
Chapter - 1 

Vector Spaces 

Vector Space 

Let (F, +;) be a field. Let V be a non empty set whose elements are vectors. Then V is a 
vector space over the field F, if the following conditions are satisfied: 

1. (V, +) is an abelian group  

 (i) Closure property: V is closed with respect to addition i.e.,    

     α ∈ V, β ∈ V α + β ∈ V 

 (ii) Associative: α + (β + α + β) + α, β, ∈ V 

 (iii) Existence of identity:  an elements 0 ∈ V (zero vector) such that  

    α + 0 α, α∈ V 

 (iv) Existence of inverse: To every vector α in V can be associated with a unique 
vector - α in V called the additive inverse i.e., 

    α + (- α) = 0 

 (v) Commutative: α + β = β + α, α, β ∈ V 

2. V is closed under scalar multiplication i.e., 

     a ∈ F, α ∈ V a α ∈ V 

3. Multiplication and addition of vector is a distributive property i.e., 

 (i) a (α + β) = aα + aβ, a ∈ F, α, β ∈ V 

 (ii) (a + b) α = aα + bα, a, b ∈ F, α ∈ V 

 (iii) (ab) α = a(b α), a, b ∈ F, α ∈ V 

 (iv) 1 α = α, α ∈ V and 1 is the unity element in F. 
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Example 1. The vector space of all ordered n-tuples over a field F. 

Proof. Let F be a field. An ordered set α = (a1, a2, …..an) of n-elements in F is called an 
n-tuples over F. LetV be the all ordered n-tuple over F. Let V = {(a1, a2, …..an) : a1, a2, 
…..an ∈ F}. Now, we will prove that V is a vector space over the field F. For this we 
define two n-tuples, addition and multiplication of two n-tuples by a scalar as follows. 

 Equality of two n-tuples : Let α = (a1, a2, …..an) and β = (b1, b2, …..bn) of V. Then   
(a1, a2, …..an) = (b1, b2, …..bn) ai = b i , i = 1, 2, ……., n. 

 Addition of n-tuples : we take 

  α + β = (a1 + b1, a2 + b2, ……, an + bn), α = (a1, a2, …..an) ∈ V, 

  β = (b1, b2, …..bn) ∈ V 

 Since a1 + b1, a2 + b2, ….., an + bn are all elements of F, therefore, α + β ∈ V and thus  
V is closed with respect to addition of n-tuples. Scalar multiplication of n-tuples : we 
define. 
  aα = (aa1, aa2, ……, aan), a ∈ F, α = (a1, a2, …..an) ∈ V, 

 Since aa1, aa2, …., aan are all elements of F, therefore aα∈V and thus V is closed w.r.t. 
multiplication of n-tuples. 

 Now, we shall show that V is a vector space for the above two compositions. 

1. (i) Associative : Let (c1, c2, …., cn) = ∈V  

       α + (β +   = (a1, a2, ……, an) + [(b1, b2, ……., bn) + (c1, c2, ……., cn)] 

     = (a1, a2, ……, an) + [b1 + c1, b2 + c2, …., bn + cn] 

     = a1 + (b1 + c1), a2 + (b2+ c2), ……, an + (bn + cn)  

     = (a1 + b1) + c1, (a2+ b2) + c2, ……, (an + bn) + cn 

     = [(a1,a2,…..., an) + (b1, b2, ……,bn)] + (c1, c2, ……, cn) 

     = (α + β) + 

 (ii) Commutative: We have 

    α + β = (a1, a2, ……, an) + (b1, b2, ……., bn)  

      = (a1+ b1, a2 + b2, …, an + bn) 

       = (b1+ a1, b2 + a2, …, bn + an) 

      = (b1, b2, …., bn) + (a1, a2, …., an) 

     = β + α 

 (iii) Existence of Identify : Let (0, 0, ….., 0) ∈V then, we have 

    α + 0 = (a1, a2, ……, an) + (0, 0, …., 0) 

             = (a1+ 0, a2 + 0, .…, an + 0) 

            = (a1, a2, ….., an) =  α 
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 (iv) Existence of Inverse : If α = (a1, a2, ….., an) then 

   -α = (-a1, -a2, …, -an) ∈V 

    Then we have 

          α + (-α) = (a1, a2, ……, an) + (-a1, -a2, …., -an) 

             = (a1- a1, a2 - a2, …., an – an) 

             = (0, 0, …., 0) 

    Hence V is an abelian group under addition. 

2. (i) If a ∈ F and (a1, a2, ….., an) = α ∈ V, (b1, b2, ……, bn) = β ∈ V then, 

           a (α + β) = a [(a1, a2, ……, an) + (b1, b2, …., bn)] 

               = a [a1 + b1, a2 + b2 , .…, an+ bn] 

               = a (a1 + b1), a (a2 + b2), .…, a(an+ bn) 

     = (aa1 + ab1, aa2 + ab2, ……, aan + abn) 

                = (aa1 , aa2,……, aan) + (ab1 , ab2, .…, abn) 

     = a (a1, a2, ……, an) + a (b1, b2, …., bn) = aα + aβ 

 (ii) If a, b∈ F and α = (a1, a2, ….., an) ∈ V then 

             (a + b) α = (a + b) (a1, a2, ……, an)  

               = [(a + b) a1, (a + b) a2, ……, (a + b) an]  

               = (aa1 + ba1, aa2 + ba2, ……, aan + ban)  

                = (aa1, aa2, ……, aan) + (ba1, ba2, ….., ban)  

                = a(a1, a2, ……, an) + b(a1, a2, ….., an)  

               = aα + bα 

 (iii) If a, b∈ F and α = (a1,a2, ……, an) ∈ V then 

   (ab) α = (ab) (a1, a2, ….., an)  

               = [(ab)a1, (ab)a2, ……, (ab)an]  

               = [a (ba1), a (ba2), ……, a (ban)]  

               = a (ba1, ba2, ……,ban)  

                = a [b(a1, a2, ……,an)] 

                = a (bα) 

 (iv) If 1 is the unity element of F and α = (a1, a2, ….., an) ∈ V then 

      1α  = 1(a1, a2, ……, an) = (a1, a2, ……, an) = α 

 Hence V is a vector space over the field F. The vector space of all ordered n-tuples             
over F will be denoted by Vn (F). 
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Example 2. Prove that the set of all vectors in a plane over the field of real member is a 
vector space. 

Proof: Let V be the set of all vectors in a plane and R be the field of real numbers. 

 Then we observe that  

1. (V, +) is abelian group: 

 (i) Closure property : Let α, β ∈ V α + β ∈ V 

 (ii) Commutative property :Let α, β ∈ V then 

   α + β = β + α, αβ ∈ V  

 (iii) Associative property : (α + β) +  = α + (β +, αβ,  ∈V 

 (iv) Existance of Identity : Zero vector O in V such that 

   α + 0 = α, α∈ V 

 (v) Existance of inverse : If α ∈ V, then the vector - α ∈ V such that 

   α + (-α) = 0  

2. If α ∈ V and m ∈ R (m is any scalar). Then the scalar multiplication  

     m α ∈ V 

3. Scalar multiplication and addition of vectors satisfy the following properties: 

 (i) m (α + β) = mα + mβ, m ∈ R,α, β ∈ V 

 (ii) (m+n)α = mα + nα m, n ∈ R,α ∈ V  

 (iii) (mn)α = m (nα) m, n ∈ R,α ∈ V 

 (iv) 1α = α, α ∈ V and 1 is the unit element of field R. 

 Hence V is a vector space over the field R. 

Example 3. Let R be the field of real numbers and let Rn be the set of all polynomials 
over the field R. Prove that Rn is a vector space over the field R. Where Rn is of degree at 
most n.   

Solution. Here Rn is the set of polynomials of degree at most n over the field R. The set 
Rn is also includes the zero polynomial. 

 So,   Rn = {f(x) : f(x) = a0 + a1x+a2x
2 + ….anx

n, 

 Where  a0 ,a1,a2, …..an ∈ R} 

 If    f(x) = a0 + a1x+ a2x
2 + ….. + anx

n 

     g(x) = b0 + b1x+b2x
2 + ….. + bnx

n 

     r(x) = c0 + c1x+c2x
2 + ….. + cnx

n
 

 Then,    f(x)+g(x)  = (a0 + b0) +(a1+b1)x + ….. + (an+bn)x
n ∈ Rn 



Vector Spaces  5

 Because it is also a polynomial of degree at most n over the field R. 

 Thus Rn is close for addition of polynomials. 

 ∵ Addition of polynomials is commutative as well as associative. The zero polynomial 
0 is a member of Rn and is identity for addition of polynomials. 

 Again if   f(x) = a0 + a1x+……. + anx
n ∈ R 

n 

 then     –f(x) = – a0 – a1x- a2x
2 ……. – anx

n ∈ R 
n 

 because it is also a polynomials of degree at most n over the field R.   

 We have – f(x) + f(x) = zero polynomial. 

 The polynomial – f(x) is the inverse of f(x) for addition of polynomials. 

 Hence Rn is an addition group for addition of polynomials. 

 Now we define scalar multiplication c f(x) by the relation. 

     cf (x) = ca0 + (ca1)x +(ca2)x
2 + …… + (can)x

n 

 Clearly cf (x) ∈ R 
n because it is also a polynomial of degree at most n over the field R. 

Then Rn is closed for scalar multiplication. 

 Now if k1,k2 ∈ R and f (x), g (x) ∈ R 
n we have 

     k1 [(f (x) + g (x)] = k1 f (x) + k2 g(x) 

     (k1 + k2) f (x) = k1 f (x) + k2 f (x) 

 and    (k1k2) f (x) = k1 [k2 f (x)] can be proved easily. 

 Also   1f (x) = f (x), f (x) ∈ R 
n 

 Hence Rn is a vector space over the field R. 

General properties of vector spaces: Let V (f) be a vector space over field F and 0  be the 
zero vector of V then, 

 (i) a.0 = 0 , a ∈ F 

 (ii) aα = 0 , a ∈ V  

 (iii) a(–α) = -(aα), a ∈ F, α ∈ V 

 (iv) (–a) α = –(aα), a ∈ F, α∈ V 

 (v) a (α – β) = a α – aβ  a ∈ F, α, β∈ V 

 (vi) a =  0   a = 0 or α = 0  
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Proof :  

 (i) We have,         a 0  = a ( 0 + 0 ) 

            = a ( 0 ) + a ( 0 ) 

    0 + a 0  = a 0 + a 0  

∵ V is an abelian group with respect to addition therefore by right cancellalion law 
in V, we get 0  = a  0   

 (ii)    0 α = (0 +0)α [∵ 0 + 0 = 0 ∈ F, by distributive law] 

           = 0α +0α 

             0  + 0   = 0α +0α 

  By right cancellation law in V, we get 

              0  = 0α 

 (iii)            a [+ (– α)] = aα + a (– α) 

                     a  0 = aα + a (– α)   

    0 = aα + a (– α)   

    a (– α) =  – (aα) 

 (iv) Now, [a + (–a)] α = aα + (– a) α 

   α = aα + (– a) α 

    0 = aα + (– a) α 

  (-a) α is the additive inverse of aα 

    (– a) α = – (aα) 

 (v) We have,    a(α – β) = a[α + (– β)] 

                 = aα + a (– β) 

                  = aα + [– (aβ)]  [∵ a  (– β) = – (aβ)] 

                 = aα – aβ 

 (vi) Let aα = 0  then we have to prove that either a = 0 or α = 0 . 

  Let aα = 0  and  a ∈ F, so â exists  

  Then  â(aα) = â  0  

   (âa)α = 0  

    1α = 0  
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   α = 0  

  So when a  0 then α = 0  

  again let aα = 0  and we have to prove that a = 0. Suppose a  0 then â exists. 

  Now,    aα = 0  

              â(aα) = â  0  

              (âa)α = 0  

         1α = 0  

    α = 0  

  Which is a contradictions that α must be a zero vector. Therefore a = 0 
  Hence aα = 0  then either a = 0 or α = 0 . 

Vector Subspace: Let V be a vector space over the field F and W be a subset of V. then W 
is said to be vector subspace of V if W is also a vector space with scalar multiplication 
and vector addition over the field F as V. 

Some basic theorems of vector subspaces 

Theorem 1: The necessary and sufficient condition for a non empty subset W of a vector 
space V (f) to be subspace of V is that W is closed under vector addition and scalar 
multiplication. 

Proof: Condition is necessary. Let V be a vector space and W be subspace of V over the 
same field F. Since W is vector sub space of V, so it is also a vector space under vector 
addition and scalar multiplications so it is closed. Hence condition is necessary. 

The condition is sufficient: Let V be a vector space over field F and W be a non empty 
subset of V, such that W is closed under vector addition and scalar multiplication then we 
have to prove that W is subspace of V. For this we will prove that it is a vector space over 
field itself. 

 Let α∈W, if 1 is the unit element of F then -1∈ F. Now W is closed under scalar 
multiplication. Therefore, 

    ( 1) , ( 1) (1 )F W W W W              

 Thus, the additive inverse of each element of W is also in W. Now, W is closed under 
vector addition. Therefore 

    ( ) 0W W W W             
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Where 0  is the zero vector of V. Hence the zero vector of V is also the zero vector of W. 
Since W V therefore vector addition will be commutative as well as associative in W. 
Hence W is an abelian group with respect to vector addition. Also it is given that W is 
closed under scalar multiplication. The remaining properties of a vector space will hold in 
W. since they hold in V of which W is a subset. Hence W is itself a vector space with 
respect to vector addition and scalar multiplication as in V, so W is subspace of V. Hence 
condition in sufficient. 

Theorem 2: The necessary and sufficient condition for a non empty subset W of a vector 
space V(f) to be a subspace of V is   

   , , ,a b F W a b W         
Proof: The condition is necessary: let V be a vector space over field F and W is subspace 
of V; then by the definition of subspace, W is a vector space over field F itself as V. 

So,  ,a F W a W       

   ,b F W b W       

   ,a W b W    , by vector addition in W, a b W    

 So condition is necessary.  

The sufficient condition: Suppose V is a vector space over field F and W is nonempty 

subset of V such that , , ,a b F W a b W         then we have to show that W 
is subspace of V, for this we will show that W is a vector space itself as V. 

   a b W    

Put  1a b F    

   1 1 W      
   , ,W W        

 So W is closed under vector addition. 

 Now taking a = 0, b = 0, we see that if 

   W   then 

   0 0 W    

   0 W  
 Thus the zero vector of V belongs to W. It will also be the zero vector of W. 

Now again 1 , 1F F    
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Taking    1, 0a b    

We get   1 00 W     

     W   

 Thus the additive inverse of each elements of W is also in W. 

 Now taking 0 , we see that if , a b F and W , then 

0 . .,a b W i e a W    .      

 Thus W is closed under scalar multiplication. The remaining properties of a vector 
space will hold in W since they hold in V of which W is a subset. 

 Hence W is vector space itself. So by the definition W will be sub space of V. 

Theorem 3. The necessary and sufficient conditions for a non-empty subset W of a vector 
space V (F) to be a subspace of V are 

(i) ,W W W         

(ii) ,a F W a W      

Proof: As theorem 2. 

Theorem 4. V be a vector space and W is non empty subset of V then W will be sub space 
of V if and only if , , .W a F a W          

Proof: As theorem 2. 

Examples on Vector Sub Spaces 

Example 1. The set W of ordered trails 1 2( , ,0)k k where 1 2,k k F is a subspace of             
V3 (F). 

Solution.  Let 1 2( , ,0) ,k k and 1 2( , ,0)l l be any two element of W. Where 

1 2 1 2, , , .k k l l F If a, b be any two elements of F, we have 

  1 2 1 2( , ,0) ( , ,0)a b a k k b l l   
 

     1 2 1 2( , ,0) ( , ,0)ak ak bl bl 
 

     1 1 2 2( , ,0)ak bl ak bl    

  1 1 2 2,ak bl ak bl F     so  

  a b W      
  Hence W is a subspace of V3(F). 
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Example 2.  Prove that the set of all solution (l ,m, n) of the equation l+m+2n=0 is a 

subspace of the vector space V3 (R) 

Solution.  Let   , , : , , 2 0W l m n l m n R and l m n      

 To prove that W is a subspace of V3 (R) or R3. 

 Let 1 1 1 2 2 2( , , ) ( , , )l m n and l m n   be any two elements of W. Then 

  1 1 12 0l m n  
 

  2 2 22 0l m n  
 

 If a, b be any two elements of R, we have 

  1 1 1 2 2 2( , , ) ( , , )a b a l m n b l m n   
 

        1 1 1 2 2 2( , , ) ( , , )al am an bl bm bn 
 

        1 2 1 2 1 2( , , )al bl am bm an bn   
 

 Now 1 2 1 2 1 2( ) ( ) 2( )al bl am bm an bn      

     1 1 1 2 2 2( 2 ) ( 2 )a l m n b l m n     
 

     0 0 0a b      

 So 1 2 1 2 1 2( , , )a b al bl am bm an bn W        

 Thus, , , .Wand a b R a b W         

 Hence W is a subspace of V3(R). 

Example 3. If V is a vector space of all real valued continuous functions over the field of 

real numbers R, then show that the set W of solutions of the differential equation. 

  
2

2
7 12 0

d y dy
y

dx dx
    is a subspace of V. 

Solution.  We have 
2

2: 7 12 0
d y dy

W y y
dx dx

 
    
 

 

 It is clear that y = 0 satisfies the given differential equation and as such it belongs to W 
and thus Φ.W   
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 Now let 1 2,   y y W then 

  

2
1 1

12
7 12 0

d y dy
y

dx dx
  

                             … (i) 

  

2
2 2

22
7 12 0

d y dy
y

dx dx
  

                … (ii) 

 Let a,  b .R If W is to be subspace then we should show that 1 2ay by also belongs 

to W  i.e. It is a solution of the given differential equation. We have  

  

2

1 2 1 2 1 22
( ) 7 ( ) 12( )

d d
ay by ay by ay by

dx dx
    

 

   

2 2
1 1 2 2

1 22 2
7 12 7 12

d y dy d y dy
a y b y

dx dx dx dx

   
         

     

   0 0a b     
 Thus a y1 + by2 is a solution of the given differential equation and so it belongs to W. 
Hence W is a subspace of V. 

Algebra of subspaces 

Theorem 1. The intersection of any two subspaces W1 and W2 of a vector space V (f) is 
also a subspace of V (f). 

Proof : Let V be a vector space over field F and W1, W2 are two subspaces of V. It is clear 

that 1 2 1 20 0 ΦW and W soW W         

 Let,  1 2, ,W W and a b F    
 

    1 2 1 2W W W and W      
 

    1 2 1 2W W W and W      
 

 W1 is subspace of V so 

    1 1, , ,a b F W a b W        
 

    2 2, , ,a b F W a b W          

 So,  1 2a b W W   
 

 So, 1 2W W is subspace of V. 
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Theorem 2. The union of two subspaces is a subspace if and only if one is contained in 
the other . 

Proof: Suppose W1 and W2 are two subspaces of V.  

Condition is necessary: Let 1 2 2 1 ,W W orW W  then we will prove that 1 2W W will 

be subspace of V. 

 If 1 2 1 2 2 2 1 1 2 1W W W W W and if W W W W W       
.           

 But W1 and W2 both are subspace of V, so 1 2  W W
will be subspace of V. 

Condition is sufficient: Let W1 and W2 be two subspaces of V such that 1 2   W W be also 

subspace of V, we have to show that 1 2 2 1 .W W orW W   Let us assume that W1 is not a 

sub set of W2 and W2 is also not a subset of W1. 

     1 2 1W W W   such that 2W   

 and  2 1 2W W W   such that 1W  

 But,  1 2W W  
 

 and   1 2W W  
 

 But 1 2W W is subspace of V so 

    1 2W W     

    1 2W or W        

 If    1 1 1,W and W W         

    1 1( ) W W       
 

 Which is a contradiction, again if 

    2 2W and W       

    2( ) ( ) W     
 

    2W 
 

 Again we get a contradiction. Hence either 1 2 2 1 .W W orW W   

Theorem 3. Intersection of any family of subspaces of a vector space is a subspace. 

Proof:  As above 
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Linear combination : Let V (f) be a vector space if 1 2, ,....... n V   then any vector 

V  . 

  1 1 2 2 ..... n na a a       where ia F is called a linear combination of the 

vectors 1 2, ...,.... .n    

Linear span : Let V (f) be a vector space and S be any non empty subset of V. Then the 
linear span of S is the set of all linear combinations of finite sets of elements of S and is 
denoted by L(S). Thus we have 

        1 1 2 2( ) ..... , ,n n i iL S a a a V a F        
 

Linear dependence and linear independence. Let V be a vector space over field F. A 

finite set  1 2, ,....... nS      is said to be linearly dependent if  

  1 1 2 2 ..... 0n na a a       

 Where , ,i iV a F  and all sia  may not zero. There will be minimum one  

0.ia   

 A finite set  1 2, ,....... nS     is said to be linearly independent if 

1 1 2 2 ..... 0n na a a       

 Where i’s ∈ V and ia ’s F and all ia ’s = 0 

 Any infinite setof vectors of V is said to be linearly independent if its every finite 
subset is linearly independent, otherwise it is linearly dependent. 

Example 4. Show that the vector (1, 2, 0), (0, 3, 1), (-1, 0, 1) forms linearly independent 
set over field R. 

Solutions. Let,   1 2 3, ,S   
 

  Where,   1 2 3(1,2,0), (0,3,1), ( 1,0,1)     
 

  Let 1 2 3, ,a a a F such that 

       1 1 2 2 3 3 0a a a      

  Then S will be linearly independent if all 1 2 3 0a a a    

  Now     1 1 2 2 3 3 0a a a      

       1 2 3(1,2,0) (0,3,1) ( 1,0,1) (0,0,0)a a a   
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    1 1 2 2 3 3( ,2 ,0) (0,3 , ) ( ,0, ) (0,0,0)a a a a a a   
 

    1 3 1 2 2 3( ,2 3 , ) (0,0,0)a a a a a a   
 

    1 2 30 0a a a  
 

    1 2 32 3 0 0a a a  
 

    1 2 30 0a a a  
 

  Coefficient matrix 

    

1 0 1 1 0 1

2 3 0 , 2 3 0

0 1 1 0 1 1

A A

  
   
    

           1 3 0 1 2  
 

    
1 0A  

  

  ∴ Rank A = 3, hence there will be only one solution a1= a2 = a3 = 0 

  Hence  1 2 3, ,S     is linearly independent. 

Example 5. Show that  1 2 3, ,S     is linearly dependent over field R. Where 

     1 2 31,3,2 , 1, 7, 8 , 2,1, 1 .       
 

Proof: Let  1 2 3, ,a a a R  

  Now, 1 1 2 2 3 3 0a a a      

           1 2 31,3, 2 1, 7, 8 2,1, 1 0,0,0a a a     
 

       1 2 3 1 2 3 1 2 32 ,3 7 , 2 8 0,0,0a a a a a a a a a      
 

    1 2 32 0a a a  
 

    1 2 33 7 0a a a  
 

    1 2 32 8 0a a a  
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  Coefficient matrix 

    

1 1 2

3 7 1

2 8 1

A

 
   
     

    

1 1 2

3 7 1

2 8 1

A  
 

 

          1 7 8 1 3 2 2 24 14       
 

     15 5 20 0     

    
0A 

 

  So rank of A<3 

  Rank of A<number of unknowns 

  So there is minimum one 
0ia 

 

  So  1 2 3, ,S     is linearly dependent. 

Example 6. If , ,   are linearly independent vectors of V (f) where F is any sub field 

of complex numbers than prove that , ,        are also linearly independent. 

Solution.  Let 1 2 3, ,a a a be scalar then 

    1 2 3( ) ( ) ( ) 0a a a            

    1 3 1 2 2 3( ) ( ) ( ) 0a a a a a a                         …(i) 

  But , ,   are linearly independent. Therefore (i) implies 

    1 2 30 0a a a  
 

    1 2 30 0a a a  
 

    1 2 30 0a a a  
 



  Advanced Engineering Mathematics 16 

   The coefficient matrix A of these equations is  

     

1 0 1

1 1 0

0 1 0

A

 
   
    

     
   1 0 0 1 1 0 1 0A      

 
  Rank A = 3 = number of unknowns 

  There is only one solution 

     1 2 3 0a a a  
 

  So , ,        are also linearly independent. 

Basic of a vector space : A subset  1 2, ,......, nS     of a vector space V (f) is said 

to be a basis of V (f) if 

(i) S consists of linearly independent vectors i.e., 

    1 1 2 2 3 3 0a a a      

  all ai’s are zero, ,i ia F V    

 (ii)  L(S) = V(f) i.e., every element of V can be written as linear combination of 
element of S. 

Example 7. Show       1, 2,1 , 2,1,0 , 1, 1, 2S    forms a basis of R3. 

Proof : Since dim R3 = 3 

  So   L(S) = V (R3) 

  Now we only to prove that S is linearly independent 

  Let 1 2 3, ,a a a F such that  

     1 1 2 2 3 3 0a a a      

  We will prove that 1 2 3 0a a a    

  Now        1 2 31, 2,1 2,1,0 1, 1,2 (0,0,0)a a a     

     
   1 2 3 1 2 3 1 2 32 ,2 , 0 2 0,0,0a a a a a a a a a      

 

     1 2 32 0a a a    

     1 2 32 0a a a  
 

     1 2 30 2 0a a a    
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  Coefficient matrix 

   

1 2 1

2 1 1

1 0 2

A
 
  
  



 

   

1 2 1

2 1 1

1 0 2

A 

 

        = 1 [2 – 0] – 2 [4 + 1] + 1 [0 – 1] 

        = 2 – 10 – 1  

    0  

 So rank of A = 3 = no of unknown 

 So there is only one solution 1 2 3 0a a a    

 So  1 2 3, ,S     is linearly independent 

 So S forms the basis of R3. 

Example 8. Select a basis of R3 (R) from the set  1 2 3 4, , ,S    
where   

         1 2 3 41, 3, 2 , 2, 4,1 , 3,1,3 , 1,1,1       
 

Solution. If any three vectors in S are linearly independent, then they will form a basis of 

the vector space R3 (R). 

  First we take  1 1 2 3, ,S      

  For this we take 1 2 3, ,a a a R such that 1 1 2 2 3 3 0a a a        

  i.e.,  1 2 3(1, 3,2) (2,4,1) (3,1,3) 0,0,0a a a     

     1 2 3 1 2 3 1 2 32 3 , 3 4 , 2 3 (0,0,0)a a a a a a a a a       
 

    1 2 32 3 0a a a    

    1 2 33 4 0a a a   
 

    1 2 32 3 0a a a  
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  Coefficient matrix 

    

1 2 3

3 4 1

2 1 3

A

 
   
    

    
0A 

 

  So rank of A<3 

  i.e., rank of A < no. of unknowns 

  So  1 1 2 3, ,S     are linearly dependent 

  Now we take  2 1 2 4, ,S   
 

  Then we get 

    

1 2 1

3 4 1 0

2 1 1

A   

 

  So rank of A = No. of unknown 

  So  1 2 4, ,    is linearly independent 

  So  2 1 2 4, ,S     forms the basis of R3 (R). 

Linear Transformation:  Let U(f) and V (f) be two vector space over the same field 
. :F T U V is said to be linear transformation if 

   ( ) ( ) ( )T a b aT bT                        …(i) 

   ,  in U and a, b in F 

 in another way the properly (i) can be defined in two ways 

 (i)    ( )T T T      and 

 (ii) ( ) ( ),T a aT a F    , , U   

Example 9. The function 3 2: ( ) ( )T V R V R defined by ( , , )T a b c   

( , ), , , ,a b a b c R  is a linear transformation from V3 (R) into V2 (R). 
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Proof: If 3 2: ( ) ( )T V R V R will be linear transformation then 

    ( ) ( ) ( )T a b aT bT       

  Let 1 1 1 3( , , ) ( )a b c V R  
 

    2 2 2 3( , , ) ( )a b c V R  and ,a b R  

  Now 1 1 1 2 2 2( , , ) ( , , )a b a a b c b a b c     

               1 1 1 2 2 2, , ( , , )aa ab ac ba bb bc 
 

                1 1 2 2 1 2, ,aa ba ab bb ac bc   
 

  L.H.S.   T a b    

          1 2 1 2 1 2, ,T aa ba ab bb ac bc   
 

     1 2 1 2( , ),aa ba ab bb  
by def. of T 

        1 1 2 2, ,aa ab ba bb 
 

     1 1 2 2( , ) ( , )a a b b a b 
 

     1 1 1 2 2 2( , , ) ( , , )aT a b c bT a b c   

     ( ) ( ) . . .aT bT R H S     

  So T is linear transformation from V3 (R) → V2 (R) 

Range and Null space of a linear transformation 

Let U and V be two vector spaces over the same field F and let T be a linear 
transformation from U into V. 

 Then the range of T is written as R(T) and it is the set of all vectors β  is V such that   

β= T(α ) for some U  . 

   Range   : ,T T U V        

Null space of a linear transformation 

Let U and V be two vector spaces over same field F and let T be a linear transformation 
from U into V. Then the null space of T is written as N(T) and it is the set of all vectors α 

in U such that   0T  for some U  . 

  That is  ( ) : ( ) 0N T U T V      
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 It is to be noted that if we take T as vector space homomorphism of U into V, then the 
null space of T is also called the karnel of T. 

Rank and nullity of a linear transformation 

Let U and V be two vector spaces over the same field F and T be a linear transformation 
from U to V, with U as finite dimensional. 

 The rank of T is denoted by ( )T and it is the dimension of the range of T i.e.,  

  ( ) dim ( )T R T   
 The nullity of T is denoted by v(T) and it is the dimension of null space of T i.e., 

( ) dim ( )v T N T  

Note:  Let : ( ) ( )T U F V F be a linear transformation from U into V. Suppose that U 
is finite dimensional. Then rank T + nullity T = dim U. 

Example 10. Show that the mapping 2 3: ( ) ( )T V R V R defined as 

   , , ,T a b a b a b b  
is a linear transformation from 2 3( ) ( ) .V R V R Find the 

range, rank, null space and nullity of T. 

Solution: Let    1 1 2 2, , ,a b a b   be arbitrary elements of V2(R). Then                  

2 3: ( ) ( )T V R V R will be a linear transformation if       

        , ,T a b aT bT a b R       
 

  2, ( ), ,V R a b R   
then 2 ( )a b V R  

 

 Now, 1 1 2 2( ) [ ( , ) ( , )]T a b T a a b b a b     

   1 1 2 2[( , ) ( , )]T aa ab ba bb   

   
 1 2 1 2,T aa ba ab bb      

   
         1 2 1 2 1 2 1 2 1 2, ,aa ba ab bb aa ba ab bb ab bb           

   
         1 1 2 2 1 1 2 2 1 2, ,a a b b a b a a b b a b ab bb           

      1 1 1 1 1 2 2 2 2 2, , , ,a a b a b b b a b a b b     
 

   1 1 2 2( , ) ( , )aT a b bT a b 
 

   ( ) ( )aT bT    



Vector Spaces  21

 So     ( ) ( )T a b aT bT       

 So T is a linear transformation from V2(R) into V3(R). 

 Now {(1,0),(0,1)} is a basis for V2(R) 

 We have, T (1, 0) = (1 + 0, 1 – 0, 0) = (1, 1, 0) 

    T (0, 1) = (0 + 1, 0 – 1, 0) = (1, - 1, 1) 

 The vectors T (1, 0), T (0, 1) span the range of T. 

 Thus the range of T is sub space of V3(R) spanned by the vectors (1, 1, 0) and                     
(1, -1, 1). 

 Now the vectors      31,1,0 , 1, 1,1 V R  are linearly independent if , ,x y R               

 Then 

         1,1,0 1, 1,1 0,0,0x y  
 

  ⇒     , , 0,0,0x y x y y  
 

  ⇒  0, 0, 0x y x y y      

  ⇒  0, 0x y   

  The vectors (1, 1, 0), (1, -1, 1) form a basis for range of T. 

  Hence rank T = dim of range of T = 2 

  Nullity of T = dim of V2(R) – rank of T = 2 – 2 = 0 

  Null space of T must be the zero subspace of V2(R) 

  Otherwise  ,a b  null space of T 

  ⇒   ( , ) 0,0,0T a b   

       , , 0,0,0a b a b b  
 

    a + b = 0 

    a – b = 0 

    b = 0 

  ⇒  a = 0, b = 0 

  ∴ (0,0) is the only element of V2(R) which belong to null space of T. 

  ∴ Null space of T is the zero subspace of V2 (R). 
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Representation of transformation by matrices 

Let U be an n-dimensional vector space over the field F and let V be an m-dimensional 
vector space over the field F. 

 We take two ordered basis 

     1 2, ,...... n   
and  1 2' , ,...... m   

 

for U and V respectively 

Let :T U V be a linear operator: since T is completely determined by its action on 

the vectors j belonging to a basis for U. Each of the n vectors T( j ) is uniquely 

expressible as a linear combination of 1 2, ,...... m   . For j = 1, 2,……n.   

 Then,   1 1 2 2
1

( ) ......
m

j j j mj m ij i
i

T a a a a


          

 The scalars 1 2, ,......j j mja a a are the co-ordinates of ( )jT  in the ordered basis ' . 

 The m x n matrix whose jth column (j = 1, 2, …….n) consists of these co-ordinates is 
called the matrix of the linear transformation T relative to the pair of ordered basis β and 

β` . It is denoted by the symbol  : : 'T   or simply by [T] if the basis is understood. 

Thus,  

 [T] =  : : 'T   = matrix of T relative to ordered basis β and ' ij m n
a


     

and    
1

( ) , 1, 2,......
m

j ij i
i

T a j n


     

Example 11.  Find the matrix of the linear transformation T on V3 (R) defined as T (x, y, 
z) = (2y + z, x - 4y, 3x) with respect to the ordered basis β and also with respect to the 
ordered basis β` where 

 (i) β = {(1, 0, 0), (0, 1, 0), (0, 0, 1)} 

 (ii) β` = {(1, 1, 1), (1, 1, 0), (1, 0, 0)} 

Solution.  

 (i) We have 

        T (1, 0, 0) = (0, 1, 3) = 0 (1, 0, 0) + 1 (0, 1, 0) + 3 (0, 0, 1) 

     T (0, 1, 0) = (2 – 4, 0) = 2(1, 0, 0) - 4 (0, 1, 0) + 0 (0, 0, 1) 

  and T (0, 0, 1) = (1, 0, 0) = 1 (1, 0, 0) + 0 (0, 1, 0) + 0 (0, 0, 1) 
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  so by def of matrix of T, with respect to β , we have 

    

 
0 2 1

1 4 0

3 0 0

T


 
   
    

 (ii)  We have T (1, 1, 1) = (3, -3, 3) 

   We have to express (3, -3, 3) as a linear combination of vectors in β`. 

   Let   1 1 1, , (1,1,1) (1,1,0) (1,0,0)a b c x y z    

     1 1 1 1 1 1, ,x y z x y x   
 

    1 1 1 1 1 1, ,x y z a x y b x c     
 

  So 1 1 1, ,x c y b c z a b      

  For (3, -3, 3), putting a = 3, b = - 3, c = 3 

    1 1 13, 6 6x y and z  
     … (i) 

  So, T (1, 1, 1) = (3, -3, 3) = 3 (1, 1, 1) – 6 (1, 1, 0) + 6 (1, 0, 0) 

  Also, T (1, 1, 0) = (2, -3, 3) 

  Putting a = 2, b = -3 and c = 3 in (i) we get 

   T(1, 1, 0) = (2, -3, 3) = 3 (1, 1, 1) – 6 (1, 1, 0) + 6 (1, 0 , 0) 

  Similarly, T(1, 0, 0) = (0, 1, 3) 

  So,   a = 0, b = 1, c = 3 

   T (1, 0, 0) = (0, 1, 3) = 3 (1, 1, 1) – 2 (1, 1, 0) – 1 (1, 0, 0) 

  So,    '

3 3 3

6 6 2

6 5 1

T

 
     
  

  

Practice Problems 

 1. Suppose R be the field of real numbers. Which of the following are subspace of 
V3(R) : 

  (i)  {(a, 2b, 3c) : a, b, c ∈ R},   (ii) {(a, a, a) : a ∈ R}  

  (iii)  {(a, b, c): a ,b, c are rational numbers} 

Ans. (i) and (ii) 
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2. In V3(R), where R is the field of real numbers, examines each of the following sets of 
vectors for linear independence/ dependence. 

 (i)  {(2, 1, 2), (8, 4, 8)}   (ii) {(-1, 2, 1), (3, 0, -1), (-5, 4, 3)} 

 (iii) {(2, 3, 5), (4, 9, 25)}   (iv) {(1, 2, 1), (3, 1, 5), (, -4, 7)} 

Ans. (i) Dependent, (ii) Dependent (iii) Independent (iv) Dependent. 

3. Show that the three vectors (1, 1, -1), (2, -3, 5) and (-2, 1, 4) of R3 are linearly 
independent. 

4. Determine if the set {(2, -1, 0), (3, 5, 1), (1, 1, 2)} is a basis of V3(R). 

5. Show that the vectors      1 2 31,0, 1 , 1,2,1 , 0, 3,2       form a basis of 

V3(R). Express each of the standard basis vectors as a linear combination of 

1 2 3, ,   . 

6. Show that the set {(1, i, 0), (2i, 1, 1), (0, 1+i, 1-i)} is a basis for V3(c). 

7. Let T : V3(R) → V3(R) defined by 

    1 2 3 1 3 1 2 1 2 3( , , ) (3 , 2 , 2 4 ).T x x x x x x x x x x      
 

What is the matrix of T in the ordered basis  1 2 3, ,   where  

1 2 3(1,1,0), ( 1,2,1), (2,1,1).     
 

Ans. 

17 35 22
1

3 15 6
4

2 14 0

T

 
    
  

   

 


