Chapter - 1

Vector Spaces

Vector Space

Let (F, +;) be a field. Let V be a non empty set whose elements are vectors. Then V is a vector space over the field F, if the following conditions are satisfied:

- 1. (V, +) is an abelian group
 - (i) Closure property: V is closed with respect to addition i.e.,

 $\alpha \in V, \beta \in V \Longrightarrow \alpha + \beta \in V$

- (ii) Associative: $\alpha + (\beta + \Upsilon) = (\alpha + \beta) + \Upsilon, \forall \alpha, \beta, \Upsilon \in V$
- (iii) *Existence of identity*: \exists an elements $0 \in V$ (zero vector) such that

 $\alpha + 0 = \alpha, \forall \alpha \in V$

(iv) *Existence of inverse*: To every vector α in V can be associated with a unique vector - α in V called the additive inverse *i.e.*,

 $\alpha + (-\alpha) = 0$

- (v) **Commutative:** $\alpha + \beta = \beta + \alpha, \forall \alpha, \beta \in V$
- 2. V is closed under scalar multiplication i.e.,

 $a \in F, \alpha \in V \Longrightarrow a \alpha \in V$

- 3. Multiplication and addition of vector is a distributive property i.e.,
 - (i) $a (\alpha + \beta) = a\alpha + a\beta, \forall a \in F, \alpha, \beta \in V$
 - (ii) $(a + b) \alpha = a\alpha + b\alpha, \forall a, b \in F, \alpha \in V$
 - (iii) (ab) $\alpha = a(b \alpha), \forall a, b \in F, \alpha \in V$
 - (iv) $1 \cdot \alpha = \alpha, \forall \alpha \in V$ and 1 is the unity element in *F*.

Example 1. The vector space of all ordered n-tuples over a field *F*.

Proof. Let F be a field. An ordered set $\alpha = (a_1, a_2, \dots, a_n)$ of n-elements in F is called an n-tuples over F. Let V be the all ordered n-tuple over F. Let $V = \{(a_1, a_2, \dots, a_n) : a_1, a_2, \dots, a_n\}$ $\dots a_n \in F$. Now, we will prove that V is a vector space over the field F. For this we define two n-tuples, addition and multiplication of two n-tuples by a scalar as follows.

Equality of two n-tuples : Let $\alpha = (a_1, a_2, \dots, a_n)$ and $\beta = (b_1, b_2, \dots, b_n)$ of V. Then $(a_1, a_2, \dots, a_n) = (b_1, b_2, \dots, b_n) \Longrightarrow a_i = b_i, \forall i = 1, 2, \dots, n.$

Addition of n-tuples : we take

 $\alpha + \beta = (a_1 + b_1, a_2 + b_2, \dots, a_n + b_n), \forall \alpha = (a_1, a_2, \dots, a_n) \in V,$

$$\beta = (b_1, b_2, \ldots, b_n) \in V$$

Since $a_1 + b_1$, $a_2 + b_2$, ..., $a_n + b_n$ are all elements of *F*, therefore, $\alpha + \beta \in V$ and thus V is closed with respect to addition of n-tuples. Scalar multiplication of n-tuples : we define.

 $a\alpha = (aa_1, aa_2, ..., aa_n), \forall a \in F, \alpha = (a_1, a_2, ..., a_n) \in V,$

Since aa_1, aa_2, \ldots, aa_n are all elements of *F*, therefore $a\alpha \in V$ and thus *V* is closed w.r.t. multiplication of n-tuples.

Now, we shall show that V is a vector space for the above two compositions.

1. (i) Associative : Let $(c_1, c_2, ..., c_n) = \Upsilon \in V$

$$\begin{split} \alpha + (\beta + \Upsilon) &= (a_1, a_2, \dots, a_n) + [(b_1, b_2, \dots, b_n) + (c_1, c_2, \dots, c_n)] \\ &= (a_1, a_2, \dots, a_n) + [b_1 + c_1, b_2 + c_2, \dots, b_n + c_n] \\ &= a_1 + (b_1 + c_1), a_2 + (b_2 + c_2), \dots, a_n + (b_n + c_n) \\ &= (a_1 + b_1) + c_1, (a_2 + b_2) + c_2, \dots, (a_n + b_n) + c_n \\ &= [(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n)] + (c_1, c_2, \dots, c_n) \\ &= (\alpha + \beta) + \Upsilon \end{split}$$

1 \

(ii) **Commutative:** We have

$$\alpha + \beta = (a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n)$$

= $(a_1 + b_1, a_2 + b_2, \dots, a_n + b_n)$
= $(b_1 + a_1, b_2 + a_2, \dots, b_n + a_n)$
= $(b_1, b_2, \dots, b_n) + (a_1, a_2, \dots, a_n)$
= $\beta + \alpha$

(iii) Existence of Identify : Let $(0, 0, \dots, 0) \in V$ then, we have

$$\begin{aligned} \alpha + 0 &= (a_1, a_2, \dots, a_n) + (0, 0, \dots, 0) \\ &= (a_1 + 0, a_2 + 0, \dots, a_n + 0) \\ &= (a_1, a_2, \dots, a_n) = \alpha \end{aligned}$$

(iv) **Existence of Inverse :** If $\alpha = (a_1, a_2, \dots, a_n)$ then $-\alpha = (-a_1, -a_2, ..., -a_n) \in V$ Then we have $\alpha + (-\alpha) = (a_1, a_2, \dots, a_n) + (-a_1, -a_2, \dots, -a_n)$ $= (a_1 - a_1, a_2 - a_2, \dots, a_n - a_n)$ $=(0, 0, \dots, 0)$ Hence V is an abelian group under addition. 2. (i) If $a \in F$ and $(a_1, a_2, ..., a_n) = \alpha \in V$, $(b_1, b_2, ..., b_n) = \beta \in V$ then, $a (\alpha + \beta) = a [(a_1, a_2, \dots, a_n) + (b_1, b_2, \dots, b_n)]$ $= a [a_1 + b_1, a_2 + b_2, \dots, a_n + b_n]$ $= a (a_1 + b_1), a (a_2 + b_2), \dots, a(a_n + b_n)$ $= (aa_1 + ab_1, aa_2 + ab_2, \dots, aa_n + ab_n)$ $= (aa_1, aa_2, \dots, aa_n) + (ab_1, ab_2, \dots, ab_n)$ $= a (a_1, a_2, \dots, a_n) + a (b_1, b_2, \dots, b_n) = a\alpha + a\beta$ (ii) If $a, b \in F$ and $\alpha = (a_1, a_2, \dots, a_n) \in V$ then $(a + b) \alpha = (a + b) (a_1, a_2, \dots, a_n)$ $= [(a + b) a_1 (a + b) a_2, \dots, (a + b) a_n]$ $= (aa_1 + ba_1, aa_2 + ba_2, \dots, aa_n + ba_n)$ $= (aa_1, aa_2, \dots, aa_n) + (ba_1, ba_2, \dots, ba_n)$ $= a(a_1, a_2, \dots, a_n) + b(a_1, a_2, \dots, a_n)$ $=a\alpha + b\alpha$ (iii) If $a, b \in F$ and $\alpha = (a_1, a_2, \dots, a_n) \in V$ then (ab) $\alpha = (ab) (a_1, a_2, ..., a_n)$ $= [(ab)a_1, (ab)a_2, \dots, (ab)a_n]$ $= [a (ba_1), a (ba_2), \dots, a (ba_n)]$ $= a (ba_1, ba_2, \dots, ba_n)$ $= a [b(a_1, a_2, \dots, a_n)]$ $= a (b\alpha)$ (iv) If 1 is the unity element of F and $\alpha = (a_1, a_2, \dots, a_n) \in V$ then

 $1 \cdot \alpha = 1 \cdot (a_1, a_2, \dots, a_n) = (a_1, a_2, \dots, a_n) = \alpha$

Hence V is a vector space over the field F. The vector space of all ordered n-tuples over F will be denoted by V_n (F).

Example 2. *Prove that the set of all vectors in a plane over the field of real member is a vector space.*

Proof: Let *V* be the set of all vectors in a plane and *R* be the field of real numbers.

Then we observe that

- **1.** (V, +) is abelian group:
 - (i) **Closure property :** Let $\alpha, \beta \in V \Rightarrow \alpha + \beta \in V$
 - (ii) **Commutative property :**Let $\alpha, \beta \in V$ then

 $\alpha + \beta = \beta + \alpha, \forall \alpha, \beta \in V$

- (iii) Associative property : $(\alpha + \beta) + \Upsilon = \alpha + (\beta + \Upsilon), \forall \alpha, \beta, \Upsilon \in V$
- (iv) Existance of Identity : Zero vector O in V such that $\alpha + 0 = \alpha, \forall \alpha \in V$
- (v) Existance of inverse : If $\alpha \in V$, then the vector $-\alpha \in V$ such that $\alpha + (-\alpha) = 0$
- 2. If $\alpha \in V$ and $m \in R$ (*m* is any scalar). Then the scalar multiplication

$$m \alpha \in V$$

- 3. Scalar multiplication and addition of vectors satisfy the following properties:
 - (i) $m(\alpha + \beta) = m\alpha + m\beta, \forall m \in R, \forall \alpha, \beta \in V$
 - (ii) $(m+n)\alpha = m\alpha + n\alpha \forall m, n \in R, \forall \alpha \in V$
 - (iii) $(mn)\alpha = m (n\alpha) \forall m, n \in R, \forall \alpha \in V$
 - (iv) $1 \cdot \alpha = \alpha, \forall \alpha \in V$ and 1 is the unit element of field *R*.

Hence V is a vector space over the field R.

Example 3. Let R be the field of real numbers and let R_n be the set of all polynomials over the field R. Prove that R_n is a vector space over the field R. Where R_n is of degree at most n.

Solution. Here R_n is the set of polynomials of degree at most n over the field R. The set R_n is also includes the zero polynomial.

So,	$R_n = \{f(x) : f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n,$
Where	$a_0, a_1, a_2, \ldots, a_n \in R_f^{\lambda}$
If	$f(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$
	$g(x) = b_0 + b_1 x + b_2 x^2 + \dots + b_n x^n$
	$r(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$
Then,	$f(x)+g(x) = (a_0 + b_0) + (a_1 + b_1)x + \dots + (a_n + b_n)x^n \in R_n$

Because it is also a polynomial of degree at most *n* over the field *R*.

Thus R_n is close for addition of polynomials.

 \therefore Addition of polynomials is commutative as well as associative. The zero polynomial 0 is a member of R_n and is identity for addition of polynomials.

Again if $f(x) = a_0 + a_1 x + \dots + a_n x^n \in R_n$

then $-f(x) = -a_0 - a_1 x - a_2 x^2 \dots - a_n x^n \in R_n$

because it is also a polynomials of degree at most *n* over the field *R*.

We have -f(x) + f(x) = zero polynomial.

The polynomial -f(x) is the inverse of f(x) for addition of polynomials.

Hence R_n is an addition group for addition of polynomials.

Now we define scalar multiplication c f(x) by the relation.

$$cf(x) = ca_0 + (ca_1)x + (ca_2)x^2 + \dots + (ca_n)x^n$$

 $(k_1k_2) f(x) = k_1 [k_2 f(x)]$ can be proved easily.

Clearly $cf(x) \in R_n$ because it is also a polynomial of degree at most *n* over the field *R*. Then R_n is closed for scalar multiplication.

Now if $k_1, k_2 \in R$ and $f(x), g(x) \in R_n$ we have

 $k_{l}[(f(x) + g(x)] = k_{l}f(x) + k_{2}g(x)$

$$(k_1 + k_2) f(x) = k_1 f(x) + k_2 f(x)$$

and

Also $1 \cdot f(x) = f(x), f(x) \in R_n$

Hence R_n is a vector space over the field R.

General properties of vector spaces: Let V(f) be a vector space over field F and $\overline{0}$ be the zero vector of V· then,

- (i) $a.\overline{0} = \overline{0}, \forall a \in F$
- (ii) $a\alpha = \overline{0}$, $\forall a \in V$

(iii)
$$a(-\alpha) = -(a\alpha), \forall a \in F, \alpha \in V$$

(iv) (-a)
$$\alpha = -(a\alpha), \forall a \in F, a \in V$$

(v)
$$a(\alpha - \beta) = a\alpha - a\beta \forall a \in F, \alpha, \beta \in V$$

(vi)
$$a = 0 \Rightarrow a = 0 \text{ or } \alpha = 0$$

Proof:

 \Rightarrow

 $a\overline{0} = a(\overline{0} + \overline{0})$ (i) We have, $= a(\overline{0}) + a(\overline{0})$ $\overline{0} + a\overline{0} = a\overline{0} + a\overline{0}$ ÷. : V is an abelian group with respect to addition therefore by right cancellation law in V, we get $\overline{0} = \mathbf{a} \cdot \overline{0}$ $0 \alpha = (0+0)\alpha$ [: $0+0=0 \in F$, by distributive law] (ii) $= 0\alpha + 0\alpha$ $\overline{0} + 0\alpha$ $= 0\alpha + 0\alpha$ By right cancellation law in V, we get $\overline{0} = 0\alpha$ (iii) $a \left[\alpha + (-\alpha) \right] = a\alpha + a (-\alpha)$ $\mathbf{a} \cdot \overline{\mathbf{0}} = \mathbf{a}\alpha + \mathbf{a}(-\alpha)$ $\overline{0} = a\alpha + a(-\alpha)$ \Rightarrow $a(-\alpha) = -(a\alpha)$ \Rightarrow (iv) Now, $[a + (-a)] \alpha = a\alpha + (-a) \alpha$ $0\alpha = a\alpha + (-a)\alpha$ \Rightarrow $\overline{0} = a\alpha + (-a)\alpha$ \Rightarrow (-a) α is the additive inverse of $a\alpha$ \Rightarrow $(-a) \alpha = -(a\alpha)$ (v) We have, $a(\alpha - \beta) = a[\alpha + (-\beta)]$ $= a\alpha + a(-\beta)$ $= a\alpha + [-(a\beta)]$ $[\because a \ (-\beta) = -(a\beta)]$ $= a\alpha - a\beta$ (vi) Let $a\alpha = \overline{0}$ then we have to prove that either a = 0 or $\alpha = \overline{0}$. Let $a\alpha = \overline{0}$ and $a \neq 0 \in F$, so \hat{a} exists $\hat{a}(a\alpha) = \hat{a} \cdot \overline{0}$ Then $(\hat{a}a)\alpha = \overline{0}$ \Rightarrow $1 \cdot \alpha = \overline{0}$

 $\Rightarrow \qquad \alpha = \overline{0}$ So when $a \neq 0$ then $\alpha = \overline{0}$ again let $a\alpha = \overline{0}$ and we have to prove that a = 0. Suppose $a \neq 0$ then \hat{a} exists.
Now, $a\alpha = \overline{0}$ $\hat{a}(a\alpha) = \hat{a} \cdot \overline{0}$ $(\hat{a}a)\alpha = \overline{0}$ $\Rightarrow \qquad 1 \cdot \alpha = \overline{0}$ $\Rightarrow \qquad \alpha = \overline{0}$

Which is a contradictions that α must be a zero vector. Therefore a = 0Hence $a\alpha = \overline{0}$ then either a = 0 or $\alpha = \overline{0}$.

Vector Subspace: Let V be a vector space over the field F and W be a subset of V. then W is said to be vector subspace of V if W is also a vector space with scalar multiplication and vector addition over the field F as V.

Some basic theorems of vector subspaces

Theorem 1: The necessary and sufficient condition for a non empty subset W of a vector space V(f) to be subspace of V is that W is closed under vector addition and scalar multiplication.

Proof: Condition is necessary. Let V be a vector space and W be subspace of V over the same field F. Since W is vector sub space of V, so it is also a vector space under vector addition and scalar multiplications so it is closed. Hence condition is necessary.

The condition is sufficient: Let V be a vector space over field F and W be a non empty subset of V, such that W is closed under vector addition and scalar multiplication then we have to prove that W is subspace of V. For this we will prove that it is a vector space over field itself.

Let $\alpha \in W$, if 1 is the unit element of F then $-1 \in F$. Now W is closed under scalar multiplication. Therefore,

 $(-1) \in F, \alpha \in W \Longrightarrow (-1)\alpha \in W \Longrightarrow - (1\alpha) \in W \Longrightarrow - \alpha \in W$

Thus, the additive inverse of each element of W is also in W. Now, W is closed under vector addition. Therefore

$$\alpha \in W \Longrightarrow - \alpha \in W \Longrightarrow \alpha + (-\alpha) \in W \Longrightarrow 0 \in W$$

Where $\overline{0}$ is the zero vector of V. Hence the zero vector of V is also the zero vector of W. Since $W \subseteq V$ therefore vector addition will be commutative as well as associative in W. Hence W is an abelian group with respect to vector addition. Also it is given that W is closed under scalar multiplication. The remaining properties of a vector space will hold in W. since they hold in V of which W is a subset. Hence W is itself a vector space with respect to vector addition and scalar multiplication as in V, so W is subspace of V. Hence condition in sufficient.

Theorem 2: The necessary and sufficient condition for a non empty subset W of a vector space V(f) to be a subspace of V is

$$a, b \in F, \alpha, \beta \in W \Longrightarrow a\alpha + b\beta \in W$$

Proof: *The condition is necessary:* let *V* be a vector space over field *F* and *W* is subspace of *V*; then by the definition of subspace, *W* is a vector space over field *F* itself as *V*.

So,

$$\forall a \in F, \alpha \in W \Longrightarrow a \alpha \in W$$

$$\forall b \in F, \beta \in W \Longrightarrow b \beta \in W$$

$$\forall a\alpha \in W, b\beta \in W$$
, by vector addition in W, $a\alpha + b\beta \in W$

So condition is necessary.

The sufficient condition: Suppose V is a vector space over field F and W is nonempty subset of V such that $\forall a, b \in F, \alpha, \beta \in W \Rightarrow a\alpha + b\beta \in W$ then we have to show that W is subspace of V, for this we will show that W is a vector space itself as V.

$$\therefore \quad a\alpha + b\beta \in W$$

Put $a = b = 1 \in F$

$$\Rightarrow 1 \cdot \alpha + 1 \cdot \beta \in W$$

$$\Rightarrow \qquad \alpha + \beta \in W, \forall \alpha, \beta \in W$$

So *W* is closed under vector addition.

Now taking a = 0, b = 0, we see that if

$$\alpha \in W \quad \text{then} \\ 0\alpha + 0\beta \in W \\ \overline{0} \in W$$

Thus the zero vector of V belongs to W. It will also be the zero vector of W. Now again $1 \in F, -1 \in F$

Taking	a = -1, b = 0
We get	$-1 \cdot \alpha + 0\overline{0} \in W$
\Rightarrow	$-\alpha \in W$

Thus the additive inverse of each elements of *W* is also in *W*.

Now taking $\beta = \overline{0}$, we see that if $a, b \in F$ and $\alpha \in W$, then $a\alpha + b\overline{0} \in W$ *i.e.*, $a\alpha \in W$

Thus W is closed under scalar multiplication. The remaining properties of a vector space will hold in W since they hold in V of which W is a subset.

Hence *W* is vector space itself. So by the definition *W* will be sub space of *V*.

Theorem 3. The necessary and sufficient conditions for a non-empty subset W of a vector space V(F) to be a subspace of V are

- (i) $\alpha \in W, \beta \in W \Longrightarrow \alpha \beta \in W$
- (ii) $a \in F, \alpha \in W \Longrightarrow a\alpha \in W$

Proof: As theorem 2.

Theorem 4. V be a vector space and W is non empty subset of V then W will be sub space of V if and only if $\forall \alpha, \beta \in W, a \in F \Rightarrow a\alpha + \beta \in W$.

Proof: As theorem 2.

Examples on Vector Sub Spaces

Example 1. The set W of ordered trails $(k_1, k_2, 0)$ where $k_1, k_2 \in F$ is a subspace of V_3 (F).

Solution. Let $\alpha = (k_1, k_2, 0)$, and $\beta = (l_1, l_2, 0)$ be any two element of *W*. Where $k_1, k_2, l_1, l_2 \in F$. If *a*, *b* be any two elements of *F*, we have

$$a\alpha + b\beta = a(k_1, k_2, 0) + b(l_1, l_2, 0)$$
$$= (ak_1, ak_2, 0) + (bl_1, bl_2, 0)$$
$$= (ak_1 + bl_1, ak_2 + bl_2, 0)$$

$$\therefore ak_1 + bl_1, ak_2 + bl_2 \in F \quad \text{so}$$

 $a\alpha + b\beta \in W$

Hence *W* is a subspace of $V_3(F)$.

Example 2. Prove that the set of all solution (l, m, n) of the equation l+m+2n=0 is a subspace of the vector space $V_3(R)$

Solution. Let $W = \{(l, m, n) : l, m, n \in R \text{ and } l + m + 2n = 0\}$

To prove that W is a subspace of $V_3(R)$ or R^3 .

Let $\alpha = (l_1, m_1, n_1)$ and $\beta = (l_2, m_2, n_2)$ be any two elements of *W*. Then

$$l_1 + m_1 + 2n_1 = 0$$

 $l_2 + m_2 + 2n_2 = 0$

If a, b be any two elements of *R*, we have

$$a\alpha + b\beta = a(l_1, m_1, n_1) + b(l_2, m_2, n_2)$$

= $(al_1, am_1, an_1) + (bl_2, bm_2, bn_2)$
= $(al_1 + bl_2, am_1 + bm_2, an_1 + bn_2)$
Now $(al_1 + bl_2) + (am_1 + bm_2) + 2(an_1 + bn_2)$

$$= a(l_1 + m_1 + 2n_1) + b(l_2 + m_2 + 2n_2)$$

$$=a \cdot 0 + b \cdot 0 = 0$$

So
$$a\alpha + b\beta = (al_1 + bl_2, am_1 + bm_2, an_1 + bn_2) \in W$$

Thus,
$$\alpha, \beta \in W$$
 and $a, b \in R \Longrightarrow a\alpha + b\beta \in W$.

Hence *W* is a subspace of $V_3(R)$.

Example **3.** If V is a vector space of all real valued continuous functions over the field of real numbers R, then show that the set W of solutions of the differential equation.

$$\frac{d^2 y}{dx^2} - 7\frac{dy}{dx} + 12y = 0$$
 is a subspace of V.

Solution. We have $W = \left\{ y : \frac{d^2 y}{dx^2} - 7 \frac{dy}{dx} + 12y = 0 \right\}$

It is clear that y = 0 satisfies the given differential equation and as such it belongs to W and thus $W \neq \Phi$.

Now let $y_1, y_2 \in W$ then

$$\frac{d^2 y_1}{dx^2} - 7 \frac{dy_1}{dx} + 12 y_1 = 0 \qquad \dots (i)$$

$$\frac{d^2 y_2}{dx^2} - 7 \frac{dy_2}{dx} + 12 y_2 = 0 \qquad \dots (ii)$$

Let a, $b \in R$. If W is to be subspace then we should show that $ay_1 + by_2$ also belongs to W *i.e.* It is a solution of the given differential equation. We have

$$\frac{d^2}{dx^2}(ay_1 + by_2) - 7\frac{d}{dx}(ay_1 + by_2) + 12(ay_1 + by_2)$$

= $a \cdot \left(\frac{d^2y_1}{dx^2} - 7\frac{dy_1}{dx} + 12y_1\right) + b\left(\frac{d^2y_2}{dx^2} - 7\frac{dy_2}{dx} + 12y_2\right)$
= $a \cdot 0 + b \cdot 0$

Thus a $y_1 + by_2$ is a solution of the given differential equation and so it belongs to W. Hence W is a subspace of V.

Algebra of subspaces

Theorem 1. The intersection of any two subspaces W_1 and W_2 of a vector space V(f) is also a subspace of V(f).

Proof: Let *V* be a vector space over field *F* and W_1 , W_2 are two subspaces of *V*. It is clear that $\overline{0} \in W_1$ and $\overline{0} \in W_2$ so $W_1 \cap W_2 \neq \Phi$

Let,

$$\alpha, \beta \in W_1 \cap W_2 \text{ and } a, b \in F$$

$$\alpha \in W_1 \cap W_2 \Longrightarrow \alpha \in W_1 \text{ and } \alpha \in W_2$$
$$\beta \in W_1 \cap W_2 \Longrightarrow \beta \in W_1 \text{ and } \beta \in W_2$$

 $\therefore W_l$ is subspace of V so

$$\forall a, b \in F, \alpha, \beta \in W_1 \Longrightarrow a\alpha + b\beta \in W_1$$
$$\forall a, b \in F, \alpha, \beta \in W_2 \Longrightarrow a\alpha + b\beta \in W_2$$

So, $a\alpha + b\beta \in W_1 \cap W_2$

So, $W_1 \cap W_2$ is subspace of V.

Theorem 2. The union of two subspaces is a subspace if and only if one is contained in the other .

Proof: Suppose W_1 and W_2 are two subspaces of V.

Condition is necessary: Let $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$, then we will prove that $W_1 \cup W_2$ will be subspace of V.

If
$$W_1 \subseteq W_2 \Rightarrow W_1 \cup W_2 = W_2$$
 and if $W_2 \subseteq W_1 \Rightarrow W_1 \cup W_2 = W_1$.

But W_1 and W_2 both are subspace of V, so $W_1 \cup W_2$ will be subspace of V.

Condition is sufficient: Let W_1 and W_2 be two subspaces of V such that $W_1 \cup W_2$ be also subspace of V, we have to show that $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$. Let us assume that W_1 is not a sub set of W_2 and W_2 is also not a subset of W_1 .

 $\therefore \qquad W_1 \subseteq W_2 \Longrightarrow \exists \alpha \in W_1 \text{ such that } \alpha \notin W_2$ $W \subseteq W \Longrightarrow \exists \beta \in W$

and

$$W_2 \subseteq W_1 \Longrightarrow \exists \beta \in W_2$$
 such that $\beta \notin W_1$

But, $\alpha \in W_1 \cup W_2$

and
$$\beta \in W_1 \cup W_2$$

But $W_1 \cup W_2$ is subspace of V so

$$\alpha + \beta \in W_1 \cup W_2$$

$$\Rightarrow \qquad \alpha + \beta \in W_1 \text{ or } \alpha + \beta \in W_2$$
If
$$\alpha + \beta \in W_1 \text{ and } \alpha \in W_1, -\alpha \in W_1$$

$$\Rightarrow \qquad (\alpha + \beta) - \alpha \in W_1 \Rightarrow \beta \in W_1$$
Which is a contradiction, again if
$$\Rightarrow \qquad \alpha + \beta \in W_2 \text{ and } -\beta \in W_2$$

$$\Rightarrow \qquad (\alpha + \beta) + (-\beta) \in W_2$$

$$\Rightarrow \qquad \alpha \in W_2$$

Again we get a contradiction. Hence either $W_1 \subseteq W_2$ or $W_2 \subseteq W_1$.

Theorem 3. Intersection of any family of subspaces of a vector space is a subspace.

Proof: As above

Linear combination : Let V(f) be a vector space if $\alpha_1, \alpha_2, \dots, \alpha_n \in V$ then any vector $\alpha \in V$

 $\alpha = a_1 \alpha_1 + a_2 \alpha_2 + \dots + a_n \alpha_n$ where $a_i \in F$ is called a linear combination of the vectors $\alpha_1, \alpha_2, \dots, \dots, \alpha_n$.

Linear span : Let V(f) be a vector space and S be any non empty subset of V. Then the linear span of S is the set of all linear combinations of finite sets of elements of S and is denoted by L(S). Thus we have

$$L(S) = \{a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n, \alpha_i \in V, a_i \in F\}$$

Linear dependence and linear independence. Let V be a vector space over field F. A finite set $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is said to be linearly dependent if

 $a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n = \overline{0}$

Where $\alpha_i \in V, a_i \in F$, and all a_i s may not zero. There will be minimum one $a_i \neq 0$.

A finite set $S = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$ is said to be linearly independent if $a_1\alpha_1 + a_2\alpha_2 + \dots + a_n\alpha_n = \overline{0}$

Where α_i 's $\in V$ and a_i 's $\in F$ and all a_i 's = 0

Any infinite set of vectors of V is said to be linearly independent if its every finite subset is linearly independent, otherwise it is linearly dependent.

Example 4. Show that the vector (1, 2, 0), (0, 3, 1), (-1, 0, 1) forms linearly independent set over field *R*.

Solutions. Let,

$$S = \{\alpha_1, \alpha_2, \alpha_3\}$$

Where,

 $\alpha_1 = (1, 2, 0), \alpha_2 = (0, 3, 1), \alpha_3 = (-1, 0, 1)$

Let $a_1, a_2, a_3 \in F$ such that

$$a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 = \overline{0}$$

Then S will be linearly independent if all $a_1 = a_2 = a_3 = 0$

Now

$$a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 = \overline{0}$$

$$a_1(1,2,0) + a_2(0,3,1) + a_3(-1,0,1) = (0,0,0)$$

$$(a_{1}, 2a_{1}, 0) + (0, 3a_{2}, a_{2}) + (-a_{3}, 0, a_{3}) = (0, 0, 0)$$

$$(a_{1} - a_{3}, 2a_{1} + 3a_{2}, a_{2} + a_{3}) = (0, 0, 0)$$

$$a_{1} + 0a_{2} - a_{3} = 0$$

$$2a_{1} + 3a_{2} + 0a_{3} = 0$$

$$0a_{1} + a_{2} + a_{3} = 0$$

Coefficient matrix

$$A = \begin{bmatrix} 1 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & 1 \end{bmatrix}, |A| = \begin{vmatrix} 1 & 0 & -1 \\ 2 & 3 & 0 \\ 0 & 1 & 1 \end{vmatrix}$$

$$= 1[3] - 0 - 1[2]$$

$$|A| = 1 \neq 0$$

 \therefore Rank A = 3, hence there will be only one solution $a_1 = a_2 = a_3 = 0$

Hence $S = \{\alpha_1, \alpha_2, \alpha_3\}$ is linearly independent.

Example 5. Show that $S = \{\alpha_1, \alpha_2, \alpha_3\}$ is linearly dependent over field **R**. Where $\alpha_1 = (1,3,2), \alpha_2 = (1,-7,-8), \alpha_3 = (2,1,-1).$

Proof: Let $a_1, a_2, a_3 \in \mathbb{R}$

Now,
$$a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 = 0$$

 $\Rightarrow a_1(1,3,2) + a_2(1,-7,-8) + a_3(2,1,-1) = (0,0,0)$
 $\Rightarrow (a_1 + a_2 + 2a_3, 3a_1 - 7a_2 + a_3, 2a_1 - 8a_2 - a_3) = (0,0,0)$
 $a_1 + a_2 + 2a_3 = 0$
 $3a_1 - 7a_2 + a_3 = 0$
 $2a_1 - 8a_2 - a_3 = 0$

Coefficient matrix

$$A = \begin{bmatrix} 1 & 1 & 2 \\ 3 & -7 & 1 \\ 2 & -8 & -1 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 1 & 1 & 2 \\ 3 & -7 & 1 \\ 2 & -8 & -1 \end{vmatrix}$$
$$= 1[7+8]-1[-3-2]+2[-24+14]$$
$$= 15+5-20=0$$
$$|A| = 0$$

So rank of A<3

Rank of A<number of unknowns

So there is minimum one $a_i \neq 0$

So $S = \{\alpha_1, \alpha_2, \alpha_3\}$ is linearly dependent.

Example 6. If α, β, γ are linearly independent vectors of V(f) where F is any sub field of complex numbers than prove that $\alpha + \beta, \beta + \gamma, \gamma + \alpha$ are also linearly independent.

Solution. Let a_1, a_2, a_3 be scalar then

$$a_{1}(\alpha + \beta) + a_{2}(\beta + \gamma) + a_{3}(\gamma + \alpha) = 0$$

(a_{1} + a_{3})\alpha + (a_{1} + a_{2})\beta + (a_{2} + a_{3})\gamma = \overline{0} ...(i)

But α, β, γ are linearly independent. Therefore (i) implies

$$a_1 + 0a_2 + a_3 = 0$$

 $a_1 + a_2 + 0a_3 = 0$
 $0a_1 + a_2 + a_3 = 0$

The coefficient matrix A of these equations is

$$A = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$
$$|A| = 1[0] + 0 + 1[1 - 0] = 1 \neq 0$$

Rank A = 3 = number of unknowns

There is only one solution

$$a_1 = a_2 = a_3 = 0$$

So $\alpha + \beta, \beta + \gamma, \gamma + \alpha$ are also linearly independent.

Basic of a vector space : A subset $S = \{\alpha_1, \alpha_2, ..., \alpha_n\}$ of a vector space V(f) is said to be a basis of V(f) if

(i) S consists of linearly independent vectors *i.e.*,

$$a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 = 0$$

all a_i 's are zero, $\forall a_i \in F, \alpha_i \in V$

(ii) L(S) = V(f) *i.e.*, every element of V can be written as linear combination of element of S.

Example 7. Show $S = \{(1,2,1), (2,1,0), (1,-1,2)\}$ forms a basis of R^3 .

Proof : Since $\dim R^3 = 3$

So $L(S) = V(R^3)$

Now we only to prove that S is linearly independent

Let $a_1, a_2, a_3 \in F$ such that

$$a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 = \overline{0}$$

We will prove that $a_1 = a_2 = a_3 = 0$

Now
$$a_1(1,2,1) + a_2(2,1,0) + a_3(1,-1,2) = (0,0,0)$$

 $(a_1 + 2a_2 + a_3, 2a_1 + a_2 - a_3, a_1 + 0a_2 + 2a_3) = (0,0,0)$
 $a_1 + 2a_2 + a_3 = 0$
 $2a_1 + a_2 - a_3 = 0$
 $a_1 + 0a_2 + 2a_3 = 0$

Coefficient matrix

$$A = \begin{bmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{bmatrix}$$
$$|A| = \begin{vmatrix} 1 & 2 & 1 \\ 2 & 1 & -1 \\ 1 & 0 & 2 \end{vmatrix}$$
$$= 1 [2 - 0] - 2 [4 + 1] + 1 [0 - 1]$$
$$= 2 - 10 - 1$$
$$\neq 0$$

So rank of A = 3 = no of unknown

So there is only one solution $a_1 = a_2 = a_3 = 0$

So $S = \{\alpha_1, \alpha_2, \alpha_3\}$ is linearly independent

So *S* forms the basis of R^3 .

Example 8. Select a basis of $R^3(R)$ from the set $S = \{\alpha_1, \alpha_2, \alpha_3, \alpha_4\}$ where $\alpha_1 = (1, -3, 2), \alpha_2 = (2, 4, 1), \alpha_3 = (3, 1, 3), \alpha_4 = (1, 1, 1)$

Solution. If any three vectors in *S* are linearly independent, then they will form a basis of the vector space $R^3(R)$.

First we take $S_1 = \{\alpha_1, \alpha_2, \alpha_3\}$

For this we take $a_1, a_2, a_3 \in \mathbb{R}$ such that $a_1\alpha_1 + a_2\alpha_2 + a_3\alpha_3 = \overline{0}$

i.e.,
$$a_1(1, -3, 2) + a_2(2, 4, 1) + a_3(3, 1, 3) = (0, 0, 0)$$

 $(a_1 + 2a_2 + 3a_3, -3a_1 + 4a_2 + a_3, 2a_1 + a_2 + 3a_3) = (0, 0, 0)$
 $a_1 + 2a_2 + 3a_3 = 0$
 $-3a_1 + 4a_2 + a_3 = 0$
 $2a_1 + a_2 + 3a_3 = 0$

Coefficient matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ -3 & 4 & 1 \\ 2 & 1 & 3 \end{bmatrix}$$
$$|A| = 0$$

So rank of A<3

i.e., rank of A < no. of unknowns So $S_1 = \{\alpha_1, \alpha_2, \alpha_3\}$ are linearly dependent Now we take $S_2 = \{\alpha_1, \alpha_2, \alpha_4\}$

Then we get

$$|A| = \begin{vmatrix} 1 & 2 & 1 \\ -3 & 4 & 1 \\ 2 & 1 & 1 \end{vmatrix} = 0$$

So rank of A = No. of unknown

So $\left[\alpha_1, \alpha_2, \alpha_4\right]$ is linearly independent

So $S_2 = \{\alpha_1, \alpha_2, \alpha_4\}$ forms the basis of $R^3(R)$.

Linear Transformation: Let U(f) and V(f) be two vector space over the same field $F.T: U \rightarrow V$ is said to be linear transformation if

$$T(a\alpha + b\beta) = aT(\alpha) + bT(\beta) \qquad \dots (i)$$

$$\forall \alpha, \beta \text{ in } U \text{ and } a, b \text{ in } F$$

in another way the properly (i) can be defined in two ways

(i) $T(\alpha + \beta) = T(\alpha) + T(\beta)$ and

(ii)
$$T(a\alpha) = aT(\alpha), \forall a \in F, \alpha, \beta \in U$$

Example 9. The function $T: V_3(R) \to V_2(R)$ defined by $T(a,b,c) = (a,b), \forall a,b,c \in R$, is a linear transformation from $V_3(R)$ into $V_2(R)$.

If $T: V_3(R) \to V_2(R)$ will be linear transformation then **Proof:** $T(a\alpha + b\beta) = aT(\alpha) + bT(\beta)$ $\alpha = (a_1, b_1, c_1) \in V_3(R)$ Let $\beta = (a_2, b_2, c_2) \in V_3(R)$ and $a, b \in R$ Now $a\alpha + b\beta = a(a_1, b_1, c_1) + b(a_2, b_2, c_2)$ $=(aa_1, ab_1, ac_1)+(ba_2, bb_2, bc_2)$ $=(aa_1+ba_1,ab_2+bb_2,ac_1+bc_2)$ $=T(a\alpha+b\beta)$ L.H.S. $=T(aa_1+ba_2,ab_1+bb_2,ac_1+bc_2)$ $=(aa_1+ba_2,ab_1+bb_2),$ by def. of T $=(aa_1,ab_1)+(ba_2,bb_2)$ $=a(a_1,b_1)+b(a_2,b_2)$ $= aT(a_1, b_1, c_1) + bT(a_2, b_2, c_2)$ $= aT(\alpha) + bT(\beta) = R.H.S.$

So *T* is linear transformation from $V_3(R) \rightarrow V_2(R)$

Range and Null space of a linear transformation

Let U and V be two vector spaces over the same field F and let T be a linear transformation from U into V.

Then the range of *T* is written as R(T) and it is the set of all vectors β is *V* such that $\beta = T(\alpha)$ for some $\alpha \in U$.

Range
$$T = \{T(\alpha) = \beta : \alpha \in U, \beta \in V\}$$

Null space of a linear transformation

Let U and V be two vector spaces over same field F and let T be a linear transformation from U into V. Then the null space of T is written as N(T) and it is the set of all vectors α in U such that $T(\alpha) = \overline{0}$ for some $\alpha \in U$.

That is $N(T) = \left\{ \alpha \in U : T(\alpha) = \overline{0} \in V \right\}$

It is to be noted that if we take T as vector space homomorphism of U into V, then the null space of T is also called the karnel of T.

Rank and nullity of a linear transformation

Let U and V be two vector spaces over the same field F and T be a linear transformation from U to V, with U as finite dimensional.

The rank of T is denoted by $\rho(T)$ and it is the dimension of the range of T *i.e.*,

 $\rho(T) = \dim R(T)$

The nullity of T is denoted by v(T) and it is the dimension of null space of T *i.e.*, $v(T) = \dim N(T)$

Note: Let $T: U(F) \rightarrow V(F)$ be a linear transformation from U into V. Suppose that U is finite dimensional. Then rank T + nullity T = dim U.

Example 10. Show that the mapping $T: V_2(R) \to V_3(R)$ defined as T(a,b) = (a+b,a-b,b) is a linear transformation from $V_2(R) \to V_3(R)$. Find the range, rank, null space and nullity of T.

Solution: Let $\alpha = (a_1, b_1)$, $\beta = (a_2, b_2)$ be arbitrary elements of $V_2(R)$. Then $T: V_2(R) \to V_3(R)$ will be a linear transformation if

$$T(a\alpha + b\beta) = aT(\alpha) + bT(\beta), \forall a, b \in R$$

$$\alpha, \beta \in V_2(R), a, b \in R \text{ then } a\alpha + b\beta \in V_2(R)$$

Now, $T(a\alpha + b\beta) = T[a(a_1, b_1) + b(a_2, b_2)]$

$$= T [(aa_{1}, ab_{1}) + (ba_{2}, bb_{2})]$$

$$= T [(aa_{1} + ba_{2}, ab_{1} + bb_{2})]$$

$$= [(aa_{1} + ba_{2}) + (ab_{1} + bb_{2}), (aa_{1} + ba_{2}) - (ab_{1} + bb_{2}), (ab_{1} + bb_{2})]$$

$$= [a(a_{1} + b_{1}) + b(a_{2} + b_{2}), a(a_{1} - b_{1}) + b(a_{2} - b_{2}), (ab_{1} + bb_{2})]$$

$$= a(a_{1} + b_{1}, a_{1} - b_{1}, b_{1}) + b(a_{2} + b_{2}, a_{2} - b_{2}, b_{2})$$

$$= aT(a_{1}, b_{1}) + bT(a_{2}, b_{2})$$

$$= aT(\alpha) + bT(\beta)$$

So $T(a\alpha + b\beta) = aT(\alpha) + bT(\beta)$

So *T* is a linear transformation from $V_2(R)$ into $V_3(R)$.

Now $\{(1,0),(0,1)\}$ is a basis for $V_2(R)$

We have, T(1, 0) = (1 + 0, 1 - 0, 0) = (1, 1, 0)

T(0, 1) = (0 + 1, 0 - 1, 0) = (1, -1, 1)

The vectors T(1, 0), T(0, 1) span the range of T.

Thus the range of T is sub space of $V_3(R)$ spanned by the vectors (1, 1, 0) and (1, -1, 1).

Now the vectors $(1,1,0), (1,-1,1) \in V_3(R)$ are linearly independent if $x, y \in R$,

Then

$$x(1,1,0) + y(1,-1,1) = (0,0,0)$$

$$\Rightarrow \quad (x+y,x-y,y) = (0,0,0)$$

$$\Rightarrow \quad x+y = 0, x-y = 0, y = 0$$

$$\Rightarrow \quad x = 0, y = 0$$

The vectors (1, 1, 0), (1, -1, 1) form a basis for range of *T*. Hence rank *T* = dim of range of *T* = 2 Nullity of *T* = dim of $V_2(R)$ – rank of *T* = 2 – 2 = 0 Null space of *T* must be the zero subspace of $V_2(R)$

Otherwise $(a, b) \in$ null space of *T*

$$\Rightarrow T(a,b) = (0,0,0)$$

$$(a+b,a-b,b) = (0,0,0)$$

$$a+b=0$$

$$a-b=0$$

$$b=0$$

$$\Rightarrow a=0, b=0$$

 \therefore (0,0) is the only element of $V_2(R)$ which belong to null space of *T*. \therefore Null space of *T* is the zero subspace of $V_2(R)$.

Representation of transformation by matrices

Let U be an n-dimensional vector space over the field F and let V be an m-dimensional vector space over the field F.

We take two ordered basis

$$\beta = \{\alpha_1, \alpha_2, \dots, \alpha_n\}$$
 and $\beta' = \{\beta_1, \beta_2, \dots, \beta_m\}$

for U and V respectively

Let $T: U \to V$ be a linear operator: since *T* is completely determined by its action on the vectors α_j belonging to a basis for *U*. Each of the *n* vectors $T(\alpha_j)$ is uniquely expressible as a linear combination of $\beta_1, \beta_2, \dots, \beta_m$. For $j = 1, 2, \dots, n$.

Then,
$$T(\alpha_j) = a_{1j}\beta_1 + a_{2j}\beta_2 + \dots + a_{mj}\beta_m = \sum_{i=1}^m a_{ij}\beta_i$$

The scalars $a_{1i}, a_{2i}, \dots, a_{mi}$ are the co-ordinates of $T(\alpha_i)$ in the ordered basis β' .

The *m* x *n* matrix whose j^{th} column (j = 1, 2,*n*) consists of these co-ordinates is called the matrix of the linear transformation *T* relative to the pair of ordered basis β and β '. It is denoted by the symbol $[T : \beta : \beta']$ or simply by [*T*] if the basis is understood. Thus,

$$[T] = [T : \beta : \beta'] = \text{matrix of } T \text{ relative to ordered basis } \beta \text{ and } \beta' = [a_{ij}]_{m \times n}$$

and

$$T(\alpha_j) = \sum_{i=1}^m a_{ij}\beta_i, \forall j = 1, 2, \dots, n$$

Example 11. Find the matrix of the linear transformation T on $V_3(R)$ defined as T(x, y, z) = (2y + z, x - 4y, 3x) with respect to the ordered basis β and also with respect to the ordered basis β ' where

- (i) $\beta = \{(1, 0, 0), (0, 1, 0), (0, 0, 1)\}$
- (ii) $\beta^{*} = \{(1, 1, 1), (1, 1, 0), (1, 0, 0)\}$

Solution.

(i) We have

$$T(1, 0, 0) = (0, 1, 3) = 0(1, 0, 0) + 1(0, 1, 0) + 3(0, 0, 1)$$

$$T(0, 1, 0) = (2 - 4, 0) = 2(1, 0, 0) - 4(0, 1, 0) + 0(0, 0, 1)$$

and
$$T(0, 0, 1) = (1, 0, 0) = 1(1, 0, 0) + 0(0, 1, 0) + 0(0, 0, 1)$$

so by def of matrix of *T*, with respect to β , we have

$$\begin{bmatrix} T \end{bmatrix}_{\beta} = \begin{bmatrix} 0 & 2 & 1 \\ 1 & -4 & 0 \\ 3 & 0 & 0 \end{bmatrix}$$

(ii) We have T(1, 1, 1) = (3, -3, 3)

We have to express (3, -3, 3) as a linear combination of vectors in β .

Let
$$(a,b,c) = x_1(1,1,1) + y_1(1,1,0) + z_1(1,0,0)$$

 $= (x_1 + y_1 + z_1, x_1 + y_1, x_1)$
 $x_1 + y_1 + z_1 = a, x_1 + y_1 = b, x_1 = c$
So $x_1 = c, y_1 = b - c, z_1 = a - b$
For (3, -3, 3), putting $a = 3, b = -3, c = 3$
 $x_1 = 3, y_1 = -6$ and $z_1 = 6$ (i)
So, $T(1, 1, 1) = (3, -3, 3) = 3(1, 1, 1) - 6(1, 1, 0) + 6(1, 0, 0)$
Also, $T(1, 1, 0) = (2, -3, 3)$
Putting $a = 2, b = -3$ and $c = 3$ in (i) we get
 $T(1, 1, 0) = (2, -3, 3) = 3(1, 1, 1) - 6(1, 1, 0) + 6(1, 0, 0)$
Similarly, $T(1, 0, 0) = (0, 1, 3)$
So, $a = 0, b = 1, c = 3$
 $T(1, 0, 0) = (0, 1, 3) = 3(1, 1, 1) - 2(1, 1, 0) - 1(1, 0, 0)$
So, $[T]_{\beta'} = \begin{bmatrix} 3 & 3 & 3 \\ -6 & -6 & -2 \\ 6 & 5 & -1 \end{bmatrix}$

Practice Problems

1. Suppose R be the field of real numbers. Which of the following are subspace of $V_3(R)$:

(i)
$$\{(a, 2b, 3c) : a, b, c \in R\},$$
 (ii) $\{(a, a, a) : a \in R\}$

(iii) $\{(a, b, c): a, b, c \text{ are rational numbers}\}$

Ans. (i) and (ii)

- 2. In $V_3(R)$, where R is the field of real numbers, examines each of the following sets of vectors for linear independence/ dependence.
 - (i) $\{(2, 1, 2), (8, 4, 8)\}$ (ii) $\{(-1, 2, 1), (3, 0, -1), (-5, 4, 3)\}$
 - (iii) $\{(2, 3, 5), (4, 9, 25)\}$ (iv) $\{(1, 2, 1), (3, 1, 5), (, -4, 7)\}$

Ans. (i) Dependent, (ii) Dependent (iii) Independent (iv) Dependent.

- 3. Show that the three vectors (1, 1, -1), (2, -3, 5) and (-2, 1, 4) of R^3 are linearly independent.
- 4. Determine if the set $\{(2, -1, 0), (3, 5, 1), (1, 1, 2)\}$ is a basis of $V_3(R)$.
- 5. Show that the vectors $\alpha_1 = (1, 0, -1), \alpha_2 = (1, 2, 1), \alpha_3 = (0, -3, 2)$ form a basis of $V_3(R)$. Express each of the standard basis vectors as a linear combination of $\alpha_1, \alpha_2, \alpha_3$.
- 6. Show that the set $\{(1, i, 0), (2i, 1, 1), (0, 1+i, 1-i)\}$ is a basis for $V_3(c)$.
- 7. Let $T: V_3(R) \rightarrow V_3(R)$ defined by

$$T(x_1, x_2, x_3) = (3x_1 + x_3, -2x_1 + x_2, -x_1 + 2x_2 + 4x_3).$$

What is the matrix of *T* in the ordered basis $\{\alpha_1, \alpha_2, \alpha_3\}$ where $\alpha_1 = (1, 1, 0), \alpha_2 = (-1, 2, 1), \alpha_3 = (2, 1, 1).$

Ans.	1	17	35	22]
	$T = \frac{1}{4}$	-3	15	-6
	4	2	-14	0