Handbook For Designing Cement Plants
S. P. Deolalkar

The book is structured as a practical handbook for designing cement plants from scratch, guiding the user step by step through various stages involved in setting up a cement plant. It starts with raw materials, various processes in making different types of cements, various machinery used in the different sections. It explains working out of sizes and capacities of machines and sections. It deals with preparation of Techno-Economic Feasibility, Construction, Electrical and Instrumentation in Cement Plants.

SALIENT FEATURES
- Comprehensive coverage of all aspects of Cement plant designing
- Layouts and detailed engineering of various sections of the cement plant covered including design and drawings of ducings and vent systems
- Practical aspects like design of working platforms, safety precautions discussed
- Interactive Reference Section in CD-format provided for process calculations, sizing of main machinery and auxiliaries.

Contents:
- Section 1: Basics
- Section 2: Machinery Used in Making Cement
- Section 3: Technoeconomic Feasibility Studies
- Section 4: Civil Design and Construction
- Section 5: Electricals and Instrumentation
- Section 6: Layouts and Detailed Engineering
- Section 7: Selecting and Ordering Machinery
- Section 8: Reference Section (rs) (CD Form)

Nomograms for Design and Operation of Cement Plants
S. P. Deolalkar

Nomograms are a graphical representation of two or more variables related to one another in such a way that when one or more is known the third can be read from the nomogram. A Slide Rule is a classic example of a nomogram. Usefulness and convenience of nomograms would be evident from this one example.

FEATURES:
- The book covers almost all aspects of plant design and operation and hence will be a handy tool for cement plant personnel and cement consultants.
- The nomograms have been presented in a manner that will facilitate their use. Each nomogram is accompanied with an explanatory note that explains its usefulness, concerned inputs and outputs and scales. It contains an example illustrating its usage.
- Most nomograms are in one step but a few are in 2 or 3 progressive steps. In this print form, the nomogram appears on the left and the corresponding text on the right. Text furnishes all pertinent information about the purpose and the use of the nomogram.
- A CD is included containing nomograms in autocad format. Readers can use it to put in their own inputs and get corresponding outputs.
- A user, even with little knowledge of autocad, can draw lines across it to obtain results of new inputs. In many nomograms 'log scales' have been used to facilitate construction.
- All in all every effort has been made to make them user friendly.
- Cement Engineers, Cement Plant Designers and Cement Consultants will find the book useful and practical.

Contents:
- Section 1: Basics
- Section 2: Physical Properties
- Section 3: Process
- Section 4: Machinery
This book is about designing new large cement plants that would promote sustainable growth, preserve natural resources to the maximum possible extent and make least possible additions to the Greenhouse Gases that cause global warming. These are the Green Cement Plants.

Process of making cement involves ‘calcination’ of limestone - that is release of Carbon Dioxide - the principal greenhouse gas in ordinary Portland cement. OPC, ratio of cement to clinker is 1.05. Every ton of cement produced releases 0.8 ton of CO₂. By increasing the cement/ clinker ratio that is by making ‘blended cements’ this emission can be reduced to 0.53 to 0.30 tons per ton of cement depending on the type of blended cements viz. PPC, BFS or composite cements made.

Combustion of fuel needed to make clinker also releases CO₂ (quantum included in values mentioned above). Reduced sp. fuel consumption thus reduces ghg emissions. Substitution of fossil fuels by waste - alternate fuels some of which are ‘carbon neutral’ thus saves exhaustible fossil fuels and also lowers ghg emissions. Presently a lot of heat is wasted through kiln and cooler exhaust gases even after they are used to dry raw materials and coal. If the heat therein is recovered to generate power, a dual advantage accrues in that fossil fuel is saved and ghg emissions are lowered.

World is paying urgent attention to harnessing inexhaustible and renewable sources of energy like wind and sun. Both Solar and wind power are renewable and green house gas emissions are practically nil. New cement plants should therefore be designed to use renewable energy to the extent possible depending on the present day status of cost and production factors.

There are other ways of reducing CO₂ emissions like capturing the emitted gas and either storing it for other uses or for making new cements like Calera. New cement plants should also examine possibilities of developing cement substitutes like Calira, Caliix, Novacem, Aether and Geopolymer cements etc. that are ‘green cements’.

The concept of saving energy and saving materials by recycling are also applied to construction of cement plants by constructing green buildings, to mining operations and so on. All these aspects and activities add up to making ‘Green Cement’. They have been dealt with in the book. Large new cement plants should be designed to incorporate all these aspects. Cement making machinery to be selected and cement plants to be developed should also contribute to this concept of ‘green cement’.

This book like its predecessor ‘Handbook for Designing Cement Plants, Cement Engineers, Cement Technologists and Cement Consultants to achieve the objective of the day viz sustainable growth through Green Cement.

Distinctive Features of the book:
1. Clear definition of Green Cement
2. Factors contributing to generation and emission of Greenhouse Gases and steps that can be taken to reduce it
3. Steps that can be taken to:
 1. make blended cements
 2. use alternate fuels
 3. install waste heat recovery systems
4. Impact of these steps on reduction in greenhouse gases and savings of natural resources
5. Prospects and feasibility of using renewable energy - wind and solar power
6. Look at the future - carbon capture and storage and new substitute cements like Novacem, Calix, Caliix, and Geopolymer and Aether cements for example.
7. Design of new large plants of 5000 to 10000 tpd (single kiln clinker capacity) incorporating above features of green cement plants.
8. Development of plant general layouts
9. Essential data for quantities, storages, capacities of major machinery units for large new green cement plants in active excel spreadsheeets
10. Indication of Capital Costs and Costs of Production; I impact and benefits resulting from making green cements as compared to conventional OPC.
This book is about designing new large cement plants that would promote sustainable growth, preserve natural resources to the maximum possible extent and make least possible additions to the Greenhouse Gases that cause global warming. These are the Green Cement Plants.

Process of making cement involves ‘calcination’ of limestone - that is release of Carbon Dioxide - the principal greenhouse gas. In ordinary portland cement, OPC, ratio of cement to clinker is 1.05. Every ton of cement produced releases 0.8 ton of CO₂. By increasing the cement/ clinker ratio that is by making ‘blended cements’ this emission can be reduced to 0.53 to 0.30 tons per ton of cement depending on the type of blended cements viz. PPC, BFS or composite cements made.

Combustion of fuel needed to make clinker also releases CO₂ (quantum included in values mentioned above). Reduced sp. fuel consumption thus reduces ghg emissions. Substitution of fossil fuels by waste - alternate fuels some of which are ‘carbon neutral’ thus saves exhaustible fossil fuels and also lowers ghg emissions.

Presently a lot of heat is wasted through kiln and cooler exhaust gases even after they are used to dry raw materials and coal. If the heat therein is recovered to generate power, a dual advantage accrues in that fossil fuel is saved and ghg emissions are lowered.

World is paying urgent attention to harnessing inexhaustible and renewable sources of energy like wind and sun. Both Solar and wind power are renewable and greenhouse gas emissions are practically nil. New cement plants should therefore be designed to use renewable energy to the extent possible depending on the present day status of cost and production factors.

There are other ways of reducing CO₂ emissions like capturing the emitted gas and either storing it for use or for making new cements like Calera. New cement plants should also examine possibilities of developing cement substitutes like Calira, Callix, Novacem, Aether and Geopolymer cements etc. that are ‘green cements’.

The concept of saving energy and saving materials by recycling are also applied to construction of cement plants by constructing green buildings, to mining operations and so on.

All these aspects and activities add up to making ‘Green Cement’. They have been dealt with in the book. Large new cement plants should be designed to incorporate all these aspects. Cement making machinery to be selected and cement plant layout to be developed should also contribute to this concept of ‘green cement’.

This book like its predecessor ‘Handbook for Designing Cement Plants’, would be a useful tool in the hands of Engineers, Cement Technologists and Cement Consultants to achieve the objective of the day viz sustainable growth through Green Cement.

Distinctive Features of the book

1. Clear definition of Green Cement
2. Factors contributing to generation and emission of Greenhouse Gases and steps that can be taken to reduce it
3. Steps that can be taken to:
 a. make blended cements
 b. use alternate fuels
 c. install waste heat recovery systems
4. Impact of these steps on reduction in greenhouse gases and savings of natural resources
5. Prospects and feasibility of using renewable energy - wind and solar power
6. Look at the future - carbon capture and storage and substitute cements like Novacem, Calira, Callix, Geopolymer and Aether cements for example.
7. Design of new large plants of 5000 to 10000 tpd (single kiln clinker capacity) incorporating above features of green cement plants.
8. Development of plant general layouts
9. Essential data for quantities, storages, capacities of major machinery units for large new green cement plants in active excel spreadsheets
10. Indication of Capital Costs and Costs of Production; I impact and benefits resulting from making green cements as compared to conventional OPC.

Overview
1. What is a Green Cement Plant
2. Green House Gases
3. Summary

Section 2. Blended Cements & Designing Cement Plants to make them
1. General introduction
2. Properties of Commonly Available Alternate Fuels (AFs)
3. Feasibility of Using Alternate Fuels in Cement Plants
4. Possibilities of Using AFs in Cement Plants
5. Procurement, Processing, Transport and Storage of AFs
6. Design & Engineering of Systems for firing AFs
7. New Machinery to be Installed for AFs
8. Capital Costs, Payback Period and Benefits
9. Alternate Raw Materials
10. Quality Control
11. Procedure to begin to use AFs on Continuous Basis
12. Problems in Using AFs
13. Recommendations & Conclusion

Section 3. Green Cement and Waste Heat Recovery Systems
2. Waste Heat Available for Generation of Power
4. Machinery for WHR Systems
5. Potential for Generation of Power
6. Options for Locations of WHR Systems & Flow Charts
7. Ordering WHR Systems
8. Capital Costs
9. Capital Costs, Savings & Pay back Period
10. Design and Operational Aspects

Section 4. Other Aspects of Green Cement Plants
1. Introduction
2. Green Buildings
3. Waste Conservation and Rain Water Harvesting
4. Mining & Landscaping
5. Electrical Instruments and Appliances
6. Renewable Sources of Energy
7. Wind Power
8. Solar Power

Section 5. Waste Heat Recovery Systems
1. Overview
2. What is Waste Heat Recovery System
3. Energy balance chart
4. Efficiency of WHR systems
5. Design and Operational Aspects
6. Cost of WHR Systems

Section 6. Overview
1. General
2. Overview
3. Design of WHR Systems
4. Elements of WHR Systems
5. Selection of WHR Systems
6. Cost of WHR Systems

Section 7. Capital Costs & Costs of Production
1. Capital Costs
2. Costs of Production

Section 8. Cement Substitutes
1. Cement Substitutes from Portland to Today
2. Cement Substitutes - a Peep into the future
3. Cement Substitutes - a Peep into the future

Conclusion
1. Conclusion
2. Future Trends
3. Future Trends
4. Future Trends
5. Future Trends
6. Future Trends

About the Author
Mr. Deolalkar was a member of the Research Advisory Committee of the NCCBM and was also a Member of its Faculty. Mr. Deolalkar has been working as a consultant – first as a Chief Executive of Bhagwati Priya Consulting Engineers Ltd., and later for Babcock & Babcock Ltd., a subsidiary of ACC engaged in mining operations and so on.

Mr. Deolalkar has handled almost all aspects of the design of cement plants. He has been a pioneer in computerising process, plant engineering and machinery design calculations relating to cement making and cement plants.

He joined The Associated Cement Companies Ltd., in 1956 and has been associated with the cement industry ever since, a long innings of over 50 years.

He had first hand working experience in cement plants - in operation, in erection and in commissioning of new plants.

Mr. Deolalkar later worked with ACC-Vickers Babcock Ltd., a subsidiary of ACC engaged in manufacture of Babcock Boilers and in making Cement Machinery.

Mr. Deolalkar has thus been associated with design and setting up new cement plants and experiences of existing units for a quarter of a century - plants ranging in capacity from 300 tpd to 3000 tpd. He has been witness to the growth strategies made by the cement industry in India. The first indigenous designed 3000 tpd cement plant containing 5 stage preheater and fluid bed calciner, vertical mills for raw materials and coal, especially for coal mill and clinker cooler and advanced computer controlled operation was designed under his leadership.

Since 1995, Mr. Deolalkar has been working as a consultant – first as a Chief Executive of Bhagwati Priya Consulting Engineers Ltd., and later for Babcock & Babcock as a consultant to a proprietary consultancy company in Hyderabad.

During his career Mr. Deolalkar has handled almost all aspects of the design of cement plants. He has been a pioneer in computerising process, plant engineering and machinery design calculations relating to cement making and cement plants.

Mr. Deolalkar was associated with a number of Institutions related to Cement Industry at the National Level like Bureau of Indian Standards (BIS) and Birla Institute of Technology and Management. He was a member of the Research Advisory Committee of the NCCBM and was also a Member of its Faculty. Mr. Deolalkar has served as Secretary of the Cement Industry Consultants Association in the early 1990s. He has written a number of papers in national and international publications on cement.

In 2008 he wrote his first book ‘Handbook for Designing Cement Plants’. It was well received by the Cement Industry. His second book, ‘Nomograms for Design and Operation of Cement Plants’ is a sequel to his first book and is complementary to it.
Handbook For Designing Cement Plants
S. P. Deolalkar
The book is structured as a practical handbook for designing cement plants from scratch, guiding the user step by step through various stages involved in setting up a cement plant. It starts with raw materials, various processes in making different types of cements, various machinery used in the different sections. It explains working out of sizes and capacities of machines and sections. It deals with preparation of Techno-Economic Feasibility, Construction, Electrical and Instrumentation in Cement Plants.

Features:
- Comprehensive coverage of all aspects of Cement plant designing
- Layouts and detailed engineering of various sections of the cement plant covered including design and drawings of ductings and vent systems
- Practical aspects like design of working platforms, safety precautions discussed
- Interactive Reference Section in CD-format provided for process calculations, sizing of main machinery and auxiliaries.

Contents:
- Section 1: Basics
- Section 2: Machinery Used in Making Cement
- Section 3: Technoeconomic Feasibility Studies
- Section 4: Civil Design and Construction
- Section 5: Electronics and Instrumentation
- Section 6: Layouts and Detailed Engineering
- Section 7: Selecting and Ordering Machinery
- Section 8: Reference Section (RS) (CD format)
- Section 9: Sources

Nomograms for Design and Operation of Cement Plants
S. P. Deolalkar
Nomograms are a graphical representation of two or more variables related to one another in such a way that when one or more is known the third can be read from the nomogram. A Slide Rule is a classic example of a nomogram. Usefulness and convenience of nomograms would be evident from this one example.

Features:
- The book covers almost all aspects of plant design and operation and hence will be a handy tool for cement plant personnel and cement consultants.
- The nomograms have been presented in a manner that will facilitate their use. Each nomogram is accompanied with an explanatory note that explains its usefulness, concerned inputs and outputs and scales. It contains an example illustrating its usage.
- Most nomograms are in one step but a few are in 2 or 3 progressive steps. In this print form, the nomogram appears on the left and the corresponding text on the right. Text furnishes all pertinent information about the purpose and the use of the nomogram.
- A CD is included containing nomograms in autocad format. Readers can use it to put in their own inputs and get corresponding outputs.
- A user, even with little knowledge of autocad, can draw lines across it to obtain results of new inputs. In many nomograms 'log scales' have been used to facilitate construction.
- All in all every effort has been made to make them user friendly.
- Cement Engineers, Cement Plant Designers and Cement Consultants will find the book useful and practical.

Contents:
- Section 1: Basics
- Section 2: Physical Properties
- Section 3: Process
- Section 4: Machinery

Designing Green Cement Plants
Handbook for Designing Cement Plants
Nomograms for Design and Operation of Cement Plants
Designing Green Cement Plants
Handbook for Designing Cement Plants
Handbook for Designing Cement Plants
Nomograms for Design and Operation of Cement Plants
Designing Green Cement Plants
Handbook for Designing Cement Plants
Handbook for Designing Cement Plants
Nomograms for Design and Operation of Cement Plants
Designing Green Cement Plants

SPECIAL SET OFFER

Handbook for Designing Cement Plants + Nomograms for Design and Operation of Cement Plants = Rs. 13,000/-
Handbook for Designing Cement Plants + Designing Green Cement Plants = Rs. 11,000/-
Handbook for Designing Cement Plants + Handbook for Designing Cement Plants = Rs. 10,000/-

Price: 3500.00
SPECIAL OFFER RS. 3000/-