$$a_n = (-1)^n \left(1 + \frac{1}{n} \right)^n$$

n	1	2	3	4	
a_n	-2	3/2	-4/3	5/4	

From the above figure (see also table) it can be seen that m = -2 and $M = \frac{3}{2}$.

 \therefore The sequence is bounded.

1.1.3 Limits of a Sequence

A Sequence $\langle a_n \rangle$ is said to tend to limit 'l' when, given any + ve number ' \in ', however small, we can always find an integer 'm' such that $|a_n - l| < \epsilon, \forall n \ge m$, and we write $\lim_{n \to \infty} a_n = l$ or $\langle a_n \to l \rangle$

Ex. If
$$a_n = \frac{n^2 + 1}{2n^2 + 3}$$
 then $\langle a_n \rangle \rightarrow \frac{1}{2}$.

1.1.4 Convergent, Divergent and Oscillatory Sequences

- **1. Convergent Sequence:** A sequence which tends to a finite limit, say 'l' is called a *Convergent Sequence*. We say that the sequence converges to 'l'
- **2. Divergent Sequence:** A sequence which tends to $\pm \infty$ is said to be *Divergent* (or is said to diverge).
- **3. Oscillatory Sequence:** A sequence which neither converges nor diverges , is called an *Oscillatory Sequence*.
 - **Ex. 1.** Consider the sequence 2, $\frac{3}{2}, \frac{4}{3}, \frac{5}{4}, \dots$ here $a_n = 1 + \frac{1}{n}$

The sequence $\langle a_n \rangle$ is convergent and has the limit 1

$$a_n - 1 = 1 + \frac{1}{n} - 1 = \frac{1}{n}$$
 and $\frac{1}{n} < \epsilon$ whenever $n > \frac{1}{\epsilon}$

Suppose we choose $\in =.001$, we have $\frac{1}{n} < .001$ when n > 1000.

Ex. 2. If
$$a_n = 3 + (-1)^n \frac{1}{n} < a_n >$$
 converges to 3.

Ex. 3. If
$$a_n = n^2 + (-1)^n . n, < a_n > \text{ diverges.}$$

Ex. 4. If $a_n = \frac{1}{n} + 2(-1)^n$, $< a_n >$ oscillates between -2 and 2.

1.2 Infinite Series

If $\langle u_n \rangle$ is a sequence, then the expression $u_1 + u_2 + u_3 + \dots + u_n + \dots$ is called an infinite series. It is denoted by $\sum_{n=1}^{\infty} u_n$ or simply Σu_n

The sum of the first *n* terms of the series is denoted by s_n

i.e., $s_n = u_1 + u_2 + u_3 + \dots + u_n; s_1, s_2, s_3, \dots, s_n$ are called *partial sums*.

1.2.1 Convergent, Divergent and Oscillatory Series

Let Σu_n be an infinite series. As $n \to \infty$, there are three possibilities.

(a) Convergent series: As $n \to \infty$, $s_n \to a$ finite limit, say 's' in which case the series is said to be convergent and 's' is called its sum to infinity.

Thus $Lt s_n = s$ (or) simply $Lts_n = s$

This is also written as $u_1 + u_2 + u_3 + \dots + u_n + \dots + to \infty = s$. (or) $\sum_{n=1}^{\infty} u_n = s$ (or) simply $\Sigma u_n = s$.

- (b) **Divergent series:** If $s_n \to \infty$ or $-\infty$, the series said to be divergent.
- (c) Oscillatory Series: If s_n does not tend to a unique limit either finite or infinite it is said to be an *Oscillatory Series*.

Note: Divergent or Oscillatory series are sometimes called non convergent series.

1.2.2 Geometric Series

The series, $1 + x + x^2 + \dots + x^{n-1} + \dots$ is

- (i) Convergent when |x| < 1, and its sum is $\frac{1}{1-x}$
- (ii) Divergent when $x \ge 1$.
- (iii) Oscillates finitely when x = -1 and oscillates infinitely when x < -1.

Proof: The given series is a geometric series with common ratio 'x'

 $\therefore s_n = \frac{1 - x^n}{1 - x}$ when $x \neq 1$ [By actual division – verify]

(i) When
$$|x| < 1$$
:

$$Lt s_n = Lt \left(\frac{1}{1-x}\right) - Lt \left(\frac{x^n}{1-x}\right) = \frac{1}{1-x} \qquad \left[\text{ since } x^n \to 0 \text{ as } n \to \infty\right]$$

$$\therefore \text{ The series converges to } \frac{1}{1-x}$$

- (ii) When $x \ge 1$: $s_n = \frac{x^n 1}{x 1}$ and $s_n \to \infty$ as $n \to \infty$ \therefore The series is divergent.
- (iii) When x = -1: when n is even, $s_n \to 0$ and when n is odd, $s_n \to 1$ \therefore The series oscillates finitely.
- (iv) When $x < -1, s_n \to \infty$ or $-\infty$ according as *n* is odd or even. \therefore The series oscillates infinitely.

1.2.3 Some Elementary Properties of Infinite Series

- 1. The convergence or divergence of an infinites series is unaltered by an addition or deletion of a finite number of terms from it.
- **2.** If some or all the terms of a convergent series of positive terms change their signs, the series will still be convergent.
- **3.** Let Σu_n converge to 's'

Let 'k' be a non – zero fixed number. Then $\Sigma k u_n$ converges to ks.

Also, if Σu_n diverges or oscillates, so does $\Sigma k u_n$

4. Let Σu_n converge to 'l' and Σv_n converge to 'm'. Then

(i) $\Sigma(u_n + v_n)$ converges to (l + m) and (ii) $\Sigma(u_n + v_n)$ converges to (l - m)

1.2.4 Series of Positive Terms

Consider the series in which all terms beginning from a particular term are +ve.

Let the first term from which all terms are +ve be u_1 .

Let Σu_n be such a convergent series of +ve terms. Then, we observe that the convergence is unaltered by any rearrangement of the terms of the series.

1.2.5 Theorem

If Σu_n is convergent, then $\lim_{n\to\infty} u_n = 0$.

Proof: $s_n = u_1 + u_2 + \dots + u_n$ $s_{n-1} = u_1 + u_2 + \dots + u_{n-1}$, so that, $u_n = s_n - s_{n-1}$ Suppose $\Sigma u_n = l$ then $\underset{n \to \infty}{Lt} s_n = l$ and $\underset{n \to \infty}{Lt} s_{n-1} = l$ $\therefore \underset{n \to \infty}{Lt} u_n = \underset{n \to \infty}{Lt} (s_n - s_{n-1})$; $\underset{n \to \infty}{Lt} s_n - \underset{n \to \infty}{Lt} s_{n-1} = l - l = 0$

Note: The converse of the above theorem need not be always true. This can be observed from the following examples.

(i) Consider the series, $1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots$; $u_n = \frac{1}{n}$, $\lim_{n \to \infty} u_n = 0$

But from *p*-series test (1.3.1) it is clear that $\sum_{n=1}^{\infty} \frac{1}{n}$ is divergent.

(ii) Consider the series, $\frac{1}{1^2} + \frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} + \dots$ $u_n = \frac{1}{n^2}$, $\lim_{n \to \infty} u_n = 0$, by *p* series test, clearly $\sum \frac{1}{n^2}$ converges,

Note : If $\lim_{n\to\infty} u_n \neq 0$ the series is divergent;

Ex.
$$u_n = \frac{2^n - 1}{2^n}$$
, here $\lim_{n \to \infty} u_n = 1$ \therefore Σu_n is divergent.

1.3 Tests for the Convergence of an Infinite Series

In order to study the nature of any given infinite series of +ve terms regarding convergence or otherwise, a few tests are given below.

1.3.1 P-Series Test

The infinite series, $\sum_{n=1}^{\infty} \frac{1}{n^p} = \frac{1}{1^p} + \frac{1}{2^p} + \frac{1}{3^p} + \dots$, is

(i) Convergent when p > 1, and (ii) Divergent when $p \le 1$. (JNTU 2002, 2003)

Proof:

Case (i) Let
$$p > 1$$
; $p > 1, 3^{p} > 2^{p}$; $\Rightarrow \frac{1}{3^{p}} < \frac{1}{2^{p}}$
 $\therefore \qquad \frac{1}{2^{p}} + \frac{1}{3^{p}} < \frac{1}{2^{p}} + \frac{1}{2^{p}} = \frac{2}{2^{p}}$
Similarly, $\frac{1}{4^{p}} + \frac{1}{5^{p}} + \frac{1}{6^{p}} + \frac{1}{7^{p}} < \frac{1}{4^{p}} + \frac{1}{4^{p}} + \frac{1}{4^{p}} = \frac{4}{4^{p}}$
 $\frac{1}{8^{p}} + \frac{1}{9^{p}} + \dots + \frac{1}{16^{p}} < \frac{8}{8^{p}}$, and so on.

Adding we get

is

$$\begin{split} & \sum \frac{1}{n^p} < 1 + \frac{2}{2^p} + \frac{4}{4^p} + \frac{8}{8^p} + \dots \\ & \text{i.e.,} \qquad \sum \frac{1}{n^p} < 1 + \frac{1}{2^{(p-1)}} + \frac{1}{2^{3(p-1)}} + \frac{1}{2^{3(p-1)}} + \dots \\ & \text{The RHS of the above inequality is an infinite geometric series with common ratio } \frac{1}{2^{p-1}} < 1(\text{since } p > 1) \text{ The sum of this geometric series is finite.} \\ & \text{Hence } \sum_{n=1}^{\infty} \frac{1}{n^p} \text{ is also finite.} \\ & \therefore \text{ The given series is convergent.} \\ & \text{Case (ii) Let } p = 1; \qquad \sum \frac{1}{n^p} = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \\ & \text{We have,} \qquad \frac{1}{3} + \frac{1}{4} > \frac{1}{4} + \frac{1}{4} = \frac{1}{2} \\ & \qquad \frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8} > \frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} = \frac{1}{2} \\ & \qquad \frac{1}{9} + \frac{1}{10} + \dots & \frac{1}{16} > \frac{1}{16} + \frac{1}{16} + \dots & \frac{1}{16} = \frac{1}{2} \text{ and so on} \\ & \therefore \qquad \sum \frac{1}{n^p} = 1 + \left(\frac{1}{2} + \frac{1}{3}\right) + \left(\frac{1}{4} + \frac{1}{5} + \frac{1}{6} + \frac{1}{7}\right) + \dots \\ & \qquad \ge 1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{2} + \dots \\ & \text{The sum of RHS series is } \infty \\ & \left(\operatorname{since } s_n = 1 + \frac{n-1}{2} = \frac{n+1}{2} \text{ and } \underset{n \neq n}{L_1} S_n = \infty \right) \\ & \therefore \text{ The sum of the given series is also } \infty; & \therefore \quad \sum_{n=1}^{\infty} \frac{1}{n^p} \quad (p = 1) \text{ diverges.} \\ & \text{Case (ii) Let } p < 1, \quad \sum \frac{1}{n^p} = 1 + \frac{1}{2^p} + \frac{1}{3^p} + \dots \\ & \text{Since} \qquad p < 1, \frac{1}{2^p} > \frac{1}{2} \cdot \frac{1}{3^p} > \frac{1}{3} \dots \\ & \text{and so on} \\ & \therefore \qquad \sum \frac{1}{n^p} > 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots \\ & \text{From the Case (ii), it follows that the series on the RHS of above inequality is divergent. \\ \end{array}$$

....

$$\Sigma \frac{1}{n^p}$$
 is divergent, when P < 1

Note: This theorem is often helpful in discussing the nature of a given infinite series.

1.3.2 Comparison Tests

- **1.** Let Σu_n and Σv_n be two series of +ve terms and let Σv_n be convergent. Then Σu_n converges,
 - (a) If $u_n \leq v_n, \forall n \in N$
 - (b) or $\frac{u_n}{v_n} \le k \forall n \in N$ where k is > 0 and finite.

(c) or
$$\frac{u_n}{v_n} \rightarrow$$
 a finite limit > 0

Proof: (a) Let
$$\Sigma v_n = l$$
 (finite)

Then, $u_1 + u_2 + \dots + u_n + \dots \le v_1 + v_2 + \dots + v_n + \dots \le l > 0$ Since *l* is finite it follows that Σu_n is convergent

- (c) $\frac{u_n}{v_n} \le k \Rightarrow u_n \le kv_n, \forall n \in N$, since Σv_n is convergent and k (>0) is finite, Σkv_n is convergent $\therefore \Sigma u_n$ is convergent.
- (d) Since $\lim_{n \to \infty} \frac{u_n}{v_n}$ is finite, we can find a +ve constant $k, \exists \frac{u_n}{v_n} < k \forall n \in N$: from (2), it follows that $\sum u_n$ is convergent

$$\therefore$$
 from (2), it follows that Σu_n is convergent

2. Let Σu_n and Σv_n be two series of +ve terms and let Σv_n be divergent. Then Σu_n diverges,

* 1. If
$$u_n \ge v_n, \forall n \in N$$

or * 2. If $\frac{u_n}{v_n} \ge k, \forall n \in N$ where k is finite and $\ne 0$
or * 3. If $\underset{n \to \infty}{Lt} \frac{u_n}{v_n}$ is finite and non-zero.

Proof:

1. Let M be a +ve integer however large it may be. Science Σv_n is divergent, a number *m* can be found such that

$$v_1 + v_2 + \dots + v_n > M, \forall n > m$$

- $\therefore \qquad u_1 + u_2 + \dots + u_n > M, \forall n > m(u_n \ge v_n)$
- \therefore Σu_n is divergent

2. $u_1 \ge kv_n \forall n$ Σv_n is divergent $\Rightarrow \Sigma k v_n$ is divergent *.*.. Σu_n is divergent 3. Since $\lim_{n \to \infty} \frac{u_n}{v_n}$ is finite, a + ve constant k can be found such that $\frac{u_n}{v} > k, \forall n$

(probably except for a finite number of terms)

 \therefore From (2), it follows that Σu_n is divergent.

Note :

In (1) and (2), it is sufficient that the conditions with * hold $\forall n > m \in N$ (a) Alternate form of comparison tests : The above two types of comparison tests 2.8.(1) and 2.8.(2) can be clubbed together and stated as follows :

If Σu_n and Σv_n are two series of + ve terms such that $\lim_{n \to \infty} \frac{u_n}{v_n} = k$, where k is

non-zero and finite, then Σu_n and Σv_n both converge or both diverge.

- **(b)** 1. The above form of comparison tests is mostly used in solving problems.
 - 2. In order to apply the test in problems, we require a certain series Σv_{μ} whose nature is already known i.e., we must know whether Σv_n is convergent are divergent. For this reason, we call Σv_n as an 'auxiliary series'.
 - 3. In problems, the geometric series (1.2.2.) and the *p*-series (1.3.1) can be conveniently used as 'auxiliary series'.

Solved Examples

EXAMPLE 1

Test the convergence of the following series:

(a) $\frac{3}{1} + \frac{4}{8} + \frac{5}{27} + \frac{6}{64} + \dots$ (b) $\frac{4}{1} + \frac{5}{4} + \frac{6}{9} + \frac{7}{16} + \dots$ (c) $\sum_{n=1}^{\infty} \left[\left(n^4 + 1 \right)^{1/4} - n \right]$

SOLUTION

Step 1: To find " u_n " the n^{th} term of the given series. The numerators 3, 4, 5, (a) 6.....of the terms, are in AP. n^{th} term $t_n = 3 + (n-1) \cdot 1 = n+2$

Denominators are $1^3, 2^3, 3^3, 4^3, ..., n^{th}$ term = n^3 ; $\therefore u_n = \frac{n+2}{n^3}$

Step 2: To choose the auxiliary series Σv_n . In u_n , the highest degree of n in the numerator is 1 and that of denominator is 3.

: we take,
$$v_n = \frac{1}{n^{3-1}} = \frac{1}{n^2}$$

Step 3: $\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{n+2}{n^3} \times n^2 = \lim_{n \to \infty} \frac{n+2}{n} = \lim_{n \to \infty} \left(1 + \frac{2}{n}\right) = 1$, which is non-zero and finite.

Step 4: Conclusion: $\lim_{n \to \infty} \frac{u_n}{v_n} = 1$

 $\therefore \Sigma u_n$ and Σv_n both converge or diverge (by comparison test). But $\Sigma v_n = \Sigma \frac{1}{n^2}$ is convergent by *p*-series test (p = 2 > 1); $\therefore \Sigma u_n$ is convergent.

(b)
$$\frac{4}{1} + \frac{5}{4} + \frac{6}{9} + \frac{7}{16} + \dots$$

Step 1: 4, 5, 6, 7, in AP, $t_n = 4 + (n-1)1 = n+3$ \therefore $u_n = \frac{n+3}{n^2}$

Step 2: Let $\Sigma v_n = \frac{1}{n}$ be the auxiliary series **Step 3:** $\underset{n \to \infty}{Lt} \frac{u_n}{v_n} = \underset{n \to \infty}{Lt} \left(\frac{n+3}{n^2} \right) \times n = \underset{n \to \infty}{Lt} \left(1 + \frac{3}{n} \right) = 1$, which is non-zero and finite. **Step 4:** \therefore By comparison test, both Σu_n and Σv_n converge are diverge together. But $\Sigma v_n = \Sigma \frac{1}{n}$ is divergent, by *p*-series test (p = 1); $\therefore \Sigma u_n$ is divergent.

(c)
$$\sum_{n=1}^{\infty} \left[\left(n^{4} + 1 \right)^{1/4} - n \right] = \left\{ n^{4} \left(1 + \frac{1}{n^{4}} \right) \right\}^{\frac{1}{4}} - n = n \left[\left(1 + \frac{1}{n^{4}} \right)^{\frac{1}{4}} - 1 \right]$$
$$= n \left[1 + \frac{1}{4n^{4}} + \frac{\frac{1}{4} \left(\frac{1}{4} - 1 \right)}{2!} \cdot \frac{1}{n^{8}} + \dots - 1 \right] = n \left[\frac{1}{4n^{4}} - \frac{3}{32n^{8}} + \dots \right]$$
$$= \frac{1}{4n^{3}} - \frac{3}{32n^{7}} + \dots = \frac{1}{n^{3}} \left[\frac{1}{4} - \frac{3}{32n^{4}} + \dots \right]$$
Here it will be convenient if we take $v_{n} = \frac{1}{n^{3}}$

 $Lt \frac{u_n}{v_n} = Lt \left(\frac{1}{4} - \frac{1}{32n^4} + \dots \right) = \frac{1}{4}, \text{ which is non-zero and finite}$ $\therefore \text{ By comparison test, } \Sigma u_n \text{ and } \Sigma v_n \text{ both converge or both diverge. But by } p\text{-series test } \Sigma v_n = \frac{1}{n^3} \text{ is convergent. } (p = 3 > 1); \therefore \Sigma u_n \text{ is convergent.}$

EXAMPLE 2

If $u_n = \frac{\sqrt[3]{3n^2 + 1}}{\sqrt[4]{2n^3 + 3n + 5}}$ show that Σu_n is divergent

SOLUTION

As *n* increases, u_n approximates to

$$\frac{\sqrt[3]{3n^2}}{\sqrt[4]{2n^3}} = \frac{3^{\frac{1}{3}}}{2^{\frac{1}{4}}} \times \frac{n^{\frac{2}{3}}}{n^{\frac{3}{4}}} = \frac{3^{\frac{1}{3}}}{2^{\frac{1}{4}}} \cdot \frac{1}{n^{\frac{1}{12}}}$$

$$\therefore \text{ If we take } v_n = \frac{1}{n^{\frac{1}{12}}}, \text{ Lt } \frac{u_n}{v_n} = \frac{3^{\frac{1}{3}}}{2^{\frac{1}{4}}} \text{ which is finite.}$$

$$[(\text{or) Hint: Take } v_n = \frac{1}{n^{l_1 - l_2}}, \text{ where } l_1 \text{ and } l_2 \text{ are indices of 'n' of the largest terms}$$

in denominator and nominator respectively of u_n . Here $v_n = \frac{1}{n^{\frac{3}{4} - \frac{2}{3}}} = \frac{1}{n^{\frac{1}{12}}}$
By comparison test, Σv_n and Σu_n converge or diverge together. But $\Sigma v_n = \Sigma \frac{1}{n^{\frac{1}{12}}}$ is
divergent by p - series test (since $p = \frac{1}{12} < 1$)

 $\therefore \Sigma u_n$ is divergent.

EXAMPLE 3

Test for the convergence of the series. $\sqrt{\frac{1}{2}} + \sqrt{\frac{2}{3}} + \sqrt{\frac{3}{4}} + \sqrt{\frac{4}{5}} + \dots$

SOLUTION

Here,
$$u_n = \sqrt{\frac{n}{n+1}}$$
; Take $v_n = \frac{1}{n^{\frac{1}{2}-\frac{1}{2}}} = \frac{1}{n^0} = 1$, $Lt_{n \to \infty} \frac{u_n}{v_n} = Lt_{n \to \infty} \sqrt{\frac{1}{1+\frac{1}{n}}} = 1$ (finite)

 Σv_n is divergent by p – series test. (p = 0 < 1)

 \therefore By comparison test, Σu_n is divergent, (Students are advised to follow the procedure given in ex. 1.2.9(a) and (b) to find " u_n " of the given series.)

EXAMPLE 4

Show that $1 + \frac{1}{|1|} + \frac{1}{|2|} + \dots + \frac{1}{|n|} + \dots$ is convergent.

SOLUTION

...

$$u_{n} = \frac{1}{\underline{|n|}} \text{ (neglecting 1st term)}$$
$$= \frac{1}{1.2.3....n} < \frac{1}{1.2.2.2...n - 1 \text{ times}} = \frac{1}{(2^{n-1})}$$
$$\Sigma u_{n} < 1 + \frac{1}{2} + \frac{1}{2^{2}} + \frac{1}{2^{3}} + \dots$$

which is an infinite geometric series with common ratio $\frac{1}{2} < 1$

$$\therefore$$
 $\Sigma \frac{1}{2^{n-1}}$ is convergent. (1.2.3(a)). Hence Σu_n is convergent.

EXAMPLE 5

Test for the convergence of the series, $\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots$

SOLUTION

$$u_{n} = \frac{1}{n(n+1)(n+2)}; \quad \text{Take} \quad v_{n} = \frac{1}{n^{3}} \quad Lt \frac{u_{n}}{v_{n}} = Lt \frac{n^{3}}{n^{3}(1+\frac{1}{n})(1+\frac{2}{n})} = 1 \text{ (finite)}$$

 \therefore By comparison test, Σu_n , and Σv_n converge or diverge together. But by *p*-series test, $\Sigma v_n = \Sigma \frac{1}{n^3}$ is convergent (p = 3 > 1); $\therefore \Sigma u_n$ is convergent.

EXAMPLE 6

If
$$u_n = \sqrt{n^4 + 1} - \sqrt{n^4 - 1}$$
, show that Σu_n is convergent. [JNTU, 2005]
SOLUTION

$$u_n = n^2 \left(1 + \frac{1}{n^4}\right)^{\frac{1}{2}} - n^2 \left(1 - \frac{1}{n^4}\right)^{\frac{1}{2}}$$

$$= n^{2} \left[\left(1 + \frac{1}{2n^{4}} - \frac{1}{8n^{8}} + \frac{1}{16n^{12}} - \dots \right) - \left(1 - \frac{1}{2n^{4}} - \frac{1}{8n^{8}} - \frac{1}{16n^{12}} - \dots \right) \right]$$
$$= n^{2} \left[\frac{1}{n^{4}} + \frac{1}{8n^{12}} + \dots \right] = \frac{1}{n^{2}} \left[1 + \frac{1}{8n^{10}} + \dots \right]$$
Take $v_{n} = \frac{1}{n^{2}}$, hence $\underset{n \to \infty}{Lt} \frac{u_{n}}{v_{n}} = 1$

 \therefore By comparison test, Σu_n and Σv_n converge or diverge together. But $\Sigma v_n = \frac{1}{n^2}$ is convergent by *p*-series test (*p* = 2 > 1) $\therefore \Sigma u_n$ is convergent.

EXAMPLE 7

Test the series $\frac{1}{1+x} + \frac{1}{2+x} + \frac{1}{3+x} + \dots$ for convergence.

SOLUTION

$$u_n = \frac{1}{n+x}; \quad \text{take} \quad v_n = \frac{1}{n}, \quad \text{then} \quad \frac{u_n}{v_n} = \frac{n}{n+x} = \frac{1}{1+\frac{x}{n}}$$
$$\underset{n \to \infty}{Lt} \left(\frac{1}{1+\frac{x}{n}}\right) = 1; \Sigma v_n = \Sigma \frac{1}{n} \quad \text{is divergent by } p \text{-series test } (p = 1)$$

 \therefore By comparison test, Σu_n is divergent.

EXAMPLE 8

Show that $\sum_{n=1}^{\infty} \sin\left(\frac{1}{n}\right)$ is divergent.

SOLUTION

$$u_n = \sin\left(\frac{1}{n}\right); \quad \text{take} \quad v_n = \frac{1}{n}$$

$$Lt \frac{u_n}{v_n} = Lt \frac{\sin\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} = Lt \frac{\sin t}{t} \text{ (where } t = \frac{1}{n} \text{)} = 1$$

 $\therefore \Sigma u_n, \Sigma v_n \text{ both converge or diverge . But } \Sigma v_n = \Sigma \frac{1}{n} \text{ is divergent}$ (*p*-series test, *p* = 1); $\therefore \Sigma u_n$ is divergent.

Test the series $\sum \sin^{-1} \left(\frac{1}{n}\right)$ for convergence.

SOLUTION

$$u_n = \sin^{-1} \frac{1}{n}; \qquad \text{Take} \qquad v_n = \frac{1}{n}$$
$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{\sin^{-1\left(\frac{1}{n}\right)}}{\left(\frac{1}{n}\right)}; = \lim_{\theta \to 0} \left(\frac{\theta}{\sin\theta}\right) = 1 \left(Taking \sin^{-1} \frac{1}{n} = \theta\right)$$

But Σv_n is divergent. Hence Σu_n is divergent.

EXAMPLE 10

Show that the series $1 + \frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^3} + \dots$ is divergent.

SOLUTION

Neglecting the first term, the series is $\frac{1}{2^2} + \frac{2^2}{3^3} + \frac{3^3}{4^4} + \dots$. Therefore

$$u_n = \frac{n^n}{(n+1)^{n+1}} = \frac{n^n}{(n+1)(n+1)} n = \frac{n^n}{n\left(1+\frac{1}{n}\right) \cdot n^n \left(1+\frac{1}{n}\right)^n} = \frac{1}{n\left(1+\frac{1}{n}\right)\left(1+\frac{1}{n}\right)^n};$$

Take $v_n = \frac{1}{n}$

$$\therefore \qquad Lt \frac{u_n}{v_n} = Lt \frac{1}{\left(1 + \frac{1}{n}\right)\left(1 + \frac{1}{n}\right)^n} = Lt \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{1}{e}$$

which is finite and $\Sigma v_n = \Sigma \frac{1}{n}$ is divergent by *p*-series test (*p* = 1)

 $\therefore \qquad \Sigma u_n$ is divergent.

EXAMPLE 11

Show that the series $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$ is convergent. (JNTU 2000) **SOLUTION** $\frac{1}{1.2.3} + \frac{3}{2.3.4} + \frac{5}{3.4.5} + \dots \infty$

$$n^{th}$$
 term = $u_n = \frac{2n-1}{n(n+1)(n+2)} = \frac{1}{n^2} \cdot \frac{\left(2-\frac{1}{n}\right)}{\left(1+\frac{1}{n}\right)\left(1+\frac{2}{n}\right)}$

Take $v_n = \frac{1}{n^2}$

$$Lt_{n\to\infty} \frac{u_n}{v_n} = Lt_{n\to\infty} \frac{1}{n^2} \frac{\left(2 - \frac{1}{n}\right)}{\left(1 + \frac{1}{n}\right)\left(1 + \frac{2}{n}\right)} \div \left(\frac{1}{n^2}\right)$$

$$Lt_{n\to\infty} \frac{u_n}{v_n} = \frac{2 - 0}{(1 + 0)(1 + 0)} = 2 \text{ which is finite and non-zero}$$

 \therefore By comparison test $\sum u_n$ and $\sum v_n$ converge or diverge together

But $\sum v_n = \sum \frac{1}{n^2}$ is convergent. $\therefore \sum u_n$ is also convergent.

EXAMPLE 12

Test whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$ is convergent (JNTU 1997, 1999, 2003)

SOLUTION

The given series is
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n} + \sqrt{n+1}}$$
$$u_n = \frac{1}{\sqrt{n} + \sqrt{n+1}}$$
$$= \frac{\sqrt{n+1} - \sqrt{n}}{\left(\sqrt{n} + \sqrt{n+1}\right)\left(\sqrt{n+1} - \sqrt{n}\right)} = \sqrt{n+1} - \sqrt{n}$$
$$u_n = \sqrt{n} \left\{ \left(1 + \frac{1}{n}\right)^{\frac{1}{2}} - 1 \right\} = \sqrt{n} \left\{ \left(1 + \frac{1}{2n} - \frac{1}{8n^2} + \dots\right) - 1 \right\}$$
$$u_{n=} \sqrt{n} \left\{ \frac{1}{2n} - \frac{1}{8n^2} + \dots \right\} = \frac{1}{\sqrt{n}} \left\{ \frac{1}{2} - \frac{1}{8n} + \dots \right\}$$

 $v_n = \frac{1}{\sqrt{n}}$ $Lt_{n\to\infty} \frac{u_n}{v_n} = Lt_{n\to\infty} \frac{1}{\sqrt{n}} \left\{ \frac{1}{2} - \frac{2}{8n} + \dots \right\} \div \left(\frac{1}{\sqrt{n}} \right) = \frac{1}{2}$

which is finite and non-zero Using comparison test $\sum u_n$ and $\sum v_n$ converge or diverge together. $\sum v_n = \sum \frac{1}{\sqrt{n}}$ is divergent (since $p = \frac{1}{2}$) But

...

Take

 $\sum u_n$ is also divergent.

EXAMPLE 13

Test for convergence
$$\sum_{n=1}^{\infty} \left[\sqrt[3]{n^3 + 1} - n \right]$$
[JNTU 1996, 2003, 2003]
$$n^{th} \text{ term } u_n = n \left[\left(1 + \frac{1}{n^3} \right)^{\frac{1}{3}} - 1 \right] = n \left[1 + \frac{1}{3n^3} + \frac{\frac{1}{3} \left(\frac{1}{3} - 1 \right)}{1.2} \cdot \frac{1}{n^6} + \dots - 1 \right]$$
$$= \frac{1}{3n^2} - \frac{1}{9n^5} + \dots = \frac{1}{n^2} \left(\frac{1}{3} - \frac{1}{9n^3} + \dots \right) ; \text{ Let } v_n = \frac{1}{n^2}$$
Then
$$Lt \frac{u_n}{v_n} = Lt \left(\frac{1}{3} - \frac{1}{9n^3} + \dots \right) = \frac{1}{3} \neq 0$$

 \therefore By comparison test, $\sum u_n$ and $\sum v_n$ both converge or diverge. But $\sum v_n$ is convergent by *p*-series test (since p = 2 > 1) $\therefore \sum u_n$ is convergent.

EXAMPLE 14

Show that the series, $\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \dots$ is convergent for p > 2 and divergent for $p \le 2$

SOLUTION

 n^{th} term of the given series $= u_n = \frac{n+1}{n^p} = \frac{n\left(1+\frac{1}{n}\right)}{n^p} = \frac{\left(1+\frac{1}{n}\right)}{n^{p-1}}$ Let us take $v_n = \frac{1}{n^{p-1}}$; $Lt \frac{u_n}{v_n} = 1 \neq 0$;

 $\therefore \sum u_n$ and $\sum v_n$ both converge or diverge by comparison test. But $\sum v_n = \sum \frac{1}{n^{p-1}}$ converges when p -1>1; i.e., p >2 and diverges when $p-1 \le 1$ i.e $p \le 2$; Hence the result.

EXAMPLE 15 Test for convergence $\sum_{n=1}^{\infty} \left(\frac{2^n+3}{3^n+1}\right)^{\frac{1}{2}}$ (JNTU 2003) SOLUTION $u_{n} = \left[\frac{2^{n}\left(1+\frac{3}{2^{n}}\right)}{3^{n}\left(1+\frac{1}{2^{n}}\right)}\right]^{\frac{1}{2}}; \quad \text{Take} \quad v_{n} = \sqrt{\frac{2^{n}}{3^{n}}}; \quad \frac{u_{n}}{v_{n}} = \left(\frac{1+\frac{3}{2^{n}}}{1+\frac{1}{2^{n}}}\right)^{\frac{1}{2}}$ Lt $\frac{u_n}{v_n} = 1 \neq 0$; \therefore By comparison test, $\sum u_n$ and $\sum v_n$ behave the same way. But $\sum v_n = \sum_{n=1}^{\infty} \left(\frac{2}{3}\right)^{n/2} = \sqrt{\frac{2}{3}} + \frac{2}{3} + \left(\frac{2}{3}\right)^{3/2} + \dots$, which is a geometric series with common ratio $\sqrt{\frac{2}{3}}$ (<1) \therefore $\sum v_n$ is convergent. Hence $\sum u_n$ is convergent. **EXAMPLE 16** Test for convergence of the series, $\frac{1}{4.7.10} + \frac{4}{7.10.13} + \frac{9}{10.13.16} + \dots$ (JNTU 2003) SOLUTION 4, 7, 10,....is an A. P; $t_n = 4 + (n-1)3 = 3n+1$ 7, 10, 13,....is an A. P; $t_n = 7 + (n-1)3 = 3n+4$ 10, 13, 16,....is an A. P; $t_n = 10 + (n-1)3 = 3n+7$ and

...

$$u_{n} = \frac{n^{2}}{(3n+1)(3n+4)(3n+7)} = \frac{n^{2}}{3n(1+\frac{1}{3n}).3n(1+\frac{4}{3n}).3n(1+\frac{7}{3n})}$$
$$= \frac{1}{27n(1+\frac{1}{3n})(1+\frac{4}{3n})(1+\frac{7}{3n})};$$

Taking $v_n = \frac{1}{n}$, we get $Lt_{n \to \infty} \frac{u_n}{v_n} = \frac{1}{27} \neq 0$; \therefore By comparison test, both $\sum u_n$ and $\sum v_n$ behave in the same manner. But by p -series test, $\sum v_n$ is divergent, since p = 1. $\therefore \sum u_n$ is divergent. **EXAMPLE 17** Test for convergence $\sum \frac{\sqrt{2n^2 - 5n + 1}}{4n^3 - 7n^2 + 2}$ (JNTU 2003) **SOLUTION** n^{th} term of the given series $= u_n = \frac{\sqrt{2n^2 - 5n + 1}}{4n^3 - 7n^2 + 2}$ Let $v_n = \frac{1}{n^2}$ $Lt_{n \to \infty} \frac{u_n}{v_n} = Lt_n \cdot \left[\frac{n\sqrt{2 - 5/n + 1/n^2}}{n^3(4 - 7/n + 2/n^3)} \times \frac{n^2}{1} \right] = Lt_n \left[\frac{\sqrt{2 - 5/n + 1/n^2}}{(4 - 7/n + 2/n^3)} \right] = \frac{\sqrt{2}}{4} \neq 0$ \therefore By comparison test, $\sum u_n$ and $\sum v_n$ both converge or diverge.

But $\sum v_n$ is convergent. [p series test -p = 2 > 1] $\therefore \sum u_n$ is convergent.

EXAMPLE 18

Test the series $\sum u_n$, whose n^{th} term is $\frac{1}{(4n^2 - i)}$

SOLUTION

$$u_n = \frac{1}{(4n^2 - i)};$$
 Let $v_n = \frac{1}{n^2},$ $Lt \frac{u_n}{v_n} = Lt \left[\frac{n^2}{n^2(4 - i/n^2)}\right] = \frac{1}{4} \neq 0$

 $\therefore \sum u_n$ and $\sum v_n$ both converge or diverge by comparison test. But $\sum v_n$ is convergent by *p*-series test (p = 2 > 1); $\therefore \sum u_n$ is convergent.

Note: Test the series $\sum_{n=1}^{\infty} \frac{1}{4n^2 - 1}$

EXAMPLE 19 If $u_n = \left(\frac{1}{n}\right) \cdot \sin\left(\frac{1}{n}\right)$, show that $\sum u_n$ is convergent. **SOLUTION** Let $v_n = \frac{1}{n^2}$, so that $\sum v_n$ is convergent by p -series test. $\lim_{n \to \infty} \left(\frac{u_n}{v_n}\right) = \lim_{n \to \infty} \frac{\sin\left(\frac{1}{n}\right)}{\left(\frac{1}{n}\right)} = \lim_{t \to 0} \left(\frac{\sin t}{t}\right)$ where t = 1/n, Thus $\lim_{n \to \infty} \left(\frac{u_n}{v_n}\right) = 1 \neq 0$ \therefore By comparison test, $\sum u_n$ is convergent.

EXAMPLE 20

Test for convergence
$$\sum \frac{1}{\sqrt{n}} \tan(\frac{1}{n})$$

SOLUTION

Take
$$v_n = \frac{1}{n^{3/2}}$$
; $Lt_{n\to\infty} \begin{bmatrix} u_n \\ v_n \end{bmatrix} = 1 \neq 0$ (as in above example)
Hence by comparison test, $\sum u_n$ converges as $\sum v_n$ converge

EXAMPLE 21

Show that $\sum_{n=1}^{\infty} \sin^2\left(\frac{1}{n}\right)$ is convergent.

SOLUTION

Let
$$u_n = \sin^2\left(\frac{1}{n}\right)$$
; Take $v_n = \frac{1}{n^2}$, $Lt \left(\frac{u_n}{v_n}\right) = Lt \left[\frac{\sin\left(\frac{1}{n}\right)}{\frac{1}{n}}\right]^2 = Lt \left(\frac{\sin t}{t}\right)^2$

where $t = \frac{1}{n}$; $\underset{n \to \infty}{Lt} \left(\frac{u_n}{v_n} \right) = 1^2 = 1 \neq 0$

:. By comparison test, $\sum u_n$ and $\sum v_n$ behave the same way. But $\sum v_n$ is convergent by p- series test, since p = 2 > 1; $\therefore \sum u_n$ is convergent.

Show that $\sum_{n=2}^{n-2} \ln(n^n)$ is divergent.

SOLUTION

$$u_{n} = \frac{1}{n \log n}; \ \log 2 < 1 \Rightarrow 2 \log 2 < 2 \Rightarrow \frac{1}{2 \log 2} > \frac{1}{2};$$

$$\frac{1}{3 \log 3} > \frac{1}{3}, \dots, \frac{1}{n \log n} > \frac{1}{n}, n \in N$$

Similarly

 $\sum \frac{1}{n \log n} > \sum \frac{1}{n}$; But $\sum \frac{1}{n}$ is divergent by p-series test. ...

By comparison test, given series is divergent. [If $\sum v_n$ is divergent and $u_n \ge v_n \forall n$ then $\sum u_n$ is divergent.]

(Note : This problem can also be done using Cauchy's integral Test.

EXAMPLE 23

Test the convergence of the series $\sum_{n=1}^{\infty} (c+n)^{-r} (d+n)^{-s}$, where c, d, r, s are all +ve.

SOLUTION

The
$$n^{th}$$
 term of the series $= u_n = \frac{1}{(c+n)^r (d+n)^s}$.
Let $v_n = \frac{1}{n^{r+s}}$ Then $\frac{u_n}{v_n} = \frac{n^{r+s}}{n^r \left(1 + \frac{c}{n}\right)^r .n^s \left(1 + \frac{d}{n}\right)^s} = \frac{1}{\left(1 + \frac{c}{n}\right)^r \left(1 + \frac{d}{n}\right)^s}$

 $Lt_{n\to\infty} \frac{u_n}{v_n} = 1 \neq 0$, $\therefore \sum u_n$ and $\sum v_n$ both converge are diverge, by comparison test. But by *p*-series test, $\sum v_n$ converges if (r + s) > 1 and diverges if $(r + s) \le 1$ $\therefore \sum u_n$ converges if (r+s) > 1 and diverges if $(r+s) \le 1$.

EXAMPLE 24

Show that $\sum_{1}^{\infty} n^{-(1+\frac{1}{n})}$ is divergent.

SOLUTION

$$u_n = n^{-(1+\frac{1}{n})} = \frac{1}{n \cdot n^{\frac{1}{n}}}$$
 Take $v_n = \frac{1}{n}$; $\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{1}{n^{\frac{1}{n}}} = 1 \neq 0$

For let
$$Lt \frac{1}{n \to \infty} \frac{1}{n^{1/n}} = y$$
 say; $\log y = Lt - \frac{1}{n} \cdot \log n = -Lt \frac{1/n}{1} = 0$

$$y = e^0 = 1$$
 $\left(\left(\frac{\infty}{\infty} \right) \text{ using L Hospitals rule} \right)$

By comparison test both $\sum u_n$ and $\sum v_n$ converge or diverge. But *p*-series test, $\sum v_n$ diverges (since p = 1); Hence $\sum u_n$ diverges.

EXAMPLE 25

Test for convergence the series $\sum_{n=1}^{\infty} \frac{(n+a)^{r}}{(n+b)^{p}(n+c)^{q}}$, *a*, *b*, *c*, *p*, *q*, *r*, being +ve.

SOLUTION

$$u_{n} = \frac{(n+a)^{r}}{(n+b)^{p}(n+c)^{q}} = \frac{n^{r}(1+a^{\prime})^{r}}{n^{p}(1+b^{\prime})^{p}n^{q}(1+c^{\prime})^{q}} = \frac{1}{n^{p+q-r}} \cdot \frac{(1+a^{\prime})^{r}}{(1+b^{\prime})^{p}(1+c^{\prime})^{q}} = \frac{1}{n^{p+q-r}} \cdot \frac{(1+a^{\prime})^{p}(1+c^{\prime})^{q}}{(1+b^{\prime})^{q}} = \frac{1}{n^{p+q-r}} \cdot \frac{(1+a^{\prime})^{q}}{(1+b^{\prime})^{q}} = \frac{1}{n^{p+q-r}}$$

Take $v_n = \frac{1}{n^{p+q-r}}$; $\underset{n \to \infty}{Lt} \frac{u_n}{v_n} = 1 \neq 0$;

Applying comparison tests both $\sum u_n$ and $\sum v_n$ converge or diverge. But by *p*-series test, $\sum v_n$ converges if (p+q-r) > 1 and diverges if $(p+q-r) \le 1$. Hence $\sum u_n$ converges if (p+q-r) > 1 and diverges if $(p+q-r) \le 1$.

EXAMPLE 26

Test the convergence of the following series whose n^{th} terms are:

(a)
$$\frac{(3n+4)}{(2n+1)(2n+3)(2n+5)}$$
; (b) $\tan\frac{1}{n}$; (c) $\left(\frac{1}{n^2}\right)\left(\frac{n+1}{n+3}\right)^n$
(d) $\frac{1}{(3^n+5^n)}$; (e) $\frac{1}{n\cdot3^n}$

SOLUTION

(a) *Hint*: Take
$$v_n = \frac{1}{n^2}$$
; $\sum v_n$ is convergent; $\underset{n \to \infty}{Lt} \left(\frac{u_n}{v_n} \right) = \frac{3}{8} \neq 0$ (Verify)

Apply comparison test: $\sum u_n$ is convergent [the student is advised to work out this problem fully]

...

(b) Proceed as in Example 8; $\sum u_n$ is convergent.

(c) *Hint*: Take
$$v_n = \frac{1}{n^2}$$
; $Lt \left(\frac{u_n}{v_n}\right) = Lt \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{3}{n}\right)^n} = \frac{e}{e^3} = \frac{1}{e^2} \neq 0$

 $v_n = \frac{1}{n^2}$ is convergent (work out completely for yourself)

(d)
$$u_n = \frac{1}{3^n + 5^n} = \frac{1}{5^n} \cdot \frac{1}{\left[1 + \left(\frac{3}{5}\right)^n\right]}$$
; Take $v_n = \frac{1}{5^n}$; $Lt \left(\frac{u_n}{v_n}\right) = 1 \neq 0$

 $\sum u_n$ and $\sum v_n$ behave the same way. But $\sum v_n$ is convergent since it is a geometric series with common ratio $\frac{1}{5} < 1$

$$\therefore \sum u_n$$
 is convergent by comparison test.

(e)
$$\frac{1}{n.3^n} \le \frac{1}{3^n}, \forall n \in \mathbb{N}$$
, since $n.3^n \ge 3^n$;
 $\therefore \qquad \sum \frac{1}{n.3^n} \le \sum \frac{1}{3^n}$ (1)

The series on the R.H .S of (1) is convergent since it is geometric series with $r = \frac{1}{3} < 1$.

 \therefore By comparison test $\sum \frac{1}{n.3^n}$ is convergent.

EXAMPLE 27

Test the convergence of the following series.

(a)
$$1 + \frac{1+2}{1^2+2^2} + \frac{1+2+3}{1^2+2^2+3^2} + \frac{1+2+3+4}{1^2+2^2+3^2+4^2} + \dots$$

(b)
$$1 + \frac{1^2 + 2^2}{1^3 + 2^3} + \frac{1^2 + 2^2 + 3^2}{1^3 + 2^3 + 3^3} + \frac{1^2 + 2^2 + 3^2 + 4^2}{1^3 + 2^3 + 3^3 + 4^3} + \dots$$

SOLUTION

(a)
$$u_n = \frac{1+2+3+...+n}{1^2+2^2+3^2+....n^2} = \frac{n\frac{(n+1)}{2}}{n(n+1)\frac{(2n+1)}{6}} = \frac{3}{(2n+1)}$$

Take $v_n = \frac{1}{n}$; $\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \left(\frac{3n}{2n+1}\right) = \frac{3}{2} \neq 0$
 $\sum u_n$ and $\sum v_n$ behave alike by comparison test.
But $\sum v_n$ is diverges by *p*-series test. Hence $\sum u_n$ is divergent.
(b) $u_n = \frac{1^2+2^2+...+n^2}{1^3+2^3+....n^3} = \frac{n(n+1)\frac{(2n+1)}{6}}{n^2\frac{(n+1)^2}{4}} = \frac{2(2n+1)}{3n(n+1)}$

Hint: Take $v_n = \frac{1}{n}$ and proceed as in (a) and show that $\sum u_n$ is divergent.

Exercise 1.1

1.	Test for	convergence the infinite series whose n^{th} term is:	
	(a)	$\frac{1}{n-\sqrt{n}}$	[Ans : divergent]
	(b)	$\frac{\sqrt{n+1} - \sqrt{n}}{n}$	[Ans : convergent]
	(c)	$\sqrt{n^2+1}-n$	[Ans : divergent]
	(d)	$\frac{\sqrt{n}}{n^2-1}$	[Ans : convergent]
	(e)	$\sqrt{n^3+1}-\sqrt{n^3}$	[Ans : divergent]
	(f)	$\frac{1}{\sqrt{n(n+1)}}$	[Ans : divergent]
	(g)	$\frac{\sqrt{n}}{n^2+1}$	[Ans : convergent]
	(h)	$\frac{2n^3+5}{4n^5+1}$	[Ans : convergent]

2.	. Determine whether the following series are convergent or divergent.					
	(a)	$\frac{1}{1+3^{-1}} + \frac{2}{1+3^{-2}} + \frac{3}{1+3^{-3}} + \dots$	[Ans : divergent]			
	(b)	$\frac{12}{1^3} + \frac{22}{2^3} + \frac{32}{3^3} + \dots + \frac{2+10n}{n^3} + \dots$	[Ans : convergent]			
	(c)	$\frac{1}{\sqrt{1} + \sqrt{2}} + \frac{1}{\sqrt{2} + \sqrt{3}} + \frac{1}{\sqrt{3} + \sqrt{4}} + \dots$	[Ans : divergent]			
	(d)	$\frac{2}{3^2} + \frac{3}{4^2} + \frac{4}{5^2} + \dots$	[Ans : divergent]			
	(e)	$\frac{1}{1^2} + \frac{1}{2^3} + \frac{1}{3^4} + \dots$	[Ans : convergent]			
	(f)	$\sum_{n=1}^{\infty} \frac{\sqrt[3]{n^2 + 1}}{\sqrt[4]{4n^2 + 2n + 3}} \dots$	[Ans : divergent]			
	(g)	$\sum_{1}^{\infty} \left(8^{\frac{1}{n}} - 1 \right) \dots \dots$	[Ans : divergent]			
	(h)	$\sum_{1}^{\infty} \frac{3n^3 + 8}{5n^5 + 9} \dots$	[Ans : convergent]			
	(i)	$\frac{1}{1.3} + \frac{2}{3.5} + \frac{3}{5.7} + \dots$	[Ans : divergent]			

1.3.3 D' Alembert's Ratio Test

Let (i) $\sum u_n$ be a series of +ve terms and (ii) $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = k (\ge 0)$ Then the series $\sum u_n$ is (i) convergent if k < 1 and (ii) divergent if k > 1. *Proof*:

Case (i) $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = k (<1)$ From the definition of a limit, it follows that $\exists m > 0$ and $l (0 < l < 1) \ni \frac{u_{n+1}}{u_n} < l \forall n \ge m$

i.e.,
$$\frac{u_{m+1}}{u_m} < l , \frac{u_{m+2}}{u_{m+1}} < l , \dots$$
$$= u_m \left[1 + \frac{u_{m+1}}{u_m} + \frac{u_{m+2}}{u_m} + \dots \right]$$
$$u_m + u_{m+1} + u_{m+2} + \dots = u_m \left[1 + \frac{u_{m+1}}{u_m} + \frac{u_{m+2}}{u_m} + \dots \right]$$
$$u_m + \frac{u_{m-1}}{u_m} + \frac{u_{m-2}}{u_{m-1}} \cdot \frac{u_{m-1}}{u_m} + \dots$$
$$< u_m \left(1 + l + l^2 + \dots \right) = u_m \cdot \frac{1}{1 - l} (l < 1)$$
But $u_m \cdot \frac{1}{1 - l}$ is a finite quantity $\therefore \sum_{n=m}^{\infty} u_n$ is convergent
By adding a finite number of terms $u_1 + u_2 + \dots + u_{m-1}$, the convergence of the series is unaltered. $\sum_{n=m}^{\infty} u_n$ is convergent.

Case (ii)
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = k > 1$$

There may be some finite number of terms in the beginning which do not satisfy the condition $\frac{u_{n+1}}{u_n} \ge 1$. In such a case we can find a number 'm'

Omitting the first 'm' terms, if we write the series as $u_1 + u_2 + u_3 + \dots$, we have

$$\frac{u_2}{u_1} \ge 1, \frac{u_3}{u_2} \ge 1, \frac{u_4}{u_3} \ge 1 \quad \dots \text{ and so on}$$

$$\therefore \qquad u_1 + u_2 + \dots + u_n = u_1 \left(1 + \frac{u_2}{u_1} + \frac{u_3}{u_2} \cdot \frac{u_2}{u_1} + \dots \right) \quad \text{(to } n \text{ terms)}$$

$$\ge \quad u_1 (1 + 1 + 1 \cdot 1 + \dots \text{ to } n \text{ terms)}$$

$$= \quad nu_1$$

$$\underset{n \to \infty}{Lt} \sum_{n=1}^n u_n \ge \underset{n \to \infty}{Lt} n \cdot u_1 \text{ which } \to \infty \text{ ; } \therefore \quad \sum u_n \text{ is divergent }.$$

Note: 1 The ratio test fails when k = 1. As an example, consider the series, $\sum_{n=1}^{\infty} \frac{1}{n^p}$

Here
$$Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \left(\frac{n}{n+1}\right)^p = Lt_{n\to\infty} \left(\frac{1}{1+\frac{1}{n}}\right)^p = 1$$

i.e., k = 1 for all values of p,

But the series is convergent if p > 1 and divergent if $p \le 1$, which shows that when k = 1, the series may converge or diverge and hence the test fails.

Note: **2** *Ratio test can also be stated as follows:*

If
$$\sum u_n$$
 is series of +ve terms and if $\lim_{n \to \infty} \frac{u_n}{u_{n+1}} = k$, then $\sum u_n$ is convergent

If k > 1 and divergent if k < 1 (the test fails when k = 1).

Solved Examples

Test for convergence of Series

EXAMPLE 28

(a)
$$\frac{x}{1.2} + \frac{x^2}{2.3} + \frac{x^3}{3.4} + \dots$$

SOLUTION

$$u_{n} = \frac{x^{n}}{n(n+1)}; \quad u_{n+1} = \frac{x^{n+1}}{(n+1)(n+2)}; \quad \frac{u_{n+1}}{u_{n}} = \frac{x^{n+1}}{(n+1)(n+2)} \cdot \frac{n(n+1)}{x^{n}} = \frac{1}{\left(1+\frac{2}{n}\right)}x.$$

Therefore $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = x$ \therefore By ratio test $\sum u_n$ is convergent When |x| < 1 and divergent when |x| > 1; When x = 1, $u_n = \frac{1}{n^2 (1+1/n)}$; Take $v_n = \frac{1}{n^2}$; $\lim_{n \to \infty} \frac{u_n}{v_n} = 1$ \therefore By comparison test $\sum u_n$ is convergent. Hence $\sum u_n$ is convergent when $|x| \le 1$ and divergent when |x| > 1.

(JNTU 2003)

(b) $1+3x+5x^2+7x^3+\dots$

SOLUTION

$$u_n = (2n-1)x^{n-1};$$
 $u_{n+1} = (2n+1)x^n;$ $Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \left(\frac{2n+1}{2n-1}\right)x = x$

 \therefore By ratio test $\sum u_n$ is convergent when |x| < 1 and divergent when |x| > 1When $x = 1: u_n = 2n - 1$; $\lim_{n \to \infty} u_n = \infty$; $\therefore \sum u_n$ is divergent. Hence $\sum u_n$ is convergent when |x| < 1 and divergent when $|x| \ge 1$

(c) $\sum_{n=1}^{\infty} \frac{x^n}{n^2 + 1} \dots$

SOLUTION

$$u_{n} = \frac{x^{n}}{n^{2} + 1}; \qquad u_{n+1} = \frac{x^{n+1}}{(n+1)^{2} + 1}.$$

Hence $\frac{u_{n+1}}{u_{n}} = \left(\frac{n^{2} + 1}{n^{2} + 2n + 2}\right)x, \quad Lt_{n \to \infty} \frac{u_{n+1}}{u_{n}} = Lt_{n \to \infty} \left[\frac{n^{2}\left(1 + \frac{1}{n^{2}}\right)}{n^{2}\left(1 + \frac{2}{n} + \frac{2}{n^{2}}\right)}\right](x) = x$

... By ratio test, $\sum u_n$ is convergent when |x| < 1 and divergent when |x| > 1 When $x = 1: u_n = \frac{1}{n^2 + 1}$; Take $v_n = \frac{1}{n^2}$

 \therefore By comparison test, $\sum u_n$ is convergent when $|x| \le 1$ and divergent when |x| > 1

EXAMPLE 29

Test the series $\sum_{n\to\infty}^{\infty} \left(\frac{n^2-1}{n^2+1}\right) x^n, x > 0$ for convergence.

SOLUTION

$$u_{n} = \left(\frac{n^{2}-1}{n^{2}+1}\right) x^{n}; u_{n+1} = \left[\frac{\left(n+1\right)^{2}-1}{\left(n+1\right)^{2}+1}\right] x^{n+1}$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_n} = Lt_{n\to\infty} \left[\left(\frac{n^2 + 2n}{n^2 + 2n + 2} \right) \frac{(n^2 + 1)}{(n^2 - 1)} \right] x$$
$$= Lt_{n\to\infty} \left[\frac{n^4 (1 + 2/n) (1 + 1/n^2)}{n^4 (1 + 2/n + 2/n^2) (1 - 1/n^2)} \right] = x$$

:. By ratio test, $\sum u_n$ is convergent when x < 1 and divergent when x > 1 when x = 1, $u_n = \frac{n^2 - 1}{n^2 + 1}$ Take $v_n = \frac{1}{n^0}$

Applying *p*-series and comparison test, it can be seen that $\sum u_n$ is divergent when x = 1. $\therefore \sum u_n$ is convergent when x < 1 and divergent $x \ge 1$

EXAMPLE 30

Show that the series $1 + \frac{2^p}{\underline{2}} + \frac{3^p}{\underline{3}} + \frac{4^p}{\underline{4}} + \dots$, is convergent for all values of *p*.

SOLUTION

$$\begin{split} u_n &= \frac{n^p}{\lfloor \underline{n}} ; \ u_{n+1} = \frac{\left(n+1\right)^p}{\lfloor \underline{n+1}} \\ Lt &= Lt \\ \underset{n \to \infty}{\underline{u_n}} = Lt \\ &= Lt \\ \frac{\left(n+1\right)^p}{\lfloor \underline{n+1}} \times \frac{\lfloor \underline{n}}{n^p} \\ &= Lt \\ \underset{n \to \infty}{\underline{t}} \left(\frac{1}{(n+1)} \times \frac{Lt}{n} \left(1+\frac{1}{n}\right)^p = 0 < 1; \\ &\sum u_n \text{ is convergent for all ' } p \text{ '}. \end{split}$$

EXAMPLE 31

Test the convergence of the following series

$$\frac{1}{1^p} + \frac{1}{3^p} + \frac{1}{5^p} + \frac{1}{7^p} + \dots$$

SOLUTION

$$u_n = \frac{1}{(2n-1)^p};$$
 $u_{n+1} = \frac{1}{(2n+1)^p}$

$$\frac{u_{n+1}}{u_n} = \frac{(2n-1)^p}{(2n+1)^p} = \frac{2^p \cdot n^p (1-1/2n)^p}{2^p n^p (1+1/2n)^p}; \qquad Lt \quad u_{n+1} = 1$$

. Ratio test fails.

Take
$$v_n = \frac{1}{n^p}; \frac{u_n}{v_n} = \frac{n^p}{(2n-1)^p} = \frac{1}{2^p \left(1 - \frac{1}{2n}\right)^p}; \frac{Lt}{n \to \infty} \frac{u_n}{v_n} = \frac{1}{2^p},$$

which is non - zero and finite

 \therefore By comparison test, $\sum u_n$ and $\sum v_n$ both converge or both diverge.

But by p - series test, $\sum v_n = \sum \frac{1}{n^p}$ converges when p > 1 and diverges

when $p \leq 1$

 $\therefore \sum u_n$ is convergent if p > 1 and divergent if $p \le 1$.

EXAMPLE 32

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+1)x^n}{n^3}; x > 0$

SOLUTION

$$u_{n} = \frac{(n+1)x^{n}}{n^{3}}; u_{n+1} \frac{(n+2)x^{n+1}}{(n+1)^{3}}$$
$$\frac{u_{n+1}}{u_{n}} = \frac{n+2}{(n+1)^{3}} \cdot x^{n+1} \cdot \frac{n^{3}}{(n+1)x^{n}} = \left(\frac{n+2}{n+1}\right) \left(\frac{n}{n+1}\right)^{3} \cdot x$$
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_{n}} = \lim_{n \to \infty} \left(\frac{1+\frac{2}{n}}{1+\frac{1}{n}}\right) \frac{1}{\left(1+\frac{1}{n}\right)^{3}} \cdot x = x$$

:. By ratio test, $\sum u_n$ converges when x < 1 and diverges when x > 1. When x = 1, $u_n = \frac{n+1}{n^3}$

Take $v_n = \frac{1}{n^2}$; By comparison test $\sum u_n$ is convergent (give proof) $\therefore \sum u_n$ is convergent if $x \le 1$ and divergent if x > 1.

Test the convergence of the series

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{2^n} + \frac{1}{n^2} \right)$$
 (ii) $1 + \frac{2.5.8}{1.5.9} + \frac{2.5.8.11}{1.5.9.13} + \dots$ (iii) $\frac{1}{3} + \frac{1.2}{3.5} + \frac{1.2.3}{3.5.7} + \dots$

SOLUTION

(i)
$$\sum_{n=1}^{\infty} \left(\frac{n^2}{2^n} + \frac{1}{n^2} \right) = \sum_{n=1}^{\infty} \frac{n^2}{2^n} + \sum_{n=1}^{\infty} \frac{1}{n^2} \quad \text{Let } u_n = \frac{n^2}{2^n}; v_n = \frac{1}{n^2}$$
$$u_{n+1} = \frac{(n+1)^2}{2^{n+1}}; \frac{u_{n+1}}{u_n} = \frac{(n+1)^2}{2^{n+1}} \cdot \frac{2^n}{n^2} \quad \text{Let } \frac{u_{n+1}}{u_n} = \frac{Lt}{2} \cdot \left(1 + \frac{1}{n}\right)^2 = \frac{1}{2} < 1$$

... By ratio test $\sum u_n$ is convergent. By *p*-series test, $\sum v_n$ is convergent. ... The given series $(\sum u_n + \sum v_n)$ is convergent.

(ii) Neglecting the first term, the series can be taken as, $\frac{2.5.8}{1.5.9} + \frac{2.5.8.11}{1.5.9.13} +$

Here, 1st term has 3 fractions ,2nd term has 4 fractions and so on .

 $\therefore n^{th} \text{ term contains } (n+2) \text{ fractions}$ 2. 5. 8.....are in A. P. $\therefore (n+2)^{th} \text{ term } = 2 + (n+1) 3 = 3n+5;$ $\therefore (n+2)^{th} \text{ term } = 1 + (n+1) 4 = 4n+5$ $\therefore (n+2)^{th} \text{ term } = 1 + (n+1) 4 = 4n+5$ $\therefore (n+2)^{th} \text{ term } = 1 + (n+1) 4 = 4n+5$ $\therefore u_n = \frac{2.5.8....(3n+5)}{1.5.9....(4n+5)}$ $u_{n+1} = \frac{2.5.8....(3n+5)(3n+8)}{1.5.9....(4n+5)(4n+9)}$ $\frac{u_{n+1}}{u_n} = \frac{(3n+8)}{(4n+9)}; \qquad Lt \frac{u_{n+1}}{u_n} = Lt \frac{n\left(3+\frac{8}{n}\right)}{n\left(4+\frac{9}{n}\right)} = \frac{3}{4} < 1$ $\therefore \text{ By ratio test } \sum u_{n} \text{ is convergent}$

 \therefore By ratio test, $\sum u_n$ is convergent.

(JNTU 2002)

(iii) 1, 2, 3, are in A. P
$$n^{th}$$
 term = n; 3. 5. 7.....are in A.P. n^{th} term = 2n + 1
∴ $u_n = \left[\frac{1.2.3....n}{3.5.7....(2n+1)}\right]$
 $u_{n+1} = \left[\frac{1.2.3....n(n+1)}{3.5.7....(2n+1)(2n+3)}\right]$
 $\frac{u_{n+1}}{u_n} = \left(\frac{n+1}{2n+3}\right)$
 $Lt \frac{u_{n+1}}{u_n} = Lt \frac{n \cdot \left(1 + \frac{1}{n}\right)}{n\left(2 + \frac{3}{n}\right)} = \frac{1}{2} < 1$
∴ By ratio test, $\sum u_n$ is convergent.

Test for convergence
$$\sum_{n=1}^{\infty} \frac{1.3.5...(2n-1)}{2.4.6...2n} \cdot x^{n-1} (x > 0)$$
 (JNTU 2001)

SOLUTION

The given series of +ve terms has $u_n = \frac{1.3.5...(2n-1)}{2.4.6...2n} x^{n-1}$ and $u_{n+1} = \frac{1.3.5...(2n+1)}{2.4.6...(2n+2)} x^n$ $\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left(\frac{2n+1}{2n+2}\right) x = \lim_{n \to \infty} \frac{2n(1+\frac{1}{2n})}{2n(1+\frac{2}{2n})} x = x$

: By ratio test, $\sum u_n$ is converges when x < 1 and diverges when x > 1 when x = 1, the test fails.

Then $u_n = \frac{1.3.5...(2n-1)}{2.4.6....2n} < 1$ and $\lim_{n \to \infty} u_n \neq 0$ $\therefore \sum u_n$ is divergent. Hence $\sum u_n$ is convergent when x < 1, and divergent when $x \ge 1$

Test for the convergence of
$$1 + \frac{2}{5}x + \frac{6}{9}x^2 + \dots + \left(\frac{2^n - 2}{2^n + 1}\right)x^{n-1} + \dots + (x > 0)$$

(JNTU 2003)

SOLUTION

Omitting 1st term, $u_n = \left(\frac{2^n - 2}{2^n + 1}\right) x^{n-1}, (n \ge 2)$ and u_n' are all +ve. $u_{n+1} = \frac{(2^{n+1} - 2)}{(2^{n+1} + 1)} x^n; \quad \underset{n \to \infty}{Lt} \left(\frac{u_{n+1}}{u_n}\right) = \underset{n \to \infty}{Lt} \left(\frac{2^{n+1} - 2}{2^{n+1} + 1}\right) \times \left(\frac{2^n + 1}{2^n - 2}\right) x$ $= \underset{n \to \infty}{Lt} \left[\frac{2^{n+1} \left(1 - \frac{1}{2^n}\right)}{2^{n+1} \left(1 + \frac{1}{2^{n+1}}\right)} \cdot \frac{2^n \left(1 + \frac{1}{2^n}\right)}{2^n \left(1 - \frac{2}{2^n}\right)} \cdot x\right] = x ;$

Hence, by ratio test, $\sum u_n$ converges if x < 1 and diverges if x > 1. When x = 1, the test fails. Then $u_n = \frac{2^n - 2}{2^n + 1}$; $\underset{n \to \infty}{Lt} u_n = 1 \neq 0$; $\therefore \sum u_n$ diverges Hence $\sum u_n$ is convergent when x < 1 and divergent x > 1

EXAMPLE 36

Using ratio test show that the series $\sum_{n=0}^{\infty} \frac{(3-4i)^n}{n!}$ converges (JNTU 2000)

SOLUTION

$$u_{n} = \frac{(3-4i)^{n}}{n!}; \quad u_{n+1} = \frac{(3-4i)^{n+1}}{(n+1)!}; \quad Lt_{n \to \infty} \left(\frac{u_{n+1}}{u_{n}}\right) = Lt_{n \to \infty} \left(\frac{3-4i}{n+1}\right) = 0 < 1$$

Hence, by ratio test, $\sum u_n$ converges.

EXAMPLE 37

Discuss the nature of the series,
$$\frac{2}{3.4}x + \frac{3}{4.5}x^2 + \frac{4}{5.6}x^3 + \dots \infty (x > 0)$$
 (JNTU 2003)

SOLUTION

Since x > 0, the series is of +ve terms ;

$$u_{n} = \frac{(n+1)}{(n+2)(n+3)} x^{n} > u_{n+1} = \frac{(n+2)}{(n+3)(n+4)} x^{n+1}$$
$$Lt_{n \to \infty} \frac{u_{n+1}}{u_{n}} = \left[\frac{(n+2)^{2} . x}{(n+1)(n+4)}\right] = Lt_{n \to \infty} \left[\frac{n^{2} (1 + \frac{2}{n})^{2} . x}{n^{2} (1 + \frac{5}{n} + \frac{4}{n^{2}})}\right] = x;$$

Therefore by ratio test, $\sum u_n$ converges if x < 1 and diverges if x > 1(n+1)

When
$$x = 1$$
, the test fails; Then $u_n = \frac{(n+1)}{(n+2)(n+3)}$

Taking $v_n = \frac{1}{n}$; $Lt = \frac{u_n}{v_n} = 1 \neq 0$

 \therefore By comparison test $\sum u_n$ and $\sum v_n$ behave same way. But $\sum v_n$ is divergent by *p*-series test (n = 1):

series test. (p = 1);

 $\therefore \sum_{n=1}^{\infty} u_n$ is diverges when x = 1

 $\therefore \sum u_n$ is convergent when x < 1 and divergent when $x \ge 1$

EXAMPLE 38

Discuss the nature of the series
$$\sum \frac{3.6.9....3n.5^n}{4.7.10....(3n+1)(3n+2)}$$
 (JNTU 2003)

SOLUTION

Here,
$$u_{n} = \frac{3.6.9....3n}{4.7.10....(3n+1)} \frac{5^{n}}{(3n+2)};$$
$$u_{n+1} = \frac{3.6.9....3n(3n+3)5^{n+1}}{4.7.10....(3n+1)(3n+4)(3n+5)};$$
$$Lt \frac{u_{n+1}}{u_{n}} = Lt \frac{(3n+2)(3n+3).5}{(3n+4)(3n+5)}$$
$$= Lt \left[\frac{5.9n^{2}(1+\frac{2}{3n})(1+\frac{3}{3n})}{9n^{2}(1+\frac{4}{3n})(1+\frac{5}{3n})} \right] = 5 > 1$$

 \therefore By ratio test, $\sum u_n$ is divergent.

Test for convergence the series $\sum_{n=1}^{\infty} n^{1-n}$

SOLUTION

$$u_{n} = n^{1-n}; \ u_{n+1} = (n+1)^{-n};$$

$$\frac{u_{n+1}}{u_{n}} = \frac{(n+1)^{-n}}{n^{1-n}} = \frac{n^{n}}{n(n+1)^{n}} = \frac{1}{n} \left(\frac{n}{n+1}\right)^{n}$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_{n}} = \lim_{n \to \infty} \frac{1}{n} \cdot \left(\frac{1}{1+\frac{1}{n}}\right)^{n} = 0, \frac{1}{e} = 0 < 1$$

 \therefore By ratio test $\sum u_n$, is convergent

EXAMPLE 40

Test the series $\sum_{n=1}^{\infty} \frac{2n^3}{\lfloor n \rfloor}$, for convergence.

SOLUTION

$$u_{n} = \frac{2n^{3}}{\underline{|n|}}; \ u_{n+1} = \frac{2(n+1)^{3}}{\underline{|n+1|}}$$
$$\frac{u_{n+1}}{u_{n}} = \frac{2(n+1)^{3}}{\underline{|n+1|}} \times \frac{\underline{|n|}}{2n^{3}} = \frac{(n+1)^{2}}{n^{3}} = \frac{\left(1 + \frac{1}{n}\right)^{2}}{n};$$
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_{n}} = 0 < 1;$$

 \therefore By ratio test, $\sum u_n$ is convergent.

EXAMPLE 41

Test convergence of the series $\sum \frac{2^n n!}{n^n}$

SOLUTION

$$u_n = \frac{2^n n!}{n^n}; \ u_{n+1} = \frac{2^{n+1} (n+1)!}{(n+1)^{n+1}};$$

$$\frac{u_{n+1}}{u_n} = \frac{2^{n+1} (n+1)!}{(n+1)^{n+1}} \cdot \frac{n^n}{2^n n!} = 2\left(\frac{n}{n+1}\right)^n$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = 2 \lim_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)^n} = \frac{2}{e} < 1 \quad \text{(since } 2 < e < 3)$$

 \therefore By ratio test, $\sum u_n$ is convergent.

EXAMPLE 42

Test the convergence of the series $\sum u_n$ where u_n is

(a)
$$\frac{n^2 + 1}{3^n + 1}$$
 (b) $\frac{x^{n-1}}{(2n+1)^a}, (a > 0)$ (c) $\left(\frac{1.2.3...n}{4.7.10....3n+3}\right)^2$
(d) $\frac{\sqrt{1+2^n}}{\sqrt{1+3^n}}$ (e) $\left(\frac{3n^3 + 7n^2}{5n^9 + 11}\right)x^n$

SOLUTION

(a)
$$\underset{n \to \infty}{Lt} \left(\frac{u_{n+1}}{u_n} \right) = \underset{n \to \infty}{Lt} \left[\frac{\left(n+1 \right)^2 + 1}{3^{n+1} + 1} \times \frac{3^n + 1}{n^2 + 1} \right]$$
$$= \underset{n \to \infty}{Lt} \left[\frac{n^2 \left(1 + \frac{2}{n} + \frac{2}{n^2} \right)}{n^2 \left(1 + \frac{1}{n^2} \right)} \cdot \frac{3^n \left(1 + \frac{1}{3^n} \right)}{3^{n+1} \left(1 + \frac{1}{3^{n+1}} \right)} \right]$$
$$= \frac{1}{3} < 1$$

 \therefore By ratio test, $\sum u_n$ is convergent.

(b)
$$Lt \left(\frac{u_{n+1}}{u_n} \right) = Lt \left[\frac{x^n}{(2n+3)^a} \times \frac{(2n+1)^a}{x^{n-1}} \right]$$

$$= Lt \left[\frac{2^a n^a \left(1 + \frac{1}{2n} \right)^a}{2^a n^a \left(1 + \frac{3}{2n} \right)^a} \cdot x \right] = x$$

By ratio test, $\sum u_n$ convergence if x < 1 and diverges if x > 1.
When
$$x = 1$$
, the test fails; Then, $u_n = \frac{1}{(2n+1)^a}$; Taking $v_n = \frac{1}{n^a}$ we have,

$$\underbrace{Lt}_{n \to \infty} \left(\frac{u_n}{v_n}\right) = \underbrace{Lt}_{n \to \infty} \left(\frac{n}{2n+1}\right)^a = \underbrace{Lt}_{n \to \infty} \frac{1}{\left(2 + \frac{1}{n}\right)^a} = \frac{1}{2^a} \neq 0 \text{ and finite (since $a > 0$)}$$

 \therefore By comparison test, $\sum u_n$ and $\sum v_n$ have same property

But p –series test, we have

(i)
$$\sum v_n$$
 convergent when $a > 1$

and (ii) divergent when $a \leq 1$

 \therefore To sum up, (i) x < 1, $\sum u_n$ is convergent $\forall a$.

- (ii) x > 1, $\sum u_n$ is divergent $\forall a$.
- (iii) x = 1, a > 1, $\sum u_n$ is convergent, and
- (iv) $x = 1, a \le 1, \sum u_n$ is divergent.

(c)
$$Lt \frac{u_{n+1}}{u_n} = Lt \left[\frac{1.2.3...n(n+1)}{4.7.10...(3n+3)(3n+6)} \times \frac{4.7.10...(3n+3)}{1.2.3...n} \right]^2$$
$$= Lt \left[\frac{(n+1)}{3(n+2)} \right]^2 = \frac{1}{9} < 1 ;$$

 \therefore By ratio test, $\sum u_n$ is convergent

(d)
$$Lt_{n \to \infty} \frac{u_{n+1}}{u_n} = Lt_{n \to \infty} \left[\frac{(1+2^{n+1})}{(1+3^{n+1})} \times \frac{(1+3^n)}{(1+2^n)} \right]^{\frac{1}{2}}$$
$$= Lt_{n \to \infty} \left[\frac{2^{n+1} \left(1 + \frac{1}{2^{n+1}}\right)}{3^{n+1} \left(1 + \frac{1}{3^{n+1}}\right)} \times \frac{3^n \left(1 + \frac{1}{3^n}\right)}{2^n \left(1 + \frac{1}{2^n}\right)} \right]^{\frac{1}{2}} = \left(\frac{2}{3}\right)^{\frac{1}{2}} < 1$$
$$\therefore \text{ By ratio test } \sum u_{-1} \text{ is convergent}$$

 \therefore By ratio test, $\sum u_n$ is convergent.

$$\begin{aligned} \text{(e)} \quad & \underbrace{Lt}_{n \to \infty} \frac{u_{n+1}}{u_n} = \underbrace{Lt}_{n \to \infty} \left[\frac{3(n+1)^3 + 7(n+1)^2}{5(n+1)^9 + 11} \times \frac{5n^9 + 11}{3n^3 + 7} \times x \right] \\ &= \underbrace{Lt}_{n \to \infty} \left[\frac{3n^3 \left(1 + \frac{1}{n}\right)^3 + 7n^2 \left(1 + \frac{1}{n}\right)^2}{5n^9 \left(1 + \frac{1}{n}\right)^9 + 11} \times \frac{5n^9 \left(1 + \frac{11}{5n^9}\right)}{3n^3 \left(1 + \frac{7}{3n^3}\right)} \times x \right] \\ &= \underbrace{Lt}_{n \to \infty} \left[\frac{3n^3 \left\{ \left(1 + \frac{1}{n}\right)^3 + \frac{7}{3n} \left(1 + \frac{1}{n}\right)^2 \right\}}{5n^9 \left\{ \left(1 + \frac{1}{n}\right)^9 + \frac{11}{5n^9} \right\}} \times \frac{5n^9 \left(1 + \frac{11}{5n^9}\right)}{3n^3 \left(1 + \frac{7}{3n^3}\right)} \times x \right] = x \end{aligned}$$

 \therefore By ratio test, $\sum u_n$ converges when x < 1 and diverges when x > 1.

When
$$x = 1$$
, the test fails

When
$$x = 1$$
, the test fails,
Then $u_n = \frac{3n^3(1+7/3n)}{5n^9(1+11/5n^9)} = \frac{3}{5n^6} \frac{(1+7/3n)}{(1+11/5n^9)}$
Taking $v_n = \frac{1}{n^6}$, we observe that $\lim_{n \to \infty} \frac{u_n}{v_n} = \frac{3}{5} \neq 0$

 \therefore By comparison test and p series test, we conclude that $\sum u_n$ is convergent. $\therefore \sum u_n$ is convergent when $x \le 1$ and divergent when x > 1.

Exercise – 1.2

1.	Test the convergency or divergency of the series whose general term is :				
	(a)	$\frac{x^n}{n}$	[Ans: $ x < 1cgt, x \ge 1dgt$]		
	(b)	nx^{n-1}	[Ans: $ x < 1cgt, x \ge 1dgt$]		
	(c)	$\left(\frac{2^n-2}{2^n+1}\right)x^{n-1}$	[Ans : $ x < 1cgt, x \ge 1dgt$]		
	(d)	$\left(\frac{n^2+1}{n^2-1}\right)x^n\dots$	[Ans : $ x < 1cgt, x \ge 1dgt$]		
	(e)	$\frac{ n }{n^n}$	[Ans: cgt.]		

(f)
$$\frac{4^n \cdot [n]}{n^n}$$
 [Ans: dgt.]
(g) $\frac{(n^3+1)^n}{(3^n+1)}$ [Ans: cgt.]

2. Determine whether the following series are convergent or divergent :

1.3.4 Raabe's Test

Let
$$\sum u_n$$
 be series of +ve terms and let $\lim_{n \to \infty} \left\{ n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right\} = k$

Then

(i) If k > 1, $\sum u_n$ is convergent. (ii) If k < 1, $\sum u_n$ is divergent. (The test fails if k = 1) **Proof**: Consider the series $\sum v_n = \sum \frac{1}{n^p}$ $n\left[\frac{v_n}{v_{n+1}}-1\right] = n\left[\left(\frac{n+1}{n}\right)^p -1\right] = n\left[\left(1+\frac{1}{n}\right)^p -1\right]$ $= n\left[\left(1+\frac{p}{n}+\frac{p(p-1)}{\lfloor 2}\cdot\frac{1}{n^2}+\dots\right)-1\right]$ $= p+\frac{p(p-1)}{\lfloor 2}\cdot\frac{1}{n}+\dots$ $Lt = n\left\{\frac{v_n}{v_{n+1}}-1\right\} = p$ *Case* (i) In this case, $\lim_{n \to \infty} n \left\{ \frac{u_n}{u_{n+1}} - 1 \right\} = k > 1$ We choose a number 'p' $\ni k > p > 1$; Comparing the series $\sum u_n$ with $\sum v_n$ which is convergent, we get that $\sum u_n$ will converge if after some fixed number of terms

$$\frac{u_n}{u_{n+1}} > \frac{v_n}{v_{n+1}} = \left(\frac{n+1}{n}\right)^p$$

i.e. If, $n\left(\frac{u_n}{u_{n+1}} - 1\right) > p + \frac{p(p-1)}{\angle 2} \cdot \frac{1}{n} + \dots \text{ from (1)}$
i.e., If $\underset{n \to \infty}{Lt} n\left(\frac{u_n}{u_{n+1}} - 1\right) > p$

i.e., If k > p, which is true . Hence $\sum u_n$ is convergent .The second case also can be proved similarly.

Solved Examples

EXAMPLE 43

Test for convergence the series

$$x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1.3}{2.4} \cdot \frac{x^5}{5} + \frac{1.3.5}{2.4.6} \cdot \frac{x^7}{7} + \dots$$
 (JNTU 2006, 2008)

SOLUTION

...

Neglecting the first tem ,the series can be taken as ,

$$\frac{1}{2} \cdot \frac{x^3}{3} + \frac{1.3}{2.4} \cdot \frac{x^5}{5} + \frac{1.3.5}{2.4.6} \cdot \frac{x^7}{7} + \dots$$
1.3.5....are in A.P. n^{th} term = $1 + (n-1)2 = 2n - 1$
2.4.6...are in A.P. n^{th} term = $2 + (n-1)2 = 2n$
3.5.7....are in A.P n^{th} term = $3 + (n-1)2 = 2n + 1$
 $u_n (n^{th}$ term of the series) = $\frac{1.3.5...(2n-1)}{2.4.6...(2n)} \cdot \frac{x^{2n+1}}{2n+1}$

$$u_{n+1} = \frac{1.3.5...(2n-1)(2n+1)}{2.4.6...(2n)(2n+2)} \cdot \frac{x^{2n+3}}{2n+3}$$
$$\frac{u_{n+1}}{u_n} = \frac{1.3.5...(2n+1)}{2.4.6...(2n+2)} \cdot \frac{x^{2n+3}}{(2n+3)} \cdot \frac{2.4.6...2n}{1.3.5...(2n-1)} \cdot \frac{(2n+1)}{x^{2n+1}}$$
$$= \frac{(2n+1)^2 x^2}{(2n+2)(2n+3)}$$
$$L_{n\to\infty} \frac{u_{n+1}}{u_n} = L_{n\to\infty} \frac{4n^2 \left(1 + \frac{1}{2n}\right)^2}{4n^2 \left(1 + \frac{2}{2n}\right) \left(1 + \frac{3}{2n}\right)} x^2 = x^2$$

 \therefore By ratio test, $\sum u_n$ converges if |x| < 1 and diverges if |x| > 1If |x| = 1 the test fails.

÷.

$$x^{2} = 1 \quad \text{and} \quad \frac{u_{n}}{u_{n+1}} = \frac{(2n+2)(2n+3)}{(2n+1)^{2}}$$
$$\frac{u_{n}}{u_{n+1}} - 1 = \frac{(2n+2)(2n+3)}{(2n+1)^{2}} - 1 = \frac{6n+5}{(2n+1)^{2}}$$
$$Lt_{n \to \infty} \left\{ n \left(\frac{u_{n}}{u_{n+1}} - 1 \right) \right\} = Lt_{n \to \infty} \left(\frac{6n^{2} + 5n}{4n^{2} + 4n + 1} \right)$$
$$= Lt_{n \to \infty} \frac{n^{2} \left(6 + \frac{5}{n} \right)}{n^{2} \left(4 + \frac{4}{n} + \frac{1}{n^{2}} \right)} = \frac{3}{2} > 1$$

By Raabe's test, $\sum u_n$ converges. Hence the given series is convergent when $|x| \le 1$ an divergent when |x| > 1.

EXAMPLE 44

Test for the convergence of the series

(JNTU 2007)

$$1 + \frac{3}{7}x + \frac{3.6}{7.10}x^2 + \frac{3.6.9}{7.10.13}x^3 + \dots; x > 0$$

Neglecting the first term,

$$u_{n} = \frac{3.6.9....3n}{7.10.13....3n + 4} x^{n}$$
$$u_{n+1} = \frac{3.6.9....3n(3n+3)}{7.10.13....(3n+4)(3n+7)} x^{n+1}$$
$$\frac{u_{n+1}}{u_{n}} = \frac{3n+3}{3n+7} x \quad ; \quad Lt = u_{n+1} = u_{n}$$

 \therefore By ratio test, $\sum u_n$ is convergent when x < 1 and divergent when x > 1.

When x = 1 The ratio test fails. Then

$$\frac{u_n}{u_{n+1}} = \frac{3n+7}{3n+3}; \frac{u_n}{u_{n+1}} - 1 = \frac{4}{3n+3}$$
$$Lt_{n\to\infty} \left\{ n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right\} = Lt_{n\to\infty} \left(\frac{4n}{3n+3} \right) = \frac{4}{3} > 1$$

: By Raabe's test, $\sum u_n$ is convergent .Hence the given series converges if $x \le 1$ and diverges if x > 1.

EXAMPLE 45

Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{1^2 \cdot 5^2 \cdot 9^2 \dots (4n-3)^2}{4^2 \cdot 8^2 \cdot 12^2 \dots (4n)^2}$

SOLUTION

$$u_{n} = \frac{1^{2} \cdot 5^{2} \cdot 9^{2} \dots (4n-3)^{2}}{4^{2} \cdot 8^{2} \cdot 12^{2} \dots (4n)^{2}}; \qquad u_{n+1} = \frac{1^{2} \cdot 5^{2} \cdot 9^{2} \dots (4n-3)^{2} (4n+1)^{2}}{4^{2} \cdot 8^{2} \cdot 12^{2} \dots (4n)^{2} (4n+4)^{2}}$$

$$Lt_{n \to \infty} \frac{u_{n+1}}{u_{n}} = Lt_{n \to \infty} \frac{(4n+1)^{2}}{(4n+4)^{2}} = 1 \quad (\text{verify})$$

 \therefore The ratio test fails. Hence by Raabe's test, $\sum u_n$ is convergent. (give proof)

EXAMPLE 46

Find the nature of the series $\sum \frac{(|\underline{n})^2}{|\underline{2n}|} x^n, (x > 0)$

(JNTU 2003)

SOLUTION

$$u_{n} = \frac{\left(\left|n\right|^{2}\right)^{2}}{\left|2n\right|} \cdot x^{n}; u_{n+1} = \frac{\left(\left|n+1\right|^{2}\right)^{2}}{\left|2n+2\right|} \cdot x^{n+1}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{\left(n+1\right)^{2}}{\left(2n+1\right)\left(2n+2\right)} x;$$

$$Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = Lt_{n\to\infty} \frac{n^{2} \left(1+\frac{1}{n}\right)^{2}}{4n^{2} \left(1+\frac{1}{2n}\right)\left(1+\frac{2}{2n}\right)} \cdot x = \frac{x}{4}$$

:. By ratio test, $\sum u_n$ converges when $\frac{x}{4} < 1$, i. e; x < 4; and diverges when x > 4;

When x = 4, the test fails.

the test rais.

$$\frac{u_n}{u_{n+1}} = \frac{(2n+1)(2n+2)}{4(n+1)^2}$$

$$\frac{u_n}{u_{n+1}} - 1 = \frac{-2n-2}{4(n+1)^2} = \frac{-1}{2(n+1)}; \quad Lt_{n \to \infty} \left[n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right] = \frac{-1}{2} < 1$$

 \therefore By ratio test, $\sum u_n$ is divergent

Hence $\sum u_n$ is convergent when x < 4 and divergent when $x \ge 4$

EXAMPLE 47

Test for convergence of the series $\sum \frac{4.7...(3n+1)}{1.2.3...n} x^n$ (JNTU 1996)

SOLUTION

$$u_{n} = \frac{4.7...(3n+1)}{1.2.3...n} x^{n} ; u_{n+1} = \frac{4.7...(3n+1)(3n+4)}{1.2.3...n(n+1)} x^{n+1}$$
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_{n}} = \lim_{n \to \infty} \left[\frac{(3n+4)}{(n+1)} x \right] = 3x$$

$$\therefore \text{ By ratio test } \sum u_n \text{ converges if } 3x < 1 \text{ i.e., } x < \frac{1}{3} \text{ and diverges if } x > \frac{1}{3};$$

If $x = \frac{1}{3}$, the test fails
When $x = \frac{1}{3}, n\left[\frac{u_n}{u_{n+1}} - 1\right] = n\left[\frac{(n+1)^3}{3n+4} - 1\right] = n\left[\frac{-1}{3n+4}\right] = -\frac{1}{\left(3 + \frac{4}{n}\right)}$
 $\lim_{n \to \infty} n\left[\frac{u_n}{u_{n+1}} - 1\right] = -\frac{1}{3} < 1$
 $\therefore \text{ By Raabe's test, } \sum u_n \text{ is divergent.}$
 $\therefore \sum u_n \text{ is convergent when } x < \frac{1}{3} \text{ and divergent when } x \ge \frac{1}{3}$
EXAMPLE 48
Test for convergence $2 + \frac{3x}{2} + \frac{4x^2}{3} + \frac{5x^3}{4} + \dots (x > 0)$ (JNTU 2003)
Solution
The n^{th} term $u_n = \frac{(n+1)}{n} x^{n-1}; u_{n+1} = \frac{(n+2)}{(n+1)} x^n; \frac{u_{n+1}}{u_n} = \frac{n(n+2)}{(n+1)^2} x$
 $\lim_{n \to \infty} u_n = \frac{1}{n} \frac{n^2 (1+2/n)}{n^2 (1+1/n)^2} x = x$
 $\therefore \text{ By ratio test, } \sum u_n \text{ is convergent if } x < 1 \text{ and divergent if } x > 1$
If $x = 1$, the test fails.
Then $\lim_{n \to \infty} \left[\frac{u_n}{u_{n+1}} - 1\right] = \lim_{n \to \infty} n\left[\frac{(n+1)^2}{n(n+2)} - 1\right] = \lim_{n \to \infty} n\left[\frac{1}{n(n+2)}\right] = 0 < 1$
 $\therefore \text{ By Raabe's test } \sum u_n \text{ is divergent}$
 $\therefore \sum u_n \text{ is convergent when } x < 1 \text{ and divergent when } x \ge 1$
EXAMPLE 49
Find the nature of the series $\frac{3}{4} + \frac{3.6}{4.7} + \frac{3.6.9}{4.7.10} + \dots \infty$ (JNTU 2003)

$$u_{n} = \frac{3.6.9....3n}{4.7.10....(3n+1)}; u_{n+1} = \frac{3.6.9....3n(3n+3)}{4.7.10....(3n+1)(3n+4)}$$
$$\frac{u_{n+1}}{u_{n}} = \frac{3n+3}{3n+4}; Lt \frac{u_{n+1}}{u_{n}} = Lt \frac{3n(1+\frac{3}{3n})}{3n(1+\frac{4}{3n})} = 1$$

Ratio test fails.

$$\therefore \qquad Lt \left[n \left\{ \frac{u_n}{u_{n+1}} - 1 \right\} \right] = Lt \left[n \left(\frac{3n+4}{3n+3} - 1 \right) \right]$$
$$= Lt \left[n \left(\frac{n}{3n+3} - 1 \right) \right]$$
$$= Lt \left[n \left(\frac{n}{3n+3} - 1 \right) \right]$$
$$= \frac{Lt}{n \to \infty} \frac{n}{3n(1+1/n)} = \frac{1}{3} < 1$$

 \therefore By Raabe's test $\sum u_n$ is divergent.

EXAMPLE 50

If p, q > 0 and the series

$$1 + \frac{1}{2}\frac{p}{q} + \frac{1.3.p(p+1)}{2.4.q(q+1)} + \frac{1.3.5}{2.4.6}\frac{p(p+1)(p+2)}{q(q+1)(q+2)} + \dots$$

is convergent , find the relation to be satisfied by p and q.

SOLUTION

$$u_{n} = \frac{1.3.5....(2n-1)}{2.4.6....2n} \frac{p(p+1)....(p+n-1)}{q(q+1)....(q+n-1)} \text{ [neglecting 1st term]}$$

$$u_{n+1} = \frac{1.3.5....(2n-1)(2n+1)}{2.4.6....2n(2n+2)} \frac{p(p+1)....(p+n-1)(p+n)}{q(q+1)....(q+n-1)(q+n)}$$

$$\frac{u_{n+1}}{u_{n}} = \frac{(2n+1)}{(2n+2)} \frac{(p+n)}{(q+n)};$$

$$Lt \frac{u_{n+1}}{u_{n}} = Lt \left[\frac{2n(1+\frac{1}{2n})}{2n(1+\frac{1}{2n})} \cdot \frac{n(1+\frac{p}{2n})}{n(1+\frac{q}{2n})} \right] = 1$$

∴ ratio test fails.

Let us apply Raabe's test

$$Lt_{n\to\infty} \left[n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right] = Lt_{n\to\infty} \left[n \left\{ \frac{(q+n)(2n+2)}{(p+n)(2n+1)} - 1 \right\} \right]$$

$$Lt_{n\to\infty} \left[n \left\{ \frac{2q(n+1) - p(2n+1) + n}{n^2 \left(1 + \frac{p}{n} \right) \left(2 + \frac{1}{n} \right)} \right\} \right]$$

$$Lt_{n\to\infty} \left[\frac{2q\left(1 + \frac{1}{n} \right) - p\left(2 + \frac{1}{n} \right) + 1}{2} \right] = \frac{2q - 2p + 1}{2}$$
Since $\sum u_n$ is convergent, by Raabe's test, $\frac{2q - 2p + 1}{2} > 1$

$$\Rightarrow q - p > \frac{1}{2}$$
, is the required relation.

Exercise 1.3

1. Test whether the series
$$\sum_{1}^{\infty} u_n$$
 is convergent or divergent where
 $u_n = \frac{2^2 \cdot 4^2 \cdot 6^2 \dots (2n-2)^2}{3 \cdot 4 \cdot 5 \dots (2n-1)(2n)} \cdot x^{2n}$ [Ans : $|x| \le 1cgt, |x| > 1dgt$]
2. Test for the convergence the series
 $\sum_{1}^{\infty} \frac{4 \cdot 7 \cdot 10 \dots (3n+1)}{|n|} x^n$ [Ans : $|x| < \frac{1}{3}cgt, |x| \ge \frac{1}{3}dgt$]
3. Test for the convergence the series :
 $2^2 \cdot 4^2 - 2^2 \cdot 4^2 \cdot 5^2 \cdot 7^2 - 2^2 \cdot 4^2 \cdot 5^2 \cdot 7^2 \cdot 8^2 \cdot 10^2$

(i)
$$\frac{2^{2} \cdot 4^{2}}{3^{2} \cdot 3^{2}} + \frac{2^{2} \cdot 4^{2} \cdot 5^{2} \cdot 7^{2}}{3^{2} \cdot 3^{2} \cdot 6^{2} \cdot 6^{2}} + \frac{2^{2} \cdot 4^{2} \cdot 5^{2} \cdot 7^{2} \cdot 8^{2} \cdot 10^{2}}{3^{2} \cdot 3^{2} \cdot 6^{2} \cdot 6^{2} \cdot 9^{2} \cdot 9^{2}} + \dots$$
 [Ans : divergent]
(ii) $\frac{3 \cdot 4}{1 \cdot 2} x + \frac{4 \cdot 5}{2 \cdot 3} x^{2} + \frac{5 \cdot 6}{3 \cdot 4} x^{3} + \dots \cdot (x > 0)$ [Ans : cgt if $x \le 1$ dgt if $, x > 1$]
(iii) $\sum \frac{1 \cdot 3 \cdot 5 \dots \cdot (2n-1)}{2 \cdot 4 \cdot 6 \dots \cdot 2n} \cdot \frac{x^{n}}{(2n+2)} (x > 0)$ [Ans : cgt if $x \le 1$ dgt if $, x > 1$]

(iv)
$$1 + \frac{(|\underline{1})^2}{|\underline{2}|} x + \frac{(|\underline{2})^2 x^2}{|\underline{4}|} + \frac{(|\underline{3})^2 x^3}{|\underline{6}|} + \dots (x > 0)$$

[Ans: cgt if x < 4 and dgt if, $x \ge 4$]

1.3.5 Cauchy's Root Test

Let $\sum u_n$ be a series of +ve terms and let $\lim_{n \to \infty} u_n^{1/n} = l$. Then $\sum u_n$ is convergent when l < 1 and divergent when l > 1**Proof**: (i) $Lt u_n^{\frac{1}{n}} = l < 1 \Longrightarrow \exists a$ +ve number $\lambda'(l < \lambda < 1) \ni u_n^{\frac{1}{n}} < \lambda, \forall n > m$ (or) $u_n < \lambda^n, \forall n > m$ Since $\lambda < 1, \sum \lambda^n$ is a geometric series with common ratio < 1 and therefore convergent. Hence $\sum u_n$ is convergent. (ii) $\underset{n \to \infty}{Lt} u_n^{1/n} = l > 1$ \therefore By the definition of a limit we can find a number $r \ni u_n^{\frac{1}{n}} > 1 \forall n > r$ i.e., $u_n > \forall n > r$ i.e., after the 1^{st} 'r ' terms , each term is > 1. $\lim_{n \to \infty} \sum u_n = \infty$ $\therefore \sum u_n$ is divergent. When $Lt(u_n^{\frac{1}{n}}) = 1$, the root test can't decide the nature of $\sum u_n$. The fact of *Note* : this statement can be observed by the following two examples. Consider the series $\sum_{n \to \infty} \frac{1}{n^3} : -\underbrace{L}_{n \to \infty} t u_n^{\frac{1}{n}} = \underbrace{L}_{n \to \infty} t \left(\frac{1}{n^3}\right)^{\frac{1}{n}} = \underbrace{L}_{n \to \infty} t \left(\frac{1}{n^{\frac{1}{n}}}\right)^3 = 1$ 1. 2.

Consider the series $\sum \frac{1}{n}$, in which $\lim_{n \to \infty} t_n u_n^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{n^{\frac{1}{n}}} = 1$ In both the examples given above, $\int t u_n^{\frac{1}{n}} = 1$. But series (1) is convergent

(p-series test)

And series (2) is divergent. Hence when the *limit*=1, the test fails.

Solved Examples

EXAMPLE 51

Test for convergence the infinite series whose n^{th} terms are:

(i)
$$\frac{1}{n^{2n}}$$
 (ii) $\frac{1}{(\log n)^n}$ (iii) $\frac{1}{\left[1+\frac{1}{n}\right]^{n^2}}$ (JNTU 1996, 1998, 2001)

SOLUTION

(i)
$$u_n = \frac{1}{n^{2n}}, u_n^{\frac{1}{n}} = \frac{1}{n^2}$$
; $\underset{n \to \infty}{Lt} u_n^{\frac{1}{n}} = \underset{n \to \infty}{Lt} \frac{1}{n^2} = 0 < 1;$
By root test $\sum u_n$ is convergent.

(ii)
$$u_n = \frac{1}{(\log n)^n}; u_n^{\frac{1}{n}} = \frac{1}{\log n}$$
; $Lt u_n^{\frac{1}{n}} = Lt \frac{1}{\log n} = 0 < 1;$

$$\therefore$$
 By root test, $\sum u_n$ is convergent

(iii)
$$u_n = \frac{1}{\left(1 + \frac{1}{n}\right)^{n^2}}; u_n^{\frac{1}{n}} = \frac{1}{\left(1 + \frac{1}{n}\right)^n} \quad \lim_{n \to \infty} t_n^{\frac{1}{n}} = \lim_{n \to \infty} t_n^{\frac{1}{n}} = \frac{1}{e} < 1;$$

$$\therefore \text{ By root test } \sum u_n \text{ is convergent.}$$

EXAMPLE 52

Find whether the following series are convergent or divergent.

(i)
$$\sum_{n=1}^{\infty} \frac{1}{3^n - 1}$$
 (ii) $1 + \frac{1}{2^2} + \frac{1}{3^3} + \frac{1}{4^4} + \dots$ (iii) $\sum_{n=1}^{\infty} \frac{\left[(n+1)x \right]^n}{n^{n+1}}$

SOLUTION

(i)
$$u_n^{\frac{1}{n}} = \left(\frac{1}{3^n - 1}\right)^{\frac{1}{n}} = \left(\frac{1}{3^n \left(1 - \frac{1}{3^n}\right)}\right)^{\frac{1}{n}}$$

$$\begin{split} & \lim_{n \to \infty} u_n^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{3^n \left(1 - \frac{1}{3^n} \right)} \right)^{\frac{1}{n}} = \frac{1}{3} < 1; \text{ By root test, } \sum u_n \text{ is convergent.} \end{split}$$

$$(ii) \quad & u_n = \frac{1}{n^n}; \lim_{n \to \infty} u_n^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{1}{n^n} \right)^{\frac{1}{n}} = 0 < 1; \text{ By root test, } \sum u_n \text{ is convergent.} \end{split}$$

$$(iii) \quad & u_n = \frac{\left[(n+1)x \right]^n}{n^{n+1}} \\ & \lim_{n \to \infty} u_n^{\frac{1}{n}} = \lim_{n \to \infty} \left[\frac{\left\{ (n+1)x \right\}^n}{n^{n+1}} \right]^{\frac{1}{n}} \\ & \lim_{n \to \infty} \left[\frac{\left\{ (n+1)x \right\}^n}{n} \cdot \frac{1}{n} \right]^{\frac{1}{n}} = \lim_{n \to \infty} \left(\frac{n+1}{n} \right) x. \frac{1}{n^{\frac{1}{n}}} \\ & \lim_{n \to \infty} \left[\frac{1}{n} x. \frac{1}{n^{\frac{1}{n}}} = \lim_{n \to \infty} x. \frac{1}{n^{\frac{1}{n}}} = x \qquad \left(\text{ since } \lim_{n \to \infty} x. \frac{1}{n^{\frac{1}{n}}} = 1 \right) \\ & \therefore \sum u_n \text{ is convergent if } |x| < 1 \text{ and divergent if } |x| > 1 \text{ and when } |x| = 1 \text{ the test fails.} \\ & \text{Then } u_n = \frac{(n+1)^n}{n^{n+1}}; \text{ Take } v_n = \frac{1}{n} \\ & \frac{u_n}{v_n} = \frac{(n+1)^n}{n^{n+1}} \cdot n = \frac{(n+1)^n}{n^n} = \left(1 + \frac{1}{n}\right)^n; \quad \lim_{n \to \infty} \frac{u_n}{v_n} = e > 1 \\ & \therefore \text{ By comparison test, } \sum u_n \text{ is divergent.} \\ & (\sum v_n \text{ divergent by } p - \text{series test }) \end{aligned}$$

Hence $\sum u_n$ is convergent if |x| < 1 and divergent $|x| \ge 1$

EXAMPLE 53

If $u_n = \frac{n^{n^2}}{(n+1)^{n^2}}$, show that $\sum u_n$ is convergent.

$$L_{n \to \infty} u_n^{\frac{1}{n}} = L_{n \to \infty} \left[\frac{n^n}{(n+1)^n} \right]^{\frac{1}{n}} ; = L_{n \to \infty} = \frac{n^n}{(n+1)^n} = L_{n \to \infty} \left(\frac{n}{n+1} \right)^n$$
$$= L_{n \to \infty} \left(\frac{1}{1+\frac{1}{n}} \right)^n = \frac{1}{e} < 1 ; \therefore \sum u_n \text{ converges by root test }.$$

EXAMPLE 54

Establish the convergence of the series
$$\frac{1}{3} + \left(\frac{2}{5}\right)^2 + \left(\frac{3}{7}\right)^3 + \dots$$

SOLUTION

$$u_n = \left(\frac{n}{2n+1}\right)^n \dots (\text{verify}); \qquad Lt_{n \to \infty} u_n^{\frac{1}{n}} = Lt_{n \to \infty} \left(\frac{n}{2n+1}\right) = \frac{1}{2} < 1$$

By root test, $\sum u_n$ is convergent.

EXAMPLE 55

Test for the convergence of $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}} x^n$

SOLUTION

$$u_{n} = \left(\frac{1}{1+\frac{1}{n}}\right)^{\frac{1}{2}} .x^{n}; \ t_{n \to \infty} u_{n}^{\frac{1}{n}} = t_{n \to \infty} \left(\frac{1}{1+\frac{1}{n}}\right)^{\frac{1}{2}} .x = x$$

 \therefore By root test, $\sum u_n$ is convergent if |x| < 1 and divergent if |x| > 1.

When
$$|x| = 1$$
: $u_n = \sqrt{\frac{n}{n+1}}$, taking $v_n = \frac{1}{n^0}$ and applying comparison test, it can be

seen that is divergent

 $\sum u_n$ is convergent if |x| < 1 and divergent if $|x| \ge 1$.

EXAMPLE 56

Show that
$$\sum_{n=1}^{\infty} \left(n^{\frac{1}{n}} - 1 \right)^n$$
 converges.

$$u_n = \left(n^{\frac{1}{n}} - 1\right)^n$$

$$\lim_{n \to \infty} u_n^{\frac{1}{n}} = \lim_{n \to \infty} \left(n^{\frac{1}{n}} - 1\right) = 1 - 1 = 0 < 1 \left(\text{since } \lim_{n \to \infty} n^{\frac{1}{n}} = 1\right);$$

$$\sum u_n \text{ is convergent by root test.}$$

EXAMPLE 57

÷

Examine the convergence of the series whose n^{th} term is $\left(\frac{n+2}{n+3}\right)^n . x^n$

SOLUTION

$$u_n = \left(\frac{n+2}{n+3}\right)^n . x^n; \ \underset{n \to \infty}{Lt} u_n^{\frac{1}{n}} = \underset{n \to \infty}{Lt} \left(\frac{n+2}{n+3}\right) x = x$$

 \therefore By root test, $\sum u_n$ converges when |x| < 1 and diverges when |x| > 1.

When
$$|x| = 1$$
: $u_n = \left(\frac{n+2}{n+3}\right)^n$; $\underset{n \to \infty}{Lt} u_n = \underset{n \to \infty}{Lt} \frac{\left(1 + \frac{2}{n}\right)}{\left(1 + \frac{3}{n}\right)^n}$
= $\frac{e^2}{e^3} = \frac{1}{e} \neq 0$ and the terms are all +ve.

$$\therefore \sum u_n$$
 is divergent. Hence $\sum u_n$ is convergent if $|x| < 1$ and divergent if $|x| \ge 1$.

EXAMPLE 58

Show that the series,

$$\left[\frac{2^{2}}{1^{2}} - \frac{2}{1}\right]^{-1} + \left[\frac{3^{3}}{2^{3}} - \frac{3}{2}\right]^{-2} + \left[\frac{4^{4}}{3^{4}} - \frac{4}{3}\right]^{-3} + \dots \text{ is convergent} \quad \text{(JNTU 2002)}$$
$$u_{n} = \left[\frac{\left(n+1\right)^{n+1}}{n^{n+1}} - \frac{n+1}{n}\right]^{-n}; = \left(\frac{n+1}{n}\right)^{-n} \left[\left(\frac{n+1}{n}\right)^{n} - 1\right]^{-n}$$
$$\left(1 + \frac{1}{n}\right)^{-n} \left[\left(1 + \frac{1}{n}\right)^{n} - 1\right]^{-n}; u_{n}^{\frac{1}{n}} = \left(1 + \frac{1}{n}\right)^{-1} \left[\left(1 + \frac{1}{n}\right)^{n} - 1\right]^{-1}$$

$$= \frac{1}{\left(1 + \frac{1}{n}\right)} \frac{1}{\left\{\left(1 + \frac{1}{n}\right)^n - 1\right\}}$$

$$\therefore \quad Lt_{n \to \infty} u_n^{\frac{1}{n}} = \frac{1}{1} \cdot \frac{1}{e - 1} = \frac{1}{e - 1} < 1$$

$$\therefore \text{ By root test, } \sum u_n \text{ is convergent.}$$

EXAMPLE 59

Test
$$\sum_{m=1}^{\infty} u_m$$
 for convergence when $u_m = \frac{e^{-m}}{\left(1 + \frac{2}{m}\right)^{-m^2}}$

SOLUTION

$$Lt_{m\to\infty}\left(u_{m}^{\frac{1}{m}}\right) = Lt_{m\to\infty}\left[\frac{\left(1+\frac{2}{m}\right)^{m^{2}}}{e^{m}}\right]^{\frac{1}{m}}; \ Lt_{m\to\infty}\frac{1}{e}\left(1+\frac{2}{m}\right)^{m} = \frac{e^{2}}{e} = e > 1$$

Hence Cauchy's root tells us that $\sum u_m$ is divergent.

EXAMPLE 60

Test the convergence of the series $\sum \frac{n}{e^{n^2}}$. SOLUTION

$$\lim_{n \to \infty} u_n^{\frac{1}{n}} = \lim_{n \to \infty} \frac{n^{\frac{1}{n}}}{e^n} = 0 < 1 \qquad \therefore \text{ By root test, } \sum u_n \text{ is convergent.}$$

EXAMPLE 61

Test the convergence of the series, $\frac{2}{1^2}x + \frac{3^2}{2^3}x^2 + \dots \frac{(n+1)^n \cdot x^n}{n^{n+1}} + \dots + x > 0$

SOLUTION

$$\lim_{n \to \infty} u_n^{1/n} = \lim_{n \to \infty} \left[\frac{\left(n+1\right)^n \cdot x^n}{n^{n+1}} \right]^{1/n} = \lim_{n \to \infty} \left[\left(\frac{n+1}{n}\right) \cdot \frac{1}{n^{1/n}} \cdot x \right]$$

$$= \underset{n \to \infty}{Lt} \left[\left(1 + \frac{1}{n} \right) \cdot \frac{1}{n^{\frac{1}{n}}} \cdot x \right] = 1 \cdot 1 \cdot x = x \left[\text{ since } \underset{n \to \infty}{Lt} n^{\frac{1}{n}} = 1 \right]$$

:. By root test, $\sum u_n$ converges if x < 1 and diverges when x > 1. When x = 1, the test fails.

Then
$$u_n = \left(1 + \frac{1}{n}\right)^n \cdot \frac{1}{n}$$
; Take $v_n = \frac{1}{n}$
$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \left(1 + \frac{1}{n}\right)^n = e \neq 0$$

 \therefore By comparison test and *p*-series test, $\sum u_n$ is divergent. Hence $\sum u_n$ is convergent when x < 1 and divergent when $x \ge 1$.

Exercise 1.4						
. Test for convergence the infinite series whose n^{th} terms are:						
(a)	$\frac{1}{2^n - 1}$	[Ans : convergent]				
(b)	$\frac{1}{\left(\log\right)^{2n}} \cdot \left(n \neq 1\right) \dots$	[Ans : convergent]				
(c)	$\left(\frac{3n+1}{4n+3}.x\right)^n$	[Ans: $ x < \frac{4}{3}cgt, x \ge \frac{4}{3}dgt$]				
(d)	$\frac{x^n}{ \underline{n} }$	[Ans: cgt for all $x \ge 0$]				
(e)	$\frac{ \underline{n} }{\underline{n}^n}$	[Ans: convergent]				
(f)	$\frac{3^n \cdot \angle n}{n^3} \dots$	[Ans : convergent]				
(g)	$\frac{\left(2n^2-1\right)^n}{\left(2n\right)^{2n}}$	[Ans: convergent]				
(h)	$(n^{1/n}-1)^{2n}$	[Ans: convergent]				

(i)
$$\left(\frac{n-1}{n}\right)^{-n^2}$$
 [Ans : divergent]
(j) $\left(\frac{nx}{n+1}\right)^n$, $(x > 0)$ [Ans : $x < 1 \text{ cgt}$, $x \ge 1 \text{ dgt}$]
Examine the following series for convergence :
(a) $1 + \frac{x}{2} + \frac{x^2}{3^2} + \frac{x^3}{4^3} + \dots, x > 0$ [Ans : $x \le 1cgt$, $x > 1dgt$]
(b) $\frac{1}{4} + \left(\frac{2}{7}\right)^2 + \left(\frac{3}{10}\right)^3 + \dots$ [Ans : convergent]

1.3.6 Integral Test

+ve term series,

$$\phi(1) + \phi(2) + \dots + \phi(n) + \dots$$

where $\phi(n)$ decreases as *n* increases is convergent or divergent according as the integral $\int_{1}^{\infty} \phi(x) dx$ is finite or infinite.

Proof: Let
$$S_n = \phi(1) + \phi(2) + \dots + \phi(n)$$

From the above figure, it can be seen that the area under the curve $y = \phi(x)$ between any two ordinates lies between the set of exterior and interior rectangles formed by the ordinates at

 $n = 1, 2, 3, \dots, n, n + 1, \dots$

Hence the total area under the curve lies between the sum of areas of all interior rectangles and sum of the areas of all the exterior rectangles.

Hence

$$\{\phi(1) + \phi(2) + \dots + \phi(n)\} \ge \int_{1}^{n+1} \phi(x) dx \ge \{\phi(2) + \phi(3) + \dots + \phi(n+1)\}$$

$$\therefore S_{n} \ge \int_{1}^{\infty} \phi(x) dx \ge S_{n+1} - \phi(1)$$

2.

Solved Examples

EXAMPLE 62

Test for convergence the series $\sum_{n=2}^{\infty} \frac{1}{n \log n}$

(JNTU 2003)

SOLUTION

$$\int_{2}^{\infty} \frac{1}{x \log x} dx = \underset{n \to \infty}{Lt} \left[\int_{2}^{n} \frac{1}{x \log x} dx \right] = \underset{n \to \infty}{Lt} \left[\log \log x \right]_{2}^{n} = \infty$$

 \therefore By integral test, the given series is divergent.

EXAMPLE 63

Test for convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^p}$

(JNTU 2003)

SOLUTION

$$\int_{1}^{\infty} \frac{1}{x^{p}} dx = Lt \left[\int_{1}^{n} \frac{1}{x^{p}} dx \right] = Lt \left[\frac{x^{-p+1}}{-p+1} \right]_{1}^{n};$$
$$= \frac{1}{1-p} Lt \left[n^{1-p} - 1 \right]$$

Case (i) If p > 1, this limit is finite;

$$\therefore \sum \frac{1}{n^p}$$
 is convergent.

Case (ii) If p < 1, the limit is in finite; $\sum \sum_{n \neq \infty} \frac{1}{n^p}$ is divergent. *Case* (iii) If p = 1, the limit $\lim_{n \to \infty} Lt \log x \Big|_{1}^{n} = \lim_{n \to \infty} (\log n) = \infty$; $\sum \sum_{n \neq \infty} \frac{1}{n^p}$ is divergent. Hence $\sum \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$

EXAMPLE 64

Test the series
$$\sum_{1}^{\infty} \frac{n}{e^{n^2}}$$
 for convergence.

SOLUTION

$$u_n = \frac{n}{e^{n^2}} = \phi(n)(say);$$

 $\phi(n)$ is +ve and decreases as *n* increases. So let us apply the integral test.

$$\int_{1}^{\infty} \phi(x) dx = \int_{1}^{\infty} x e^{-x^{2}} dx = \frac{1}{2} \int_{1}^{\infty} e^{-t} dt \left\{ t = x^{2}, dt = 2x dx \right\}$$
$$= -\frac{1}{2} e^{-t} \Big|_{1}^{\infty} = -\frac{1}{2} \left(0 - \frac{1}{e} \right) = \frac{1}{2e}, \text{ which is finite}$$

By integral test, $\sum u_n$ is convergent.

EXAMPLE 65

Apply integral test to test the convergence of the series $\sum_{n=1}^{\infty} \frac{1}{n^2} \sin\left(\frac{\pi}{n}\right)$

SOLUTION

Let
$$\phi(n) = \frac{1}{n^2} \sin\left(\frac{\pi}{n}\right); \phi(n)$$
 decreases as *n* increases and is +ve.

$$\int_{2}^{\infty} \phi(x) dx = \int_{2}^{\infty} \frac{1}{x^2} \sin\left(\frac{\pi}{x}\right) dx; \qquad Let \frac{\pi}{x} = t$$

$$-\frac{1}{\pi} \int_{\frac{\pi}{2}}^{0} \sin t dt = \frac{1}{\pi} \cos t \Big|_{\frac{\pi}{2}}^{0} = \frac{1}{\pi} \text{ finite, } -\frac{\pi}{x^2} dx = dt; \qquad \frac{1}{x^2} dx = -\frac{1}{\pi} dt$$

 \therefore By integral test, $\sum u_n$ converges $x = 2 \Rightarrow t = \frac{\pi}{2}$ $x = \infty \Rightarrow t = 0$

EXAMPLE 66

Apply integral test and determine the convergence of the following series.

(a)
$$\sum_{1}^{\infty} \frac{3n}{4n^2 + 1}$$
 (b) $\sum_{1}^{\infty} \frac{2n^3}{3n^4 + 2}$ (c) $\sum_{1}^{\infty} \frac{1}{3n + 1}$

SOLUTION

(a)
$$\phi(n) = \frac{3n}{4n^2 + 1}$$
 is +ve and decreases as *n* increases

$$\int_{1}^{\infty} \phi(x) dx = \int_{1}^{\infty} \frac{3x}{4x^2 + 1} dx \qquad \begin{pmatrix} 4x^2 + 1 = t \Rightarrow x dx = \frac{1}{8} dt \\ x = 1 \Rightarrow t = 5, x = \infty \Rightarrow t = \infty \end{pmatrix}$$

$$\int_{1}^{\infty} \phi(x) dx = \lim_{n \to \infty} \left[\frac{3}{8} \int_{5}^{t} \frac{dt}{t} \right] = \lim_{n \to \infty} \left[\frac{3}{8} \log t - \log 5 \right] = \infty$$

$$\therefore \text{ By integral test, } \sum u_n \text{ diverges.}$$

(**b**)
$$\phi(n) = \frac{2n^3}{3n^4 + 2}$$
 decreases as *n* increases and is +ve
 $\int_{1}^{\infty} \phi(x) dx = \int_{1}^{\infty} \frac{2x^3}{3x^4 + 2} dx$
 $= \frac{1}{6} \int_{5}^{\infty} \frac{dt}{t} = \frac{1}{6} [\log t]_{5}^{\infty} = \infty$ [where t = 3x⁴ + 2]

By integral test, $\sum u_n$ is divergent.

(c)
$$\phi(n) = \frac{1}{3n+1}$$
 is +ve, and decreases as *n* increases.

$$\int_{1}^{\infty} \phi(x) dx = \int_{1}^{\infty} \frac{1}{3x+1} dx = \int_{4}^{\infty} \frac{1}{3} \frac{dt}{t} [t = 3x+1] = \frac{1}{3} \log t \Big|_{t}^{\infty} = \infty$$

$$\therefore \text{ By integral test, } \sum u_{n} \text{ is divergent.}$$

Alternating Series

A series, $u_1 - u_2 + u_3 - u_4 + \dots + (-1)^{n-1}u_n + \dots$, where u_n are all +ve, is an alternating series.

1.3.7 Leibneitz Test

If in an alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$, where u_n are all +ve,

(i) $u_n > u_{n+1}, \forall n$, and (ii) $\lim_{n \to \infty} u_n = 0$, then the series is convergent.

Proof:

Let $u_1 - u_2 + u_3 - u_4 + \dots$ be an alternating series (' u_n ' are all +ve)

Let $u_1 > u_2 > u_3 > u_4$, Then the series may be written in each of the following two forms :

$$(u_1 - u_2) + (u_3 - u_4) + (u_5 - u_6) + \dots$$
(A)
 $u_1 - (u_2 - u_3) - (u_4 - u_5) - \dots$ (B)

- (A) Shows that the sum of any number of terms is +ve and
- (B) Shows that the sum of any number of terms is $< u_1$. Hence the sum of the series is finite. \therefore The series is convergent.

Note: If $\lim_{n \to \infty} u_n \neq 0$, then the series is oscillatory.

Solved Examples

EXAMPLE 67

Consider the series $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} \dots$

In this series, each term is numerically less than its preceding term and n^{th} term $\rightarrow 0$ as $n \rightarrow \infty$.

... By Leibneitz's test, the series is convergent.

(Note the sum of the above series is $Log_e 2$)

EXAMPLE 68

Test for convergence
$$\sum \frac{(-1)^{n-1}}{2n-1}$$

(JNTU 1997)

SOLUTION

The given series is an alternating series $\sum (-1)^{n-1} u_n$, where $u_n = \frac{1}{2n-1}$ We observe that (i) $u_n > 0, \forall n$ (ii) $u_n > u_{n+1}, \forall n$ (iii) $\underset{n \to \infty}{Lt} u_n = 0$

 \therefore By Leibneitz's test, the given series is convergent.

EXAMPLE 69

Show that the series $S = 1 - \frac{1}{3} + \frac{1}{9} - \frac{1}{27} + \dots$ converges. (JNTU 2000) **SOLUTION** The given series is $\sum_{1}^{\infty} \frac{(-1)^{n-1}}{3^{n-1}} = \sum_{n=1}^{\infty} (-1)^{n-1} u_n$, where $u_n = \frac{1}{3^{n-1}}$ is an alternating series in which 1. $u_n > 0$, $\forall n \ 2$. $u_n > u_{n+1}$, $\forall n \ and 3$. $\lim_{n \to \infty} u_n = 0$; Hence by Leibneitz's test, it is convergent. **EXAMPLE 70** Test for convergence of the series, $\frac{x}{1+x} - \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} - +\dots, 0 < x < 1$ (JNTU 2003)

SOLUTION

The given series is of the form $\sum \frac{(-1)^{n-1} \cdot x^n}{1+x^n} = \sum (-1)^{n-1} u_n$, where $u_n = \frac{x^n}{1+x^n}$ Since 0 < x < 1, $u_n > 0$, $\forall n$; Further, $u_n - u_{n+1} = \frac{x^n}{1+x^n} - \frac{x^{n+1}}{1+x^{n+1}}$ $= \frac{x^n - x^{n+1}}{(1+x^n)(1+x^{n+1})} = \frac{x^n (1-x)}{(1+x^n)(1+x^{n+1})}$.

 $0 < x < 1 \implies$ all terms in numerator and denominator of the above expression are +ve.

 $\therefore \qquad u_n > u_{n+1}, \forall n.$

Again,
$$x^n \to 0$$
 as $x^n \to \infty$ since $0 < x < 1$; $\therefore Lt_{n \to \infty} u_n = \frac{0}{1+0} = 0$

... By Leibneitz's test, the given series is convergent.

EXAMPLE 71

Test for convergence
$$\sum_{n=2}^{\infty} \frac{\left(-1\right)^{n-1}}{\sqrt{n(n+1)(n+2)}}$$
 (JNTU 2004)

The given series is an alternating series $\sum (-1)^{n-1} u_n$ $u_n = \frac{1}{\sqrt{n(n+1)(n+2)}}; u_n > 0, \forall n;$ where $\sqrt{\left(n+1\right)\left(n+2\right)\left(n+3\right)} > \sqrt{n\left(n+1\right)\left(n+2\right)}$ Again, $\frac{1}{\sqrt{(n+1)(n+2)(n+3)}} < \frac{1}{\sqrt{n(n+1)(n+2)}}, \forall n$ *.*.. $u_{n+1} < u_n, \forall n$ i.e., Further, $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{\sqrt{n(n+1)(n+2)}} = 0$ \therefore By Leibnitz's test, $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ is convergent

EXAMPLE 72

Test for the convergence of the following series,

$$\frac{1}{6} - \frac{2}{11} + \frac{3}{16} - \frac{4}{21} + \frac{5}{26} - +\dots$$
 (JNTU 1998, 2004)

SOLUTION

Given series, $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n}{5n+1} = \sum (-1)^{n-1} u_n$ is an alternating series $u_n = \frac{n}{5n+1} > 0 \forall n$; $\frac{n}{5n+1} - \frac{n+1}{5n+6} = \frac{-1}{(5n+1)(5n+6)} \Longrightarrow u_n < u_{n+1}, \forall n$ $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{n}{5n+1} = \frac{1}{5} \neq 0$

Again,

Thus conditions (ii) or (iii) of Leibnitz's test are not satisfied. The given series is not convergent. It is oscillatory.

EXAMPLE 73

Test the nature of the following series.

(a)
$$\sum_{1}^{\infty} \frac{(-1)^{n-1}}{\sqrt{n} + \sqrt{n+1}}$$
 (b) $\sum \frac{(-1)^{n-1}}{n^2 + 1}$ (c) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{\lfloor n+1 \rfloor}$

(a)
$$u_n = \frac{1}{\sqrt{n} + \sqrt{n+1}} > 0 \forall n$$
;
 $u_n - u_{n+1} = \frac{1}{\sqrt{n} + \sqrt{n+1}} - \frac{1}{\sqrt{n+1} + \sqrt{n+2}}$
 $= \frac{\sqrt{n+2} - \sqrt{n}}{(\sqrt{n} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n+2})} = \frac{2}{(\sqrt{n+2} + \sqrt{n})(\sqrt{n} + \sqrt{n+1})(\sqrt{n+1} + \sqrt{n+2})} > 0$
 \therefore By Leibnitz's test the series converges.
(b) $u_n = \frac{1}{n^2 + 1} > 0, \forall n; \frac{1}{n^2 + 1} > \frac{1}{(n+1)^2 + 1} \Rightarrow u_n > u_{n+1}, \forall n;$
 $Lt \ u_n = 0 \ \therefore$ By Leibnitz's test, given series converges.
(c) $u_n = \frac{1}{|n+1|} > 0, \forall n;$
 $|n+2| = |n+1| \Rightarrow \frac{1}{|n+2|} < \frac{1}{|n+1|} \Rightarrow u_n > u_{n+1}, \forall n$
By Leibnitz's test, given series converges.
EXAMPLE 74

Test the convergence of the series $\frac{1}{5\sqrt{2}} - \frac{1}{5\sqrt{3}} + \frac{1}{5\sqrt{4}} - +\dots$ (JNTU 2004)

SOLUTION

The series can be written as $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{5\sqrt{n+1}} ; \quad u_n = \frac{1}{5\sqrt{n+1}}$ (i) $u_n > 0 \forall n$ (ii) $5\sqrt{n+2} > 5\sqrt{n+1} \Rightarrow \frac{1}{5\sqrt{n+2}} < \frac{1}{5\sqrt{n+1}} \Rightarrow u_n > u_{n+1} \forall n$ (iii) $\lim_{n \to \infty} u_n = 0$; By Leibnitz's test, the given series converges.

EXAMPLE 75

Test for convergence the series, $1 - \frac{1}{2} + \frac{1}{4} - \frac{1}{6} + \dots$ (JNTU 1997)

The given series can be written as $\sum \frac{(-1)^n}{2n}$ (omitting 1st term) $\frac{1}{2n} > 0 \forall n; \frac{1}{2n} > \frac{1}{2n+2} \Longrightarrow u_n > u_{n+1}, \forall n; Lt_{n \to \infty} \frac{1}{2n} = 0$

 \therefore By Leibnitz's test, $\sum \frac{(-1)^n}{2n}$ is convergent.

EXAMPLE 76

Test for convergence the series,
$$1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots$$
 (JNTU 2004, 2007)

SOLUTION

General term of the series is $\frac{(-1)^{n-1}}{(2n-1)!}$

The series is an alternating series; $\frac{1}{(2n-1)!} > 0 \forall n$

$$\frac{1}{(2n-1)!} > \frac{1}{(2n-1)!} \Longrightarrow u_n > u_{n+1}, \forall n \in N; \quad Lt \frac{1}{(2n-1)!} = 0$$

By Leibnitz's test, given series is convergent.

1.4 Absolute convergence

A series $\sum u_n$ is said to be absolutely convergent if the series $\sum |u_n|$ is convergent **Ex.** Consider the series

$$\sum u_n = 1 - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} + \dots$$
$$\sum |u_n| = 1 + \frac{1}{2^3} + \frac{1}{3^3} + \frac{1}{4^3} + \dots = \sum_{n=1}^{\infty} \frac{1}{n^3}$$

By p - series test, $\sum |u_n|$ is convergent (p = 3 > 1)

Hence $\sum u_n$ is absolutely convergent.

Note: 1. If $\sum u_n$ is a series of +ve terms, then $\sum u_n = \sum |u_n|$.

For such a series, there is no difference between convergence and absolute convergence. Thus a series of +ve terms is convergent as well as absolutely convergent.

2. An absolutely convergent series is convergent. But the converse need not be true.

Consider
$$\sum_{1}^{\infty} (-1)^{n-1} \cdot \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$$

This series is convergent (1.7.3)

But $\sum |(-1)^{n-1} \cdot \frac{1}{n}| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots$ is divergent (p-series test).

Thus $\sum u_n$ is convergent need not imply that $\sum |u_n|$ is convergent (i.e.,

 $\sum u_n$ is not absolutely convergent).

1.5 Conditional Convergence

If the series $\sum |u_n|$ is divergent and $\sum u_n$ is convergent, then $\sum u_n$ is said to be conditionally convergent.

- **Ex.** Consider the Series
 - $1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} \dots \sum u_n \text{ is convergent by Leibnitz's test. (Ex.1.7.3)}$ But $\sum |u_n| = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} \dots$ is divergent by p - series test. $\therefore \sum u_n$ is conditionally convergent.

1.6 Power Series and Interval of Convergence

A series, $a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n + \dots$ where ' a_n ' are all constants is a power series in x.

It may converge for some values of x.

$$Lt \frac{u_{n+1}}{u_n} = Lt \frac{a_{n+1}}{a_n} x \quad (1^{\text{st}} \text{ term is omitted.}) = kx \text{ (say) where } Lt \frac{a_{n+1}}{a_n} = k$$

Then, by ratio test, the series converges when |kx| < 1.

i.e., it converges $\forall x \in \left(\frac{-1}{k}, \frac{1}{k}\right) (k \neq 0)$

The interval $\left(\frac{-1}{k}, \frac{1}{k}\right)$ is known as the interval of convergence of the given power

series.

Solved Examples

EXAMPLE 77

Find the interval of convergence of the series $\sum_{n=1}^{\infty} \frac{x^n}{n^3}$

SOLUTION

$$u_{n} = \frac{x^{n}}{n^{3}}; u_{n+1} = \frac{x^{n+1}}{(n+1)^{3}}$$
$$Lt \left(\frac{u_{n+1}}{u_{n}}\right) = Lt \left(\frac{n}{n+1}\right)^{3} \cdot x = Lt \left(\frac{1}{1+\frac{1}{n}}\right)^{3} \cdot x = x$$

By ratio test, the given series converges when |x| < 1, i.e., $x \in (-1,1)$

When x = 1, $\sum u_n = \sum \frac{1}{n^3}$, which, is convergent by p series test. $\therefore \sum u_n$ is convergent when x = 1

Hence, the interval of convergence of the given series is (-1, 1)

EXAMPLE 78

Test for the convergence of the following series.

(a)
$$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$$
 (JNTU 1996)

(b)
$$1 + \frac{1}{2^2} - \frac{1}{3^2} - \frac{1}{4^2} + \frac{1}{5^2} + \frac{1}{6^2} - \frac{1}{7^2} - \frac{1}{8^2} + \dots$$
 (JNTU 1998)
(c) $1 - \frac{x^2}{4^2} + \frac{x^4}{4} - \frac{x^6}{6} + \dots$ (JNTU 2004)

(c)
$$1 - \frac{x}{2} + \frac{x}{4} - \frac{x}{6} + \dots$$
 (JNTU 200

(d)
$$\sum_{0}^{\infty} (-1)^{n} (n+1)x^{n}$$
, with $x < \frac{1}{2}$ (JNTU 2004)

SOLUTION

(a) The series is of the form
$$\sum (-1)^{n-1} u_n$$
 where $u_n = \frac{1}{\sqrt{n}}$

It is an alternating series where (i) $u_n > 0 \forall_n$ (ii) $u_n > u_{n+1} \forall n$ and (iii) $\lim_{n \to \infty} u_n = 0;$. By Leibnitz test, the series is convergent.

Again the series $1 + \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{4}} + \dots$ is divergent, by

p- series test.

Hence the given series is conditionally convergent.

(b)
$$\sum |u_n| = \sum_{p=1}^{\infty} \frac{1}{n^2}$$
 which is convergent by p - series test.

- \therefore The given series is absolutely convergent.
- ∴ It is convergent.
- (c) The given series is

$$\sum (-1)^{n-1} \cdot \frac{x^{2n-2}}{(2n-2)!} = \sum (-1)^{n-1} u_n; \quad \therefore |u_n| = \frac{x^{2n-2}}{(2n-2)!}$$
$$u_{n+1} = \frac{x^{2n}}{2n!}; \quad \left|\frac{u_{n+1}}{u_n}\right| = \frac{1}{(2n-1)(2n)} \cdot |x^2|; \quad \underset{n \to \infty}{Lt} \left|\frac{u_{n+1}}{u_n}\right| = 0 < 1$$

By ratio test, the series $\sum |u_n|$ converges $\forall x$; i.e., $\sum u_n$ is absolutely convergent $\forall x$;

(d) Here, $|u_n| = (n+1)x^n$; $|u_{n+1}| = (n+2)x^{n+1}$ (neglect 1st term)

$$Lt_{n\to\infty} \frac{|u_{n+1}|}{|u_n|} = Lt_{n\to\infty} \frac{(n+2)}{(n+1)} |x| = Lt_{n\to\infty} \frac{(1+\frac{2}{n})}{(1+\frac{1}{n})} |x| = |x| < 1 \quad (\because x < \frac{1}{2})$$

 $\therefore \sum |u_n|$ is convergent $\forall x$, i.e., given series is absolutely convergent and hence convergent.

EXAMPLE 79

Show that the series $1 + x + \frac{x^2}{2} + \frac{x^2}{3} + \dots$ converges absolutely $\forall x$

SOLUTION

$$\lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = \frac{|x|}{n} = 0 < 1 \text{ when } x \neq 0 \text{ [since } |u_n| = \frac{|x^{n-1}|}{(n-1)!}; |u_{n+1}| = \frac{|x^n|}{n!} \text{]}$$

 \therefore By ratio test, $\sum |u_n|$ is convergent $\forall x \neq 0$.

When x = 0, the series is (1 + 0 + 0 +) and is convergent

 $\therefore \sum |u_n| \text{ converges } \Rightarrow \sum u_n \text{ is absolutely convergent } \forall x.$

EXAMPLE 80

Show that the series, $1 - \frac{1}{3} + \frac{1}{3^2} - \frac{1}{3^4} + \dots$ is absolutely convergent.

SOLUTION

$$\sum |u_n| = \sum_{n=1}^{\infty} \frac{1}{3^{n-1}}$$
, which is a geometric series with common ratio $\frac{1}{3} < 1$
.:. It is convergent. Hence given series is absolutely convergent.

EXAMPLE 81

Test for convergence, absolute convergence and conditional convergence of the series,

$$1 - \frac{1}{5} + \frac{1}{9} - \frac{1}{13} + \dots \dots$$
 (JNTU 2003)

SOLUTION

The given alternating series is of the form $\sum (-1)^{n-1} u_n$, where, $u_n = \frac{1}{4n-3}$.

Hence,
$$u_n > 0 \forall n \in N; \quad u_{n+1} = \frac{1}{4(n+1)-3} = \frac{1}{4n+1}$$

$$u_n - u_{n+1} = \frac{1}{4n-3} - \frac{1}{4n+1}$$
$$= \frac{4n+1-4n+3}{(4n-3)(4n+1)} = \frac{4}{(4n-3)(4n+1)} > 0, \forall n \in N$$

i.e., $u_n > u_{n+1}, \forall n \in N$ $\underset{n \to \infty}{Lt} u_n = \underset{n \to \infty}{Lt} \frac{1}{4n-3} = 0;$

All conditions of Leibnitz's test are satisfied.

Hence $\sum (-1)^{n-1} u_n$ is convergent.

$$|u_n| = \frac{1}{4n-3}$$
; Take $v_n = \frac{1}{n}$; $Lt_{n\to\infty} \frac{|u_n|}{v_n} = Lt_{n\to\infty} \frac{n}{n(4-3/n)} = \frac{1}{4} \neq 0$ and finite.

 \therefore By comparison test, $\sum |u_n|$ and $\sum v_n$ behave alike.

But by p - series test, $\sum v_n$ is divergent (since p = 1).

 $\sum |u_n|$ is divergent and \therefore The given series is conditionally convergent.

EXAMPLE 82

Test the series $\sum_{n=1}^{\infty} (-1)^{n-1} \cdot \frac{1}{3\sqrt{n}}$, for absolute / conditional convergence.

SOLUTION

The given series is an alternating series of the form $\sum (-1)^{n-1} u_n$.

Here

(i)
$$u_n = \frac{1}{3\sqrt{n}}, \forall n \in N$$

(ii) $3(n+1) > 3n \Rightarrow 3\sqrt{n+1} > 3\sqrt{n}, \forall n$.
 $\therefore \frac{1}{3\sqrt{n+1}} < \frac{1}{3\sqrt{n}}$, i.e., $u_{n+1} < u_n, \forall n \in N$
And $\lim_{n \to \infty} u_n = \lim_{n \to \infty} \frac{1}{3\sqrt{n}} = 0$
 \therefore By Leibnitz's test, the given series is convergent.
But $\sum \left| (-1)^{n-1} \cdot \frac{1}{3\sqrt{n}} \right| = \sum \frac{1}{3\sqrt{n}}$ is divergent by p - series test (since $p = \frac{1}{2} < 1$)

 \therefore The given series is conditionally convergent.

EXAMPLE 83

Test the following series for absolute / conditional convergence.

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1}, \frac{\sin(n\alpha)}{n^2}$$
 (b) $\sum_{n=1}^{\infty} (-1)^{n-1}, \frac{n^2}{n^3+1}$
(c) $\sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!}$ (d) $\sum (-1)^{n-1}, \frac{n\pi^n}{e^{3n+1}}$

- $|u_n| = \frac{|\sin n\alpha|}{n^2} < \frac{1}{n^2} [\operatorname{since}|\sin n\alpha| < 1] \text{ considering } v_n = \frac{1}{n^2} \text{ and using}$ **(a)** comparison and p - series tests, we get that $\sum |u_n|$ is convergent $\sum u_n$ is absolutely convergent.
- **(b)** By Leibnitz's test, the series converges.

Taking $v_n = \frac{1}{n}$, by comparison and p - series tests, $\sum \frac{n^2}{n^3 + 1}$, is seen to be divergent.

Hence given series is conditionally convergent.

(c) Take
$$|u_n| = \frac{1}{2n!}$$
; $\underset{n \to \infty}{Lt} \frac{|u_{n+1}|}{|u_n|} = 0 < 1$; By ratio test, $\sum |u_n|$ is convergent;

Hence given series is absolutely convergent.

 $|u_n| = \frac{n\pi^n}{e^{3n+1}}$; By root test, is convergent, \therefore given series is absolutely **(d)** convergent.

[In problems (a) to (d) above, hints only are given. Students are advised to do the complete problem themselves]

EXAMPLE 84

Find the interval of convergence of the following series.

(a)
$$\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n^3}$$
 (b) $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{n(x+2)^n}{3^n}$ (c) $\log(1+x)$

SOLUTION

(a) Let the given series be
$$\sum u_n$$
; Then $|u_n| = \frac{|x^n|}{n^3}$; $|u_{n+1}| = \frac{|x^{n+1}|}{(n+1)^3}$
$$\lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^3 \cdot |x| = \lim_{n \to \infty} \left(\frac{1}{1+\frac{1}{n}}\right)^3 \cdot |x| = |x|$$

 \therefore By ratio test, $\sum |u_n|$ is convergent if |x| < 1

i.e., $\sum u_n$ is absolutely convergent if |x| < 1;

 $\therefore \sum u_n \text{ is convergent if } |x| < 1$ If x = 1, the given series becomes $1 - \frac{1}{2^3} + \frac{1}{3^3} - \frac{1}{4^3} + \dots$

which is convergent, since $\sum \frac{1}{n^3}$ is convergent.

Similarly, if x = -1, the series becomes $\sum_{n=1}^{\infty} -\frac{1}{n^3} = -\sum_{n=1}^{\infty} \frac{1}{n^3}$ which is also convergent.

Hence the interval of convergence of $\sum u_n$ is $(-1 \le x \le 1)$

(**b**) Proceeding as in (a),

$$\lim_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = \frac{|x+2|}{3}$$

 $\therefore \sum u_n \text{ is convergent if } |x+2| < 3 \text{, i.e., if } -3 < x+2 < 3 \text{, i.e., if}$ -5 < x < 1.If x = -5, $\sum u_n = \sum (-1)^{2n-1} \cdot n$, and is divergent (in both these cases

If x = 1, $\sum u_n = \sum (-1)^{n-1} n$, and is divergent $\lim_{n \to \infty} u_n \neq 0$)

Hence the interval of convergence of the series is (-5 < x < 1)

(c)
$$\log (1 + x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$$

$$= \sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n} = \sum u_n \quad \text{(say)}$$
$$|u_n| = \frac{|x^n|}{n}; \ |u_{n+1}| = \frac{|x^{n+1}|}{n+1}$$

,

$$Lt_{n \to \infty} \frac{|u_{n+1}|}{|u_n|} = Lt_{n \to \infty} \frac{1}{\left(1 + \frac{1}{n}\right)} |x| = |x|$$

By ratio test, $\sum |u_n|$ is convergent when |x| < 1

i.e., $\sum u_n$ is absolutely convergent and hence convergent when -1 < x < 1.

When
$$x = -1$$
, $\sum u_n = \sum (-1)^{n-1} \cdot \frac{1}{n} = 1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4} + \dots$

which is convergent by Leibnitz's test. (give the proof)

When x = 1, $\sum u_n = -\left(1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \dots\right)$ which is divergent,

since $\sum \frac{1}{n}$ is divergent by *p*-series test (prove).

Hence $\sum u_n$ is convergent when $-1 < x \le 1$.

Interval of convergence is $(-1 < x \le 1)$.

Exercise 1.5

1. Use integral test and determine the convergence or divergence of the following

series: 1 $\sum \frac{1}{n^2}$ [Ans : convergent] 2. $\sum_{2}^{\infty} \frac{1}{n(\log n)^2}$ [Ans : convergent]

- 2. Test for convergence of the following series:
 - 1. $1 \frac{1}{2} + \frac{1}{4} \frac{1}{6} + \dots$ [Ans : convergent] 2. $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{(2n-1)(2n)}$ [Ans : convergent]

5.

3.	$\sum_{n=1}^{\infty} (-1)^{n-1} n^{-5/2}$	 [Ans : convergent]
	1	

- 3. Classify the following series into absolutely convergent and conditionally convergent series :
 - 1. $\sum \frac{\left(-1\right)^n}{n^3}$ [Ans: abs.cgt] 2. $\sum \frac{\sin \sqrt{n}}{n^{3/2}}$ [Ans: abs.cgt] 3. $\sum \frac{(-1)^n}{n(\log n)^2}$ [Ans: abs.cgt]

4. Find the interval of convergence of the following series :

1. $\sum \frac{2^n x^n}{\underline{ n }}$		[Ans: $-\infty < x < \infty$]
2. $\sum \frac{x^n}{n^2}$		[Ans : $-1 \le x \le 1$]
3. $x - \frac{x^2}{\sqrt{2}} + \frac{x^3}{\sqrt{3}}$	$-\frac{x^4}{\sqrt{4}} + \dots$	[Ans : $-1 < x \le 1$]
(a) Show that 1	$-\frac{1}{2}+\frac{1}{2}-\frac{1}{2}+\dots$ is absolutely conv	vergent.

(a) Show that $1 - \frac{1}{2^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots$ is absolutely convergent. (b) Show that $1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \dots$ is conditionally convergent.

- **Summary** The geometric series $\sum_{n=1}^{\infty} x^{n-1}$ converges if |x| < 1, diverges if $x \ge 1$, and oscilates 1. when $x \leq -1$ 2. If $\sum u_n$ is convergent, $\lim_{n \to \infty} u_n = 0$ [The convergent need not be necessary]
- 3. p series test :- $\sum_{n=1}^{\infty} \frac{1}{n^p}$ is convergent if p > 1 and divergent if $p \le 1$

- 4. Comparison test :- The series $\sum u_n$ and $\sum v_n$ are both convergent or both divergent if $\lim_{n \to \infty} \frac{u_n}{v_n}$ is finite and non zero.
- 5. *D'Alembert'sRatio test :-* $\sum u_n$ converges or diverges according as

$$\int_{n \to \infty} \frac{u_{n+1}}{u_n} < 1 \quad \text{or} \quad > 1$$

(Alternately, if $\int_{n \to \infty} \frac{u_n}{u_{n+1}} > 1 \quad \text{or} \quad < 1$). If the limit = 1, the test fails

- 6. *Raabe's test*: $\sum u_n$ converges or diverges according as $Lt \left[n \left\{ \frac{u_n}{u_{n+1}} - 1 \right\} \right] > 1 \text{ or } <1 .$
- 7. *Cauchy's root test:* $\sum u_n$ converges or diverges according as $\lim_{n \to \infty} \left(u_n^{\frac{1}{n}} \right) < 1 \text{ or } > 1$ (If limit = 1, the test fails.)
- 8. Integral test : A series $\sum \phi(n)$ of +ve terms where $\phi(n)$ decreases as *n* increases is convergent or divergent according as the integral $\int_{-\infty}^{\infty} \phi(x) dx$ is finite or infinite.
- 9. Alternating series Leibnitz's test: An alternating series $\sum_{n=1}^{\infty} (-1)^{n-1} u_n$ convergent if (i) $u_n > u_{n+1}, \forall n$ and (ii) $\lim_{n \to \infty} u_n = 0$
- **10.** Absolute / conditional convergence :
 - (a) $\sum u_n$ is absolutely convergent if $\sum |u_n|$ is convergent.
 - (b) $\sum u_n$ is conditionally convergent if $\sum u_n$ is convergent and $\sum |u_n|$ is divergent.
 - (c) An absolutely convergent series is convergent, but converse need not be true.

i.e., a convergent series need not be convergent.
Miscellaneous Exercise - 1.6				
1. Exan	ine the convergence of the following series:			
1.	$\frac{1}{1.2} + \frac{1}{3.4} + \frac{1}{5.6} + \dots$	[cgt.]		
2.	$\frac{1^2}{1^3+1} + \frac{2^2}{2^3+1} + \frac{3^2}{3^3+1} + \dots$	[dgt.]		
3.	$\frac{2}{1} + \frac{2^2}{2} + \frac{2^3}{3} + \dots$	[dgt.]		
4.	$\frac{1}{1+2} + \frac{2}{1+2^2} + \frac{3}{1+2^3} + \dots$	[cgt.]		
5.	$\frac{x}{1+x} + \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} + \dots (x > 0) \dots$	[cgt. if $x \le 1$ dgt. if $x > 1$]		
6.	$2x + \frac{3x^2}{8} + \frac{4x^3}{27} + \dots + (x > 0)$	[cgt. if $x \le 1$ dgt. if $x > 1$]		
7.	$1 + \frac{1}{2} + \frac{1.3}{2.4} + \frac{1.3.5}{2.4.6} + \dots$	[dgt.]		
8.	$\frac{3^2}{6^2} + \frac{3^2 \cdot 5^2}{6^2 \cdot 8^2} + \frac{3^2 \cdot 5^2 \cdot 7^2}{6^2 \cdot 8^2 \cdot 10^2} + \dots$	[cgt]		
9.	$\frac{3.4}{1.2} + \frac{4.5}{2.3} + \frac{5.6}{3.4} + \dots$	[dig.]		
10.	$\frac{(\underline{1})^2}{ \underline{2}} \cdot x + \frac{(\underline{2})^2}{ \underline{4}} x^2 + \frac{(\underline{3})^3}{ \underline{6}} x^3 + \dots (x > 0) \dots$	[cgt. if $x < 4$, dgt. if $x \ge 4$]		
11.	$1 + \frac{x}{2^2} + \frac{x^2}{3^2} + \frac{x^3}{4^2} + \dots + (x > 0)$	[cgt.if $x \le 1$, dgt. if $x > 1$]		
12.	$\frac{3x}{4} + \left(\frac{4}{5}\right)^2 x^2 + \left(\frac{5}{6}\right)^3 + x^3 + \dots + \left(x > 0\right) \dots$	[cgt if $x < 1$, dgt. if $x \ge 1$]		
13.	$\sum \left(1 + \frac{1}{n}\right)^{n^2} \dots$	[dgt.]		

73

14.	$\sum \frac{2^{3n}}{3^{2n}} \dots \qquad \dots$	[cgt.]
15.	$\sum \frac{a^n}{1+n^2}, a < 1 \dots$	[cgt.]
16.	$1 - \frac{1}{2.2} + \frac{1}{3.3} - \frac{1}{4.4} + - + - \dots$	[Abs. cgt.]

2. Examine for absolute and conditional convergence of the following series:

1.	$\sum (-1)^n \frac{3^{3n}}{3^{2n}}$		[Abs. cgt.]			
2.	$\sum \frac{\left(-1\right)^n . n}{2^n} \qquad \dots \dots$		[Abs. cgt.]			
3.	$1 - \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{3}} - \frac{1}{\sqrt{4}} + \frac{1}{\sqrt{3}}$	l 75	[Cond. cgt]			
4.	$\sum \left(-1\right)^n \frac{\left(n^2+1\right)}{n^3}$		[Cond.cgt.]			
3. Determine the interval of convergence of the following series :						
1.	$x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots$		$[-1 \le x < 1]$			
2.	$\sum \frac{(x+1)^n}{n.2^n}$		[-3< <i>x</i> <1]			

Solved University Questions (J.N.T.U)

1. Test the convergence of the series:

$$\frac{1}{1.2.3} + \frac{2}{2.3.4} + \frac{3}{3.4.5} + \dots$$

Solution

Let u_n be the n^{th} term of the series;

Then,
$$u_n = \frac{n}{n(n+1)(n+2)} = \frac{1}{(n+1)(n+2)}$$

Let
$$v_n = \frac{1}{n^2}$$
; then, $\underset{n \to \infty}{Lt} \frac{u_n}{v_n} = \underset{n \to \infty}{Lt} \frac{n^2}{(n+1)(n+2)}$
$$= \underset{n \to \infty}{Lt} \frac{1}{\left(1 + \frac{1}{n}\right)\left(1 + \frac{2}{n}\right)} = 1$$

Which is non-zero and finite.

 \therefore By comparison test, both $\sum u_n$ and $\sum v_n$ converge or diverge together.

But $\sum v_n$ is convergent by *p*-series test (p > 1) \therefore $\sum u_n$ is convergent.

2. Show that every convergent sequence is bounded

Solution

Let $\langle a_n \rangle$ be a sequence which converges to a limit '*l* 'say. Let $a_n = l \Rightarrow$ given any +ve number \in , however small,

we can always find an integer '*m*', \ni , $|a_n - l| < \in$, $\forall n \ge m$

Taking $\in = 1$, we have, $|a_n - l| < 1$;

i.e.,
$$(l-1) < a_n < (l+1), \forall n \ge n$$

Let $\lambda = \min \{a_1, a_2, \dots, a_{m-1}, (l-1)\}$, and $\mu = \max \{a_1, a_2, \dots, a_{m-1}, (l+1)\}$ Then obviously, $\lambda \le a_n \le \mu$, $\forall n \in N$;

Hence $\langle a_n \rangle$ is bounded.

3. Show that the geometric series
$$\sum_{m=0}^{\infty} q^m = 1 + q + q^2 + \dots$$
 converges to the sum $\frac{1}{1-q}$ when $|q| < 1$ and diverges when $|q| \ge 1$

(JNTU 2001)

Solution

See theorm 1.2.3 (replace 'x ' by 'q') .

`

4. Define the convergence of a series. Explain the absolute convergence and conditional convergence of a series. Test the convergence of series

(JNTU 2000)

$$\sum \left[1 + \frac{1}{\sqrt{n}}\right]^{-n^2}$$

For theory part, refer 1.2.1, 1.2.2, 1.8, 1.8.1, 1.9.1 and 1.9.2

Problem : Let
$$u_n = \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^2}$$
; $\underset{n \to \infty}{Lt} \left(u_n^{\frac{1}{n}}\right) = \underset{n \to \infty}{Lt} \left(1 + \frac{1}{\sqrt{n}}\right)^{-n}$
$$= \underset{n \to \infty}{Lt} \frac{1}{\left[1 + \frac{1}{\sqrt{n}}\right]^n} = \frac{1}{e^2} < 1$$

By Cauchy's root test, $\sum u_n$ is convergent.

5. Test the convergence of the series,
$$1 + \frac{1}{2}x + \frac{1.3}{2.4}x^2 + \frac{1.3.5}{2.4.6}x^3 + \dots$$
 (JNTU 2001)

Given that x > 0.

Solution

Omitting the first term of the series, we have,

$$u_{n} = \frac{1.3.5.(2n-1)}{2.4.6...(2n-1)} x^{n} ; u_{n+1} = \frac{1.3.5...(2n+1)}{2.4.6...(2n+2)} x^{n+1};$$

$$Lt_{n \to \infty} \frac{u_{n+1}}{u_{n}} = Lt_{n \to \infty} \left(\frac{2n+1}{2n+2}\right) x = x$$

By ratio test, $\sum u_n$ is convergent when x < 1, and divergent when x > 1The ratio test fails when x = 1

When
$$x = 1$$
, $\frac{u_n}{u_{n+1}} - 1 = \frac{2n+2}{2n+1} - 1 = \frac{1}{2n+1}$
$$Lt \left[n \left(\frac{u_n}{u_{n+1}} - 1 \right) \right] = Lt \left(\frac{n}{2n+1} \right) = \frac{1}{2} < 1 ;$$

 \therefore By Raabe's test, $\sum u_n$ diverges.

 \therefore The given series converges when x < 1 and diverges when $x \ge 1$.

6. Test the convergence of the series,
$$\frac{1}{2} + \left(\frac{2}{3}\right)x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots x > 0$$

(JNTU 2002)

Solution

Neglecting the 1st term,

$$u_n = \left[\left(\frac{n+1}{n+2} \right) x \right]^n;$$
$$u_n^{\frac{1}{n}} = \left(\frac{n+1}{n+2} \right) x = \left(\frac{1+\frac{1}{n}}{1+\frac{2}{n}} \right) x$$

Lt $u_n^{\frac{1}{n}} = x$; By Cauchy's root test, $\sum u_n$ is cgt. when x < 1 and dgt. when x > 1; when x = 1, the test fails.

When
$$x = 1$$
, $u_n = \frac{\left(1 + \frac{1}{n}\right)^n}{\left(1 + \frac{2}{n}\right)^n}$; $\lim_{n \to \infty} u_n = \frac{e}{e^2} = \frac{1}{e} \neq 0$

$$\therefore \sum u_n \text{ is divergent.}$$

$$\therefore \sum u_n \text{ is cgt. when } x < 1 \text{ and dgt. when } x \ge 1 \text{ .}$$

7. Test the series whose n^{th} term is $(3n-1)/2^n$ for convergence. (JNTU 2003) Solution

;

$$u_{n} = \frac{(3n-1)}{2^{n}} ; \qquad u_{n+1} = \frac{\{3(n+1)-1\}}{2^{n+1}}$$
$$\frac{u_{n+1}}{u_{n}} = \frac{(3n+2)}{2(3n-1)} \qquad Lt \quad u_{n+1} = \frac{1}{2} < 1 \quad ;$$

 \therefore By ratio test, $\sum u_n$ is convergent.

8. Show by Cauchy's integral test that the series $\sum_{n=2}^{\infty} \frac{1}{n(\log n)^p}$ converges if p > 1and diverges if 0 (JNTU 2003)

Let
$$\phi(x) = \frac{1}{x(\log x)^p}$$
; $x \ge 2$; Then $\phi(x)$ decreases as x increases in $[2,\infty]$

$$\int_{2}^{\infty} \phi(x) dx = \int_{2}^{\infty} \frac{dx}{x(\log x)^{p}} = \int_{\log 2}^{\infty} \frac{du}{u^{p}} = \frac{u^{1-p}}{1-p} \Big|_{\log 2}^{\infty} ;$$
[Taking $\log x = u$, $\frac{1}{x} dx = du$ $x = 2 \Rightarrow u = \log 2$ and $x = \infty \Rightarrow u = \infty$]
Case (i): $p > 1 \Rightarrow 1 - p < 0 \Rightarrow$ Integral is finite, and
Case (ii): $0 Integral is infinite.
Hence, by integral test, the given series converges if $p > 1$ and diverges when $0 .$$

9. Test the convergence of the series $\sum \left(1 + \frac{1}{\sqrt{n}}\right)^{n/2}$

Solution

$$u_n^{\frac{1}{n}} \left\{ \left(1 + \frac{1}{\sqrt{n}} \right)^{\frac{3}{2}} \right\}^{\frac{1}{n}} = \frac{1}{\left(1 + \frac{1}{\sqrt{n}} \right)^{\sqrt{n}}};$$
$$\lim_{n \to \infty} u_n^{\frac{1}{n}} = \frac{1}{e} < 1 \quad [2 < e < 3].$$

By Cauchy's root test, $\sum u_n$ is convergent.

10. Test the convergence of the series, $\sum_{n=2}^{\infty} \frac{(-1)^n \cdot x^n}{n(n-1)}, 0 < x < 1$

Solution

The given series is of the form $\sum (-1)^n u_n$, where $u_n = \frac{x^n}{n(n-1)}$.

This is an alternating series in which (i) $u_n > 0$ and $u_n > u_{n+1} \forall n \in N$. Further $\lim_{n \to \infty} u_n = 0$. Hence, by Leibnitz test, the series is convergent.

11. Discuss the convergence of the series,
$$\frac{1}{2\sqrt{1}} + \frac{x^2}{3\sqrt{2}} + \frac{x^4}{4\sqrt{3}} + \frac{x^6}{5\sqrt{4}} + \dots$$

(JNTU 1995, 2002, 2003, 2008)

$$n^{th}$$
 term of the series = $u_n = \frac{x^{2n}}{(n+2)\sqrt{n+1}}$ (omitting 1st term)

$$u_{n+1} = \frac{x^{2n+2}}{(n+3)\sqrt{n+2}}; \frac{u_{n+1}}{u_n} = \frac{\sqrt{n+2}\sqrt{n+1}}{(n+3)}.x^2$$
$$Lt \frac{u_{n+1}}{u_n} = Lt \left[\frac{\sqrt{1+2n}\sqrt{1+\frac{1}{n}}}{(1+\frac{3}{n})}.x^2\right] = x^2;$$

:. By ratio test, $\sum u_n$ converges if $x^2 < 1$, i.e., if |x| < 1, and diverges if $x^2 > 1$, i.e., if |x| > 1;

When
$$x^2 = 1$$
, $u_n = \frac{1}{(n+2)\sqrt{n+1}}$; taking $v_n = \frac{1}{n^{3/2}}$
$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{n^{3/2}}{n^{3/2} (1+2/n)\sqrt{1+1/n}} = 1$$

 \therefore By comparison test, $\sum u_n$ and $\sum v_n$ both converge or diverge together;

But $\sum v_n$ is convergent by *p*-series test. $\therefore \sum u_n$ is convergent if $|x| \le 1$ and divergent if |x| > 1.

12. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{x^{2n}}{(n+1)\sqrt{n}}$ (JNTU 2006, 2007)

Solution

$$u_{n} = \frac{x^{2n}}{(n+1)\sqrt{n}}; \quad u_{n+1} = \frac{x^{2n+2}}{(n+2)\sqrt{n+1}}$$
$$\frac{u_{n+1}}{u_{n}} = \frac{\sqrt{n}\sqrt{n+1}}{n+2} \cdot x^{2} = \frac{\sqrt{1+\frac{1}{n}}}{(1+\frac{2}{n})} \cdot x^{2}; \quad Lt_{n\to\infty} \frac{u_{n+1}}{u_{n}} = x^{2};$$

 \therefore By ratio test, $\sum u_n$ converges when |x| < 1 and diverges for |x| > 1.

When |x| = 1, $u_n = \frac{1}{n^{\frac{3}{2}} (1 + \frac{1}{n})}$ taking $v_n = \frac{1}{n^{\frac{3}{2}}}$ and applying the comparision

test, we observe that $\sum u_n$ is convergent. Hence $\sum u_n$ converges when $|x| \le 1$ and diverges when |x| > 1.

13. Find the interval of convergence of the series,
$$\frac{x^2}{2} + \frac{x^3}{3} + \frac{x^4}{4} + \dots \infty$$

(JNTU 2006, 2007)

Solution

For the given series,
$$u_n = \frac{x^{n+1}}{n+1}$$
; $u_{n+1} = \frac{x^{n+2}}{n+2}$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left(\frac{1+\frac{1}{n}}{1+\frac{2}{n}} \right) x = x$$
By ratio test, $\sum u_n$ converges when $|x| < 1$ i.e., $-1 < x < 1$
When $x = 1$, $u_n = \frac{1}{n+1}$
Taking $u_n = \frac{1}{n}$; $\frac{u_n}{v_n} = \frac{1}{1+\frac{1}{n}}$
and, $\lim_{n \to \infty} \frac{u_n}{v_n} = 1 \neq 0$ and finite.
 \therefore Both $\sum u_n$ and $\sum v_n$ converge or diverge together.
But $\sum v_n$ diverges $\therefore \sum u_n$ also diverges when $x = 1$.
When $x = -1$, the given series is
 $\frac{1}{2} - \frac{1}{3} + \frac{1}{4} - \frac{1}{5} +$ which is alternating series with
 $u_n > u_{n+1} \forall n$ and $u_n \to 0$ as $n \to \infty$
 \therefore By Leibneitz's test $\sum u_n$ converges when $x = -1$

 \therefore Interval of convergence is [(-1, 1) i.e., $-1 \le x < 1$

14. Test the convergence of the series
$$\sum_{n=1}^{\infty} \frac{1.3.5...(2n+1)}{2.5.8...(3n+2)}$$
 (J.

(JNTU 2006)

$$u_n = \frac{1.3.5...(2n+1)}{2.5.8...(3n+2)}; \quad u_{n+1} = \frac{1.3.5...(2n+3)}{2.5.8...(3n+5)}$$

$$\frac{u_{n+1}}{u_n} = \frac{2n+3}{3n+5}; \qquad Lt \ \frac{u_{n+1}}{u_n} = Lt \left[\frac{2 + \binom{3}{n}}{3 + \binom{5}{n}} \right] = \frac{2}{3} < 1$$

 $\therefore \text{ By ratio test, } \sum u_n \text{ is convergent.}$ Prove that the series $\sum_{n=2}^{\infty} \frac{(-1)^n}{n(\log n)^2}$ converges absolutely. 15. (JNTU 2006)

Solution

$$|u_n| = \frac{1}{n(\log n)^3} ; \int_{2}^{\infty} \frac{dx}{x(\log x)^3} = \int_{\log 2}^{\infty} \frac{dt}{t^2}$$

(where $t = \log x$) = $\frac{-1}{t} \Big|_{\log 2}^{\infty} = \frac{1}{\log 2}$, which is finite.

 \therefore By integral test $\sum |u_n|$ is convergent.

 $\therefore \sum u_n$ converges absolutely.

Note: This problem can also be done by Leibnitz test. The reader is advised to try that method also. 1

16. Test the convergence of the series
$$\sum \frac{(2n+1)}{n^3+1} x^n, x > 0$$
 (JNTU 2006)

Solution

$$n^{th} \text{ term of the given series , } u_n = \frac{2n+1}{n^3+1} x^n;$$
$$u_{n+1} = \left[\frac{2(n+1)+1}{(n+1)^3+1}\right] x^{n+1} = \frac{2n+3}{(n+1)^3+1} x^{n+1}$$
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \frac{(2n+3) \cdot x^{n+1}}{\{(n+1)^3+1\}} \times \frac{(n^3+1)}{x^n (2n+1)}$$
$$\lim_{n \to \infty} \left[\frac{2n(1+\frac{3}{2n}) \cdot n^3(1+\frac{1}{n^3})}{n^3 \{(1+\frac{1}{n})^3+\frac{1}{n^3}\} \cdot 2n(1+\frac{1}{2n})}\right] x = .x$$

By ratio test, $\sum u_n$ converges if x < 1 and diverges if x > 1. If x = 1 the test fails.

When
$$x = 1$$
, $u_n = \frac{2n+1}{n^3+1}$; Taking $v_n = \frac{1}{n^2}$;

$$\lim_{n \to \infty} \frac{u_n}{v_n} = \lim_{n \to \infty} \frac{2n+1}{n^3+1} \times n^2 = 2 \neq 0 \text{ and finite}$$

$$\therefore \sum u_n \text{ and } \sum v_n \text{ converge or diverge together }.$$
But $\sum v_n$ converges $\therefore \sum u_n$ also converges.
Thus, $\sum u_n$ converges when $x \leq 1$ and diverges when $x > 1$.
17. Test the series $\sum_{n=1}^{\infty} \frac{(-1)^n (\log n)}{n^2}$, for absolute/conditional convergence
(JNTU 2006)

Solution

$$u_{n} = \frac{(-1)^{n} (\log n)}{n^{2}} ; |u_{n}| = \frac{(\log n)}{n^{2}} ;$$

$$\int_{2}^{\infty} \frac{\log x}{x^{2}} dx = \int_{\log 2}^{\infty} te^{-t} dt \text{ [taking } \log x = t , x = e^{t} , \frac{1}{x} dx = \log t \text{]}$$
$$= -te^{-t} + e^{-t} \Big|_{\log 2}^{\infty} = 0 - [1 - \log 2] \cdot e^{-\log 2} = \frac{1}{2} (\log 2 - 1) ,$$

which is finite.

 \therefore By integral test $\sum |u_n|$ is convergent $\Rightarrow \sum u_n$ converges absolutely. (Note that $\sum u_n$ is cgt. by Leibnitz's test).

18. Test the convergence of the series $\sum \frac{1}{(\log \log n)^n}$ (JNTU 2006)

Solution

Given that
$$u_n = \frac{1}{(\log \log n)^n}$$
;

$$\lim_{n \to \infty} u_n^{\frac{1}{n}} = \lim_{n \to \infty} \left[\frac{1}{\log \log n} \right] = 0 < 1$$

By Cauchy's root test, $\sum u_n$ is convergent.

19. Find the interval of convergence of the series,

$$x + \frac{1}{2} \cdot \frac{x^3}{3} + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{x^5}{5} + \frac{1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6} \cdot \frac{x^7}{7} + \dots$$
 (JNTU 2007)

Solution

Term of the series, $u_n = \frac{1.3.5....(2n-1)}{2.4.6....2n} \cdot \frac{x^{2n+1}}{(2n+1)}$ (neglecting 1st term)

$$u_{n+1} = \frac{1 \cdot 3 \cdot 5 \dots \cdot (2n-1)(2n+1)}{2 \cdot 4 \cdot 6 \dots \cdot 2n(2n+2)} \cdot \frac{x^{2n+3}}{(2n+3)} ;$$

$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left[\frac{(2n+1)^2}{(2n+2)(2n+3)} \cdot x^2 \right] \quad \lim_{n \to \infty} \left[\frac{n^2 \left(4 + \frac{4}{n} + \frac{1}{n^2}\right)}{n^2 \left(4 + \frac{10}{n} + \frac{6}{n^2}\right)} \cdot x^2 \right] = x^2$$

By ratio test, $\sum u_n$ converges when $x^2 < 1$, i.e., $|x| < 1 \Longrightarrow -1 < x < 1$ When $x^2 = 1$, the test fails;

Then
$$\frac{u_n}{u_{n+1}} - 1 = \left(\frac{4n^2 + 10n + 6}{4n^2 + 2n + 1} - 1\right) = \frac{8n + 5}{4n^2 + 2n + 1}$$

$$Lt_{n \to \infty} \left[n \left(\frac{u_n}{u_{n+1}} - 1\right) \right] = Lt_{n \to \infty} \frac{n^2 \left(8 + \frac{5}{n}\right)}{n^2 \left(4 + \frac{2}{n} + \frac{1}{n^2}\right)} = 2 > 1$$

∴ By Raabe's test, $\sum u_n$ converges when $x^2 = 1$, i.e., $x = \pm 1$. ∴ Interval of convergence of $\sum u_n$ is $[-1 \le x \le 1]$

20. Test the series $\frac{1}{2} + \frac{\sqrt{2}}{3} + \frac{\sqrt{3}}{8} + \dots + \frac{\sqrt{n}}{n^2 - 1}$, for convergence or divergence.

[JNTU 2006]

Solution

1

$$u_n = \frac{\sqrt{n}}{n^2 + 1} \quad ; \quad \text{Let } v_n = \frac{1}{n^{3/2}}$$
$$\frac{u_n}{v_n} = \frac{\sqrt{n} \cdot n^{3/2}}{n^2 + 1} = \frac{n^2}{n^2 + 1} = \frac{1}{1 + \frac{1}{n^2}}$$

$$Lt_{n\to\infty} \frac{u_n}{v_n} = Lt_{n\to\infty} \left(\frac{1}{1 + \frac{1}{n^2}} \right) = 1 \text{ which is non-zero finite number}$$

$$\therefore \qquad \text{By comparison test, } \Sigma u_n \text{ and } \Sigma v_n \text{ behave alike.}$$

But Σv_n is convergent by p-series test $\left(\because p = \frac{3}{2} > 1 \right)$
Hence Σu_n is convergent

21. Test the convergence of the series,
$$\frac{\sqrt{2}-1}{3^2-1} + \frac{\sqrt{3}-1}{4^2-1} + \frac{\sqrt{4}-1}{5^2-1} + \dots$$
 [JNTU 2007]

Solution

$$u_{n} = \frac{\sqrt{n+1}-1}{(n+2)^{2}-1}; \quad \text{Let } v_{n} = \frac{1}{n^{3/2}}$$

$$[\because \text{ Highest degree of } n \text{ in } Dr - Nr = 2 - 1/2 = 3/2]$$

$$\frac{u_{n}}{v_{n}} = \frac{n^{3/2} \cdot (\sqrt{n+1}-1)}{(n+2)^{2}-1} = \frac{n^{2} \sqrt{1 \frac{1}{n}} \frac{1}{\sqrt{n}}}{n^{2} 1 \frac{4}{n} \frac{3}{n^{2}}}$$

$$Lt \quad \frac{u_{n}}{v_{n}} = 1 \implies \Sigma u_{n} \text{ and } \Sigma v_{n} \text{ both converge or diverge together (by comparison test). But } \Sigma v_{n} \text{ converges by p-series test} \left(\because p = \frac{3}{2} > 1\right). \text{ Hence } \Sigma u_{n} \text{ is }$$

convergent.

22. Test the convergence of $\sum \sqrt{n^3 + 1} - \sqrt{n^3}$ [JNTU 2008] **Solution**

$$u_n$$
 can be written as, $u_n = \frac{\sqrt{n^3 + 1}}{\sqrt{n^3 + 1}} \frac{\sqrt{n^3 + 1}}{\sqrt{n^3 + 1}} \frac{\sqrt{n^3 + 1}}{\sqrt{n^3 + 1}}$

i.e.

$$u_n = \frac{1}{\sqrt{n^3} \left[\sqrt{1 + \frac{1}{n^3} + 1} \right]}$$
; Let $v_n = \frac{1}{n^{3/2}}$

Then,

$$\frac{u_n}{v_n} = \frac{1}{\sqrt{1 + \frac{1}{n^3} + 1}} \implies Lt \quad \frac{u_n}{v_n} = \frac{1}{2} \neq 0$$

 \therefore By comparison test, Σu_n and Σv_n have same property

 Σv_n is convergent by p-series test $\left(\because p = \frac{3}{2} > 1 \right)$. Hence Σu_n is convergent.

23. Test for the convergence of the series, $1 + \frac{x}{2} + \frac{x^2}{5} + \frac{x^3}{10} + \dots x > 0$ [JNTU 1998, 1985, 2002, 2002]

Solution

Neglecting the first term, we observe that the nth term of the series,

$$u_n = \frac{x^n}{n^2 + 1} ; \ u_{n+1} = \frac{x^{n+1}}{n^2 + 2n + 2}, \text{ so that,}$$
$$\lim_{n \to \infty} \frac{u_{n+1}}{u_n} = \lim_{n \to \infty} \left(\frac{n^2 + 1}{n^2 + 2n + 2}\right) x = x$$

:. By ratio test, Σu_n converges when x < 1 and diverges when x > 1 and the test fails when x = 1

: when x = 1, $u_n = \frac{1}{n^2 + 1}$; Taking $\Sigma v_n = \frac{1}{n^2}$ and using comparison test, we can show that Σu_n is convergent. [This part of proof is left to the reader as an exercise].

 $\therefore \Sigma u_n$ converges for $x \le 1$ and diverges for x > 1.

24. Test the convergence of
$$\Sigma \frac{\sqrt{n}}{\sqrt{n^2+1}}$$
. x^n (x > 0) [JNTU 2003]

$$Lt_{n \to \infty} \frac{u_{n+1}}{u_n} = Lt_{n \to \infty} \frac{\sqrt{n+1}}{\sqrt{n^2 + 2n + 2}} \cdot \frac{\sqrt{n^2 + 1}}{\sqrt{n}} \cdot x$$
$$= Lt_{n \to \infty} \sqrt{1 + \frac{1}{n}} \cdot \frac{\sqrt{1 + \frac{1}{n^2}} \cdot x}{\sqrt{1 + \frac{1}{n^2} + \frac{2}{n^2}}} = 1. x = x$$

: By ratio test, Σu_n converges when x < 1 and diverges when x > 1 and when x = 1 the test fails.

When x = 1,
$$u_n = \frac{\sqrt{n}}{\sqrt{n^2 + 1}}$$
; Taking $v_n = \frac{1}{\sqrt{n}}$, $Lt_{n \to \infty} = 1$ (verify)

By comparison test, Σu_n diverges. [Since Σv_n diverges by p-series test as $p = \frac{1}{2} < 1$]

Hence Σu_n converges when x < 1 and diverges when $x \ge 1$.

25. Test for convergence the series
$$\sum \frac{x^n}{n} (x > 0)$$
 [JNTU 2007, 2008]

Solution

$$u_n = \frac{x^n}{n}, \ u_{n+1} = \frac{x^{n+1}}{n+1} \ ; \ \underbrace{Lt}_{n \to \infty} \ \frac{u_{n+1}}{u_n} = \underbrace{Lt}_{n \to \infty} \left(\frac{n}{n+1}\right) x = x$$

:. By comparison test, Σu_n converges when x < 1 and diverges when x > 1. when x = 1, the test fails.

When
$$x = 1$$
, $u_n = \frac{1}{n}$ and Σu_n is divergent (p series test – p = 1)

 $\therefore \Sigma u_n$ is convergent when x < 1 and divergent when x ≥ 1 .

26. Find whether the series $\sum_{n=2}^{\infty} (-1)^n \frac{\sin\left(\frac{1}{\sqrt{n}}\right)}{(n-1)}$ is absolutely convergent or conditionally convergent. [JNTU 2006]

Solution

When $n \ge 2$, we have,

....

$$|u_n| = \frac{\sin\left(\frac{1}{\sqrt{n}}\right)}{(n-1)}; \quad \text{Let } v_n = \frac{1}{n^{3/2}};$$
$$\frac{|u_n|}{v_n} = \frac{n^{3/2}}{n-1} \left[\sin\left(\frac{1}{\sqrt{n}}\right)\right]$$

$$Lt_{n\to\infty}\left(\frac{|u_n|}{v_n}\right) = Lt_{n\to\infty}\left(\frac{\sin\frac{1}{\sqrt{n}}}{\frac{1}{\sqrt{n}}}\right)\left(\frac{n}{n-1}\right) = 1$$

: By comparison test $\Sigma |u_n|$ and Σv_n behave alike. But Σv_n is convergent by p-series test (p = 3/2 > 1).

 $\therefore \Sigma |u_n|$ is convergent. Hence Σu_n is absolutely convergent.

27. Test whether the series $\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^2 + 1}$ converges absolutely [JNTU 2006]

Solution

The given series is
$$\sum_{n=1}^{\infty} \frac{\cos n \pi}{n^2 + 1} = \sum_{n=1}^{\infty} (-1)^n u_n$$
 where $u_n = \frac{1}{n^2 + 1}$
It is obvious that $u_1 > u_2 > \dots = u_n > u_n + 1 > \dots$ and $\lim_{n \to \infty} u_n = 0$

: By Leibnitz's test given series is convergent.

$$\Sigma | (-1)^n \cdot u_n | = \Sigma \frac{1}{n^2 + 1}$$
 which is convergent (Take $v = \frac{1}{n^2}$ and apply comparison

test. This is an exercise to the reader)

Hence given series is absolutely convergent.

28. Find whether the following series converges absolutely or conditionally

$$\frac{1}{6} - \frac{1}{6} \cdot \frac{1}{3} + \frac{1.3.5}{6.8.10} - \frac{1.3.5.7}{6.8.10.12} + \dots$$
[JNTU 2007]

Solution The given series is $\frac{1}{6} \left[1 - \frac{1}{3} + \frac{3.5}{8.10} - \frac{3.5.7}{8.10.12} + \dots \right]$

$$= \frac{1}{6} \left[\frac{2}{3} + \left\{ \frac{3.5}{8.10} - \frac{3.5.7}{8.10.12} + \dots \right\} \right]$$

We can take the series as $\frac{3.5}{8.10} - \frac{3.5.7}{8.10.12} + \dots$, (neglecting other terms) = Σu_n , where $|u_n| = \frac{3.5.7.\dots(2n+3)}{8.10.12\dots(2n+8)}$, so that $|u_{n+1}| = \frac{3.5.7\dots(2n+3)(2n+5)}{8.10.12\dots(2n+8)(2n+10)}$

It can be seen that
$$\lim_{n \to \infty} \left(\left| \frac{u_n}{u_{n+1}} \right| \right) = \lim_{n \to \infty} \left[\frac{(2n+10)}{(2n+5)} \right] = 1$$
, so that ratio test fails.
$$\lim_{n \to \infty} \left(\left| \frac{u_n}{u_{n+1}} - 1 \right| n \right) = \lim_{n \to \infty} \left[\frac{(2n+10)}{(2n+5)} - 1 \right] n = \lim_{n \to \infty} \left(\frac{5n}{2n+5} \right) = \frac{5}{2} > 1$$

 \therefore By Raabe's test, $\Sigma |u_n|$ is convergent. Hence the given series is absolutely convergent.

29. Test for absolute convergence of the series whose nth term is $\frac{(-1)^n (x+2)}{2^n + 5}$. [JNTU 2007]

Solution: Let given series be Σu_n . Then $|u_n| = \frac{x+2}{2^n+5}$

$$\therefore \qquad |u_{n+1}| = \frac{x+2}{2^{n+1}+5}, \text{ = so that, } \frac{|u_{n+1}|}{|u_n|} = \frac{2^n+5}{2^{n+1}+5} = \frac{2^n \left(1+\frac{5}{2^n}\right)}{2^n \left(2+\frac{5}{2^n}\right)}$$

$$\therefore \qquad Lt_{n\to\infty} \left| \frac{u_{n+1}}{u_n} \right| = \frac{1}{2} < 1 ;$$

- ... By ratio test, $\Sigma |u_n|$ is convergent. Hence the given series is absolutely convergent.
- **30.** Test whether the following is absolutely convergent or conditionally convergent.

$$\sum_{1}^{\infty} (-1)^{n+1} \left(\sqrt{n+1} - \sqrt{n} \right)$$
 [JNTU 2008]

Solution

The given series is Σu_n where $u_n = (-1)^{n+1} \left[\sqrt{n+1} - \sqrt{n} \right]$. It is an alternating series.

$$\sqrt{n+1} - \sqrt{n} = \frac{\left[\sqrt{n+1} - \sqrt{n}\right] \left[\sqrt{n+1} + \sqrt{n}\right]}{\sqrt{n+1} + \sqrt{n}} = \frac{1}{\sqrt{n+1} + \sqrt{n}} = v_n \text{ (say)},$$

(1) $v_n > 0 \forall n$; (2) $\lim_{n \to \infty} v_n = 0$ and (3) $v_{n+1} > v_n \forall n$; since all conditions of

Leibnitz's test are satisfied, the given series is convergent.

Further,
$$|u_n| = \frac{1}{\sqrt{n+1} + \sqrt{n}}$$
; Taking $v_n = \frac{1}{\sqrt{n}}$, we have,

$$\lim_{n \to \infty} \frac{|u_n|}{v_n} = \lim_{n \to \infty} \frac{\sqrt{n}}{\sqrt{n} \left[\sqrt{1 + \frac{1}{n}} + 1\right]} = \frac{1}{2} \neq 0$$

 \therefore By comparison test, $\Sigma |u_n|$ and Σv_n behave alike. But $\Sigma v_n = \Sigma \frac{1}{\sqrt{n}}$ is divergent by p-series test $\left(p = \frac{1}{2} < 1\right)$.

 $\therefore \Sigma |u_n|$ is divergent. Hence the given series is conditionally convergent

31. Find the interval of convergence of the series,

$$\frac{1}{1-x} + \frac{1}{2(1-x^2)} + \frac{1}{3(1-x)^3} + \dots$$

[JNTU 2007, 2008]

Solution: If the n^{th} term of the given series is u_n ,

$$u_{n} = \frac{1}{n(1-x)^{n}} ; u_{n+1} = \frac{1}{(n+1)(1-x)^{n+1}}$$
$$\underbrace{Lt}_{n\to\infty} \left[\frac{u_{n+1}}{u_{n}}\right] = \underbrace{Lt}_{n\to\infty} \frac{1}{(n+1)(1-x)^{n+1}} \frac{n(1-x)^{n}}{1} = \underbrace{Lt}_{n\to\infty} \frac{1}{\left(1+\frac{1}{n}\right)} \cdot \frac{1}{(1-x)} = \frac{1}{1-x}$$

Now, by ratio test:

- (i) $x = 1 \Rightarrow$ the limit is infinite $\Rightarrow \Sigma u_n$ is divergent
- (ii) $x \neq 0$ and $x > 1 \Rightarrow$ the limit is $< 1 \Rightarrow \Sigma u_n$ is convergent

- (iii) $x \neq 0$ and x < 1 and $> 0 \Rightarrow$ the limit is $> 1 \Rightarrow \Sigma u_n$ is divergent
- (iv) If x = 0, the series is $1 + \frac{1}{2} + \frac{1}{3} + \dots$, which is divergent by p-series test (p = 1)
- (v) If x < 0, the limit is $< 1 \Rightarrow \Sigma u_n$ is convergent by ratio test.

Hence the given series converges for all values of (i) x > 1 and $x \neq 0$ and (ii) x < 0.

 \therefore The interval of convergence of the given series is $(-\infty, 0) \cup (1, \infty)$.

Objective Type Questions

1. '	1. The infinite series $\sum_{n=1}^{\infty} \frac{1}{n^2 + 1}$ is				
	(i)	convergent	(ii)	divergent	
	(iii)	oscillatory	(iv)	none of these	[Ans :(i)]
2. '	The seri	es $\frac{1+n}{1+n^2}$ is			
	(i)	convergent	(ii)	divergent	
	(iii)	oscillatory	(iv)	none of these	[Ans : (ii)]
3. '	The seri	es $\frac{1}{1\sqrt{1}} - \frac{1}{2\sqrt{2}} + \frac{1}{3\sqrt{3}} - \frac{1}{4\sqrt{4}} + .$			
	(i)	oscillatory	(ii)	absolutely converg	gent
	(iii)	conditionally convergent	(iv)	none of these	[Ans : (ii)]
4. ′	The seri	es $1 - \frac{1}{2} + \frac{1}{3} - \frac{1}{4}$ is			
	(i)	oscillatory	(ii)	divergent	
	(iii)	convergent	(iv)	none of these	[Ans :(iii)]

5. The interval of convergence of the series	$x-\frac{x^2}{2}$	$-+\frac{x^3}{3}-\frac{x^4}{4}+,$ is	
(i) $-\infty < x < \infty$	(ii)	-1 < x < 2	
(iii) $-1 < x \le 1$	(iv)	none of these	[Ans :(iii)]
6. The series $\frac{1}{1.2} + \frac{2}{3.4} + \frac{3}{5.6} + \dots \infty$ is			
(i) convergent	(ii)	divergent	
(iii) oscillatory	(iv)	none of these	[Ans :(ii)]
7. The series $\frac{1}{1.3} + \frac{2}{3.5} + \frac{3}{5.7} + \dots \infty$, is			
(i) conditionally convergent	(ii)	convergent	
(iii) divergent	(iv)	none of these	[Ans :(iii)]
8. The series $\frac{2}{1^p} + \frac{3}{2^p} + \frac{4}{3^p} + \frac{5}{4^p} + \dots \infty$	is con	vergent if	
(i) <i>p</i> < 2	(ii)	<i>p</i> = 2	
(iii) $p > 2$	(iv)	none of these	[Ans :(iii)]
9. The series $6 - 10 + 4 + 6 - 10 + 4 + 6 - 10 + 4 + 6$ ∞ is			
(i) convergent	(ii)	oscillatory	
(iii) divergent	(iv)	none of these	[Ans : (ii)]
10. The series $\frac{1}{2.4} + \frac{1}{4.6} + \frac{1}{6.8} + \dots$ is			
(i) convergent	(ii)	divergent	
(iii) oscillatory	(iv)	none of these	[Ans :(i)]

2. Indicate whether the following statements are true or false:

1.	The series	$\sum \frac{1}{1+2^{-n}}$ is convergent.	[False]
2.	The series	$\sum \frac{n^2 + 5}{2n^2 + 7}$ is not convergent	[True]
3.	The series	$\frac{1}{\underline{ 1 }} + \frac{1}{\underline{ 2 }} + \frac{1}{\underline{ 3 }} + \dots $ is divergent	[False]
4.	The series	$x - \frac{x^3}{3} + \frac{x^5}{5} - + -\dots,$ converges when $-1 \le x \le 1$	[True]
5.	The series	$\sum \frac{(-1)^{n-1}}{n.5^n}$ is absolutely convergent	[True]
6.	The series	$x + 2x^2 + 3x^3 + 4x^4 + \dots \infty$ is convergent if $x > 1$	[False]
7.	The series	$x + \frac{x^2}{2} + \frac{x^3}{3} + \dots \infty$ is divergent if $x \ge 1$	[True]
8.	The series	$1 + \frac{x}{2} + \frac{2!}{3^2}x^3 + \frac{3!}{4^3}x^3 + \frac{4!}{5^4}x^4 + \dots + \infty \text{is convergent}$	
	if $x > e$.		[True]
9.	The series	$\sum \left(1 + \frac{1}{\sqrt{n}}\right)^{-n^{7/2}}$ is divergent	[False]
10.	The series	$\frac{1}{2} + \frac{2}{3}x + \left(\frac{3}{4}\right)^2 x^2 + \left(\frac{4}{5}\right)^3 x^3 + \dots$ is convergent	
	if $x < 1$		[True]

11. The series $1 - 2x + 3x^2 - 4x^3 + \infty (x < 1)$ is divergent...... [False]

12. The series
$$\frac{x}{1+x} - \frac{x^2}{1+x^2} + \frac{x^3}{1+x^3} - \frac{x^4}{1+x^4} + \dots \infty$$
 is convergent [True]

13. The series
$$\frac{\sin x}{1^3} - \frac{\sin 2x}{2^3} + \frac{\sin 3x}{3^3} + \dots \infty$$
 converges absolutely..... [True]

15. The series whose
$$n^{th}$$
 term is $\frac{3n^2 + 5}{(n+2)^a}$ is convergent. [False]

3. Fill in the Blanks:

- 1. The geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converges if _____. [Ans: |r| < 1]
- 2. If a series of +ve terms $\sum u_n$ is convergent, $\lim_{n \to \infty} u_n =$ [Ans: 0]
- 3. $\sum_{n=1}^{\infty} \left\{ \sqrt[3]{n^3 + 1} n \right\}$ is _____. [Ans: convergent.]

4. If
$$\sum_{n=1}^{\infty} \frac{3n^3 - 4}{(n+5)^p}$$
 is divergent , value of p is _____. [Ans: ≤ 4]

5. The interval of convergence of $\sum u_n$ where $u_n = \left(\frac{n^2 - 2}{n^2 + 2}\right)^{2n} x$, is _____.

[Ans: -1 < x < 1]

6.
$$\sum u_n$$
 is convergent series of +ve series. Then $\lim_{n \to \infty} \left(u_n^{1/n} \right)$ is _____.

[Ans: <1]

7. The series
$$8 - 12 + 4 + 8 - 12 - 4 + \dots$$
 [Ans : Oscillatory]
8. If $u_n > 0, \forall n$ and $\sum u_n$ is convergent, then $\lim_{n \to \infty} \left[n \left\{ \frac{u_n}{u_{n+1}} - 1 \right\} \right]$ is _____.

[Ans: >1]

9. If the series $\sum_{n=1}^{\infty} (-1)^n a_n, (a_n > 0 \forall n)$ is convergent, then for all values of n, $\frac{a_n}{a_{n+1}}$ is_____. [Ans: >1]

10. If
$$u_n = \left(1 + \frac{1}{n}\right)^{-n}$$
, $\lim_{n \to \infty} u_n^{1/n} =$ _____. [Ans: $1/e$]