Chapter-1

Vector Spaces

Vector Space

Let $(F,+;)$ be a field. Let V be a non empty set whose elements are vectors. Then V is a vector space over the field F, if the following conditions are satisfied:

1. $(V,+)$ is an abelian group
(i) Closure property: V is closed with respect to addition i.e.,

$$
\alpha \in V, \beta \in V \Rightarrow \alpha+\beta \in V
$$

(ii) Associative: $\alpha+(\beta+\Upsilon)=(\alpha+\beta)+\Upsilon, \forall \alpha, \beta, \Upsilon \in V$
(iii) Existence of identity: \exists an elements $0 \in V$ (zero vector) such that

$$
\alpha+0=\alpha, \forall \alpha \in V
$$

(iv) Existence of inverse: To every vector α in V can be associated with a unique vector - α in V called the additive inverse i.e.,

$$
\alpha+(-\alpha)=0
$$

(v) Commutative: $\alpha+\beta=\beta+\alpha, \forall \alpha, \beta \in V$
2. V is closed under scalar multiplication i.e.,

$$
\mathrm{a} \in F, \alpha \in V \Rightarrow \mathrm{a} \alpha \in V
$$

3. Multiplication and addition of vector is a distributive property i.e.,
(i) $\mathrm{a}(\alpha+\beta)=\mathrm{a} \alpha+\mathrm{a} \beta, \forall \mathrm{a} \in F, \alpha, \beta \in V$
(ii) $(\mathrm{a}+\mathrm{b}) \alpha=\mathrm{a} \alpha+\mathrm{b} \alpha, \forall \mathrm{a}, \mathrm{b} \in F, \alpha \in V$
(iii) (ab) $\alpha=\mathrm{a}(\mathrm{b} \alpha), \forall \mathrm{a}, \mathrm{b} \in F, \alpha \in V$
(iv) $1 \cdot \alpha=\alpha, \forall \alpha \in V$ and 1 is the unity element in F.

Example 1. The vector space of all ordered n-tuples over a field F.
Proof. Let F be a field. An ordered set $\alpha=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . . \mathrm{a}_{\mathrm{n}}\right)$ of n -elements in F is called an n-tuples over F. Let V be the all ordered n-tuple over F. Let $V=\left\{\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . . \mathrm{a}_{\mathrm{n}}\right): \mathrm{a}_{1}, \mathrm{a}_{2}\right.$, $\left.\ldots . . \mathrm{a}_{\mathrm{n}} \in F\right\}$. Now, we will prove that V is a vector space over the field F. For this we define two n-tuples, addition and multiplication of two n-tuples by a scalar as follows.

Equality of two n-tuples : Let $\alpha=\left(a_{1}, a_{2}, \ldots . a_{n}\right)$ and $\beta=\left(b_{1}, b_{2}, \ldots . . b_{n}\right)$ of V. Then $\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . . \mathrm{a}_{\mathrm{n}}\right)=\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots . . \mathrm{b}_{\mathrm{n}}\right) \Rightarrow \mathrm{a}_{i}=\mathrm{b}_{\mathrm{i}}, \forall \mathrm{i}=1,2, \ldots \ldots, \mathrm{n}$

Addition of n-tuples: we take

$$
\begin{aligned}
& \alpha+\beta=\left(\mathrm{a}_{1}+\mathrm{b}_{1}, \mathrm{a}_{2}+\mathrm{b}_{2}, \ldots \ldots, \mathrm{a}_{\mathrm{n}}+\mathrm{b}_{\mathrm{n}}\right), \forall \alpha=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . \mathrm{a}_{\mathrm{n}}\right) \in V \\
& \beta=\left(\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots . . \mathrm{b}_{\mathrm{n}}\right) \in V
\end{aligned}
$$

Since $a_{1}+b_{1}, a_{2}+b_{2}, \ldots ., a_{n}+b_{n}$ are all elements of F, therefore, $\alpha+\beta \in V$ and thus V is closed with respect to addition of n-tuples. Scalar multiplication of n-tuples : we define.

$$
\mathrm{a} \alpha=\left(\mathrm{aa}_{1}, \mathrm{aa}_{2}, \ldots \ldots, \mathrm{aa}_{\mathrm{n}}\right), \forall \mathrm{a} \in F, \alpha=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . . \mathrm{a}_{\mathrm{n}}\right) \in V,
$$

Since $\mathrm{aa}_{1}, \mathrm{aa}_{2}, \ldots, \mathrm{aa}_{\mathrm{n}}$ are all elements of F, therefore $\mathrm{a} \alpha \in V$ and thus V is closed w.r.t. multiplication of n-tuples.

Now, we shall show that V is a vector space for the above two compositions.

1. (i) Associative: Let $\left(\mathrm{c}_{1}, \mathrm{c}_{2}, \ldots, \mathrm{c}_{\mathrm{n}}\right)=\Upsilon \in V$

$$
\begin{aligned}
\alpha+(\beta+\Upsilon) & =\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)+\left[\left(b_{1}, b_{2}, \ldots \ldots, b_{n}\right)+\left(c_{1}, c_{2}, \ldots \ldots, c_{n}\right)\right] \\
& =\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)+\left[b_{1}+c_{1}, b_{2}+c_{2}, \ldots, b_{n}+c_{n}\right] \\
& =a_{1}+\left(b_{1}+c_{1}\right), a_{2}+\left(b_{2}+c_{2}\right), \ldots \ldots, a_{n}+\left(b_{n}+c_{n}\right) \\
& =\left(a_{1}+b_{1}\right)+c_{1},\left(a_{2}+b_{2}\right)+c_{2}, \ldots \ldots,\left(a_{n}+b_{n}\right)+c_{n} \\
& =\left[\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots \ldots, b_{n}\right)\right]+\left(c_{1}, c_{2}, \ldots \ldots, c_{n}\right) \\
& =(\alpha+\beta)+\Upsilon
\end{aligned}
$$

(ii) Commutative: We have

$$
\begin{aligned}
\alpha+\beta & =\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots \ldots,\right. \\
& =\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right) \\
& =\left(b_{1}+a_{1}, b_{2}+a_{2}, \ldots, b_{n}+a_{n}\right) \\
& =\left(b_{1}, b_{2}, \ldots, b_{n}\right)+\left(a_{1}, a_{2}, \ldots, a_{n}\right) \\
& =\beta+\alpha
\end{aligned}
$$

(iii) Existence of Identify : Let $(0,0, \ldots, 0) \in V$ then, we have

$$
\begin{aligned}
\alpha+0 & =\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)+(0,0, \ldots, 0) \\
& =\left(a_{1}+0, a_{2}+0, \ldots, a_{n}+0\right) \\
& =\left(a_{1}, a_{2}, \ldots ., a_{n}\right)=\alpha
\end{aligned}
$$

(iv) Existence of Inverse: If $\alpha=\left(a_{1}, a_{2}, \ldots ., a_{n}\right)$ then

$$
-\alpha=\left(-a_{1},-a_{2}, \ldots,-a_{n}\right) \in V
$$

Then we have

$$
\begin{aligned}
\alpha+(-\alpha) & =\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)+\left(-a_{1},-a_{2}, \ldots .,-a_{n}\right) \\
& =\left(a_{1}-a_{1}, a_{2}-a_{2}, \ldots, a_{n}-a_{n}\right) \\
& =(0,0, \ldots, 0)
\end{aligned}
$$

Hence V is an abelian group under addition.
2. (i) If $\mathrm{a} \in F$ and $\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots ., \mathrm{a}_{\mathrm{n}}\right)=\alpha \in V,\left(\mathrm{~b}_{1}, \mathrm{~b}_{2}, \ldots \ldots, \mathrm{~b}_{\mathrm{n}}\right)=\beta \in V$ then,

$$
\begin{aligned}
a(\alpha+\beta) & =a\left[\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)+\left(b_{1}, b_{2}, \ldots, b_{n}\right)\right] \\
& =a\left[a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right] \\
& =a\left(a_{1}+b_{1}\right), a\left(a_{2}+b_{2}\right), \ldots, a\left(a_{n}+b_{n}\right) \\
& =\left(a a_{1}+a b_{1}, a a_{2}+a b_{2}, \ldots \ldots, a a_{n}+a b_{n}\right) \\
& =\left(a a_{1}, a a_{2}, \ldots \ldots, a a_{n}\right)+\left(a b_{1}, a b_{2}, \ldots, a b_{n}\right) \\
& =a\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)+a\left(b_{1}, b_{2}, \ldots, b_{n}\right)=a \alpha+a \beta
\end{aligned}
$$

(ii) If $\mathrm{a}, \mathrm{b} \in F$ and $\alpha=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots ., \mathrm{a}_{\mathrm{n}}\right) \in V$ then

$$
\begin{aligned}
(a+b) \alpha & =(a+b)\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right) \\
& =\left[(a+b) a_{1},(a+b) a_{2}, \ldots \ldots,(a+b) a_{n}\right] \\
& =\left(a a_{1}+b a_{1}, a a_{2}+b a_{2}, \ldots \ldots, a a_{n}+b a_{n}\right) \\
& =\left(a a_{1}, a a_{2}, \ldots \ldots, a a_{n}\right)+\left(b a_{1}, b a_{2}, \ldots ., b a_{n}\right) \\
& =a\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)+b\left(a_{1}, a_{2}, \ldots ., a_{n}\right) \\
& =a \alpha+b \alpha
\end{aligned}
$$

(iii) If $\mathrm{a}, \mathrm{b} \in F$ and $\alpha=\left(\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots \ldots, \mathrm{a}_{\mathrm{n}}\right) \in V$ then

$$
\begin{aligned}
(a b) \alpha & =(a b)\left(a_{1}, a_{2}, \ldots ., a_{n}\right) \\
& =\left[(a b) a_{1},(a b) a_{2}, \ldots \ldots,(a b) a_{n}\right] \\
& =\left[a\left(b a_{1}\right), a\left(b a_{2}\right), \ldots \ldots, a\left(b a_{n}\right)\right] \\
& =a\left(b a_{1}, b a_{2}, \ldots \ldots, b a_{n}\right) \\
& =a\left[b\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)\right] \\
& =a(b \alpha)
\end{aligned}
$$

(iv) If 1 is the unity element of F and $\alpha=\left(a_{1}, a_{2}, \ldots ., a_{n}\right) \in V$ then

$$
1 \cdot \alpha=1 \cdot\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)=\left(a_{1}, a_{2}, \ldots \ldots, a_{n}\right)=\alpha
$$

Hence V is a vector space over the field F. The vector space of all ordered n-tuples over F will be denoted by $V_{n}(F)$.

Example 2. Prove that the set of all vectors in a plane over the field of real member is a vector space.
Proof: Let V be the set of all vectors in a plane and R be the field of real numbers.
Then we observe that

1. $(V,+)$ is abelian group:

(i) Closure property : Let $\alpha, \beta \in V \Rightarrow \alpha+\beta \in V$
(ii) Commutative property :Let $\alpha, \beta \in V$ then

$$
\alpha+\beta=\beta+\alpha, \forall \alpha, \beta \in V
$$

(iii) Associative property: $(\alpha+\beta)+\Upsilon=\alpha+(\beta+\Upsilon), \forall \alpha, \beta, \Upsilon \in V$
(iv) Existance of Identity : Zero vector O in V such that

$$
\alpha+0=\alpha, \forall \alpha \in V
$$

(v) Existance of inverse : If $\alpha \in V$, then the vector $-\alpha \in V$ such that

$$
\alpha+(-\alpha)=0
$$

2. If $\alpha \in V$ and $m \in R$ (m is any scalar). Then the scalar multiplication
$m \alpha \in V$
3. Scalar multiplication and addition of vectors satisfy the following properties:
(i) $m(\alpha+\beta)=m \alpha+m \beta, \forall m \in R, \forall \alpha, \beta \in V$
(ii) $\quad(m+n) \alpha=m \alpha+n \alpha \forall m, n \in R, \forall \alpha \in V$
(iii) $(m n) \alpha=m(n \alpha) \forall m, n \in R, \forall \alpha \in V$
(iv) $1 \cdot \alpha=\alpha, \forall \alpha \in V$ and 1 is the unit element of field R.

Hence V is a vector space over the field R.
Example 3. Let R be the field of real numbers and let R_{n} be the set of all polynomials over the field R. Prove that R_{n} is a vector space over the field R. Where R_{n} is of degree at most n.

Solution. Here R_{n} is the set of polynomials of degree at most n over the field R. The set R_{n} is also includes the zero polynomial.

So,

$$
R_{n}=\left\{f(x): f(x)=\mathrm{a}_{0}+\mathrm{a}_{1} x+\mathrm{a}_{2} x^{2}+\ldots \mathrm{a}_{n} x^{n},\right.
$$

Where

$$
\left.\mathrm{a}_{0}, \mathrm{a}_{1}, \mathrm{a}_{2}, \ldots . . \mathrm{a}_{n} \in R\right\}
$$

If

$$
\begin{aligned}
& f(x)=\mathrm{a}_{0}+\mathrm{a}_{1} x+\mathrm{a}_{2} x^{2}+\ldots . .+\mathrm{a}_{n} x^{n} \\
& g(x)=b_{0}+b_{1} x+b_{2} x^{2}+\ldots . .+b_{n} x^{n} \\
& r(x)=c_{0}+c_{1} x+c_{2} x^{2}+\ldots . .+c_{n} x^{n}
\end{aligned}
$$

Then,

$$
f(x)+g(x)=\left(\mathrm{a}_{0}+b_{0}\right)+\left(\mathrm{a}_{l}+b_{1}\right) x+\ldots \ldots+\left(\mathrm{a}_{n}+b_{n}\right) x^{n} \in R_{n}
$$

Because it is also a polynomial of degree at most n over the field R.
Thus R_{n} is close for addition of polynomials.
\because Addition of polynomials is commutative as well as associative. The zero polynomial 0 is a member of R_{n} and is identity for addition of polynomials.

Again if

$$
f(x)=\mathrm{a}_{0}+\mathrm{a}_{1} x+\ldots \ldots+\mathrm{a}_{n} x^{n} \in R_{n}
$$

then $\quad-f(x)=-\mathrm{a}_{0}-\mathrm{a}_{1} x-\mathrm{a}_{2} x^{2} \ldots \ldots-\mathrm{a}_{n} x^{n} \in R_{n}$
because it is also a polynomials of degree at most n over the field R.
We have $-f(x)+f(x)=$ zero polynomial.
The polynomial $-f(x)$ is the inverse of $f(x)$ for addition of polynomials.
Hence R_{n} is an addition group for addition of polynomials.
Now we define scalar multiplication $c f(x)$ by the relation.

$$
c f(x)=c \mathrm{a}_{0}+\left(c \mathrm{a}_{1}\right) x+\left(c \mathrm{a}_{2}\right) x^{2}+\ldots \ldots+\left(c \mathrm{a}_{n}\right) x^{n}
$$

Clearly $c f(x) \in R_{n}$ because it is also a polynomial of degree at most n over the field R. Then R_{n} is closed for scalar multiplication.

Now if $k_{1}, k_{2} \in R$ and $f(x), g(x) \in R_{n}$ we have

$$
\begin{aligned}
& k_{1}\left[(f(x)+g(x)]=\mathrm{k}_{1} f(x)+k_{2} g(x)\right. \\
& \left(k_{1}+k_{2}\right) f(x)=k_{1} f(x)+k_{2} f(x)
\end{aligned}
$$

and $\quad\left(k_{1} k_{2}\right) f(x)=k_{1}\left[k_{2} f(x)\right]$ can be proved easily.
Also $\quad 1 \cdot f(x)=f(x), f(x) \in R_{n}$
Hence R_{n} is a vector space over the field R.
General properties of vector spaces: Let $V(f)$ be a vector space over field F and $\overline{0}$ be the zero vector of V • then,
(i) $\mathrm{a} . \overline{0}=\overline{0}, \forall \mathrm{a} \in F$
(ii) $\mathrm{a} \alpha=\overline{0}, \forall \mathrm{a} \in V$
(iii) $\mathrm{a}(-\alpha)=-(\mathrm{a} \alpha), \forall \mathrm{a} \in F, \alpha \in \mathrm{~V}$
(iv) $(-\mathrm{a}) \alpha=-(\mathrm{a} \alpha), \forall \mathrm{a} \in \mathrm{F}, \alpha \in \mathrm{V}$
(v) $\mathrm{a}(\alpha-\beta)=\mathrm{a} \alpha-\mathrm{a} \beta \quad \forall \mathrm{a} \in F, \alpha, \beta \in V$
(vi) $\mathrm{a}=\overline{0} \Rightarrow \mathrm{a}=0$ or $\alpha=\overline{0}$

Proof :

(i) We have, $\quad a \overline{0}=a(\overline{0}+\overline{0})$

$$
=\mathrm{a}(\overline{0})+\mathrm{a}(\overline{0})
$$

$$
\therefore \quad \overline{0}+\mathrm{a} \overline{0}=\mathrm{a} \overline{0}+\mathrm{a} \overline{0}
$$

$\because V$ is an abelian group with respect to addition therefore by right cancellalion law in V, we get $\overline{0}=\mathrm{a} \cdot \overline{0}$
(ii)

$$
\begin{aligned}
0 \alpha= & (0+0) \alpha
\end{aligned} \quad[\because 0+0=0 \in F, \text { by distributive law }]
$$

By right cancellation law in V, we get
(iii)

$$
\begin{array}{cc}
& \overline{0}=0 \alpha \\
& \mathrm{a}[\alpha+(-\alpha)]=\mathrm{a} \alpha+\mathrm{a}(-\alpha) \\
& \mathrm{a} \cdot \overline{0}=\mathrm{a} \alpha+\mathrm{a}(-\alpha) \\
\Rightarrow & \overline{0}=\mathrm{a} \alpha+\mathrm{a}(-\alpha) \\
\Rightarrow \quad & \mathrm{a}(-\alpha)=-(\mathrm{a} \alpha)
\end{array}
$$

(iv) Now, $[\mathrm{a}+(-\mathrm{a})] \alpha=\mathrm{a} \alpha+(-\mathrm{a}) \alpha$

$$
\begin{array}{ll}
\Rightarrow & 0 \alpha=\mathrm{a} \alpha+(-\mathrm{a}) \alpha \\
\Rightarrow & \overline{0}=\mathrm{a} \alpha+(-\mathrm{a}) \alpha
\end{array}
$$

$(-a) \alpha$ is the additive inverse of $a \alpha$

$$
\Rightarrow \quad(-\mathrm{a}) \alpha=-(\mathrm{a} \alpha)
$$

(v) We have,

$$
\begin{aligned}
a(\alpha-\beta) & =a[\alpha+(-\beta)] \\
& =a \alpha+a(-\beta) \\
& =a \alpha+[-(a \beta)] \quad[\because a(-\beta)=-(a \beta)] \\
& =a \alpha-a \beta
\end{aligned}
$$

(vi) Let $\mathrm{a} \alpha=\overline{0}$ then we have to prove that either $\mathrm{a}=0$ or $\alpha=\overline{0}$.

Let $\mathrm{a} \alpha=\overline{0}$ and $\mathrm{a} \neq 0 \in F$, so â exists

$$
\begin{array}{ll}
\text { Then } & \hat{\mathrm{a}}(\mathrm{a} \alpha)=\hat{\mathrm{a}} \cdot \overline{0} \\
\Rightarrow & (\hat{\mathrm{a} a}) \alpha=\overline{0} \\
\Rightarrow & 1 \cdot \alpha=\overline{0}
\end{array}
$$

$$
\Rightarrow \quad \alpha=\overline{0}
$$

So when $\mathrm{a} \neq 0$ then $\alpha=\overline{0}$
again let $\mathrm{a} \alpha=\overline{0}$ and we have to prove that $\mathrm{a}=0$. Suppose $\mathrm{a} \neq 0$ then â exists.

$$
\begin{array}{ll}
\text { Now, } & \mathrm{a} \alpha=\overline{0} \\
& \hat{\mathrm{a}}(\mathrm{a} \alpha)=\hat{\mathrm{a}} \cdot \overline{0} \\
& (\hat{\mathrm{a} a}) \alpha=\overline{0} \\
\Rightarrow & 1 \cdot \alpha=\overline{0} \\
\Rightarrow \quad & \alpha=\overline{0}
\end{array}
$$

Which is a contradictions that α must be a zero vector. Therefore $a=0$
Hence $a \alpha=\overline{0}$ then either $a=0$ or $\alpha=\overline{0}$.
Vector Subspace: Let V be a vector space over the field F and W be a subset of V. then W is said to be vector subspace of V if W is also a vector space with scalar multiplication and vector addition over the field F as V.

Some basic theorems of vector subspaces

Theorem 1: The necessary and sufficient condition for a non empty subset W of a vector space $V(f)$ to be subspace of V is that W is closed under vector addition and scalar multiplication.

Proof: Condition is necessary. Let V be a vector space and W be subspace of V over the same field F. Since W is vector sub space of V, so it is also a vector space under vector addition and scalar multiplications so it is closed. Hence condition is necessary.

The condition is sufficient: Let V be a vector space over field F and W be a non empty subset of V, such that W is closed under vector addition and scalar multiplication then we have to prove that W is subspace of V. For this we will prove that it is a vector space over field itself.

Let $\alpha \in \mathrm{W}$, if 1 is the unit element of F then $-1 \in F$. Now W is closed under scalar multiplication. Therefore,

$$
(-1) \in F, \alpha \in W \Rightarrow(-1) \alpha \in W \Rightarrow-(1 \alpha) \in W \Rightarrow-\alpha \in W
$$

Thus, the additive inverse of each element of W is also in W. Now, W is closed under vector addition. Therefore

$$
\alpha \in W \Rightarrow-\alpha \in W \Rightarrow \alpha+(-\alpha) \in W \Rightarrow \overline{0} \in W
$$

Where $\overline{0}$ is the zero vector of V. Hence the zero vector of V is also the zero vector of W. Since $W \subseteq V$ therefore vector addition will be commutative as well as associative in W. Hence W is an abelian group with respect to vector addition. Also it is given that W is closed under scalar multiplication. The remaining properties of a vector space will hold in W. since they hold in V of which W is a subset. Hence W is itself a vector space with respect to vector addition and scalar multiplication as in V, so W is subspace of V. Hence condition in sufficient.

Theorem 2: The necessary and sufficient condition for a non empty subset W of a vector space $V(f)$ to be a subspace of V is

$$
a, b \in F, \alpha, \beta \in W \Rightarrow a \alpha+b \beta \in W
$$

Proof: The condition is necessary: let V be a vector space over field F and W is subspace of V; then by the definition of subspace, W is a vector space over field F itself as V.

So,

$$
\begin{aligned}
& \forall a \in F, \alpha \in W \Rightarrow a \alpha \in W \\
& \forall b \in F, \beta \in W \Rightarrow b \beta \in W \\
& \forall a \alpha \in W, b \beta \in W, \text { by vector addition in } W, a \alpha+b \beta \in W
\end{aligned}
$$

So condition is necessary.
The sufficient condition: Suppose V is a vector space over field F and W is nonempty subset of V such that $\forall a, b \in F, \alpha, \beta \in W \Rightarrow a \alpha+b \beta \in W$ then we have to show that W is subspace of V, for this we will show that W is a vector space itself as V.

$$
\because \quad a \alpha+b \beta \in W
$$

Put $\quad a=b=1 \in F$
$\Rightarrow \quad 1 \cdot \alpha+1 \cdot \beta \in W$
$\Rightarrow \quad \alpha+\beta \in W, \forall \alpha, \beta \in W$
So W is closed under vector addition.
Now taking $a=0, b=0$, we see that if

$$
\begin{aligned}
& \alpha \in W \text { then } \\
& 0 \alpha+0 \beta \in W \\
& \overline{0} \in W
\end{aligned}
$$

Thus the zero vector of V belongs to W. It will also be the zero vector of W.
Now again $1 \in F,-1 \in F$

$$
\begin{array}{ll}
\text { Taking } & a=-1, b=0 \\
\text { We get } & -1 \cdot \alpha+0 \overline{0} \in W \\
\Rightarrow & -\alpha \in W
\end{array}
$$

Thus the additive inverse of each elements of W is also in W.
Now taking $\beta=\overline{0}$, we see that if $a, b \in F$ and $\alpha \in W$, then $a \alpha+b \overline{0} \in W$ i.e., $a \alpha \in W$

Thus W is closed under scalar multiplication. The remaining properties of a vector space will hold in W since they hold in V of which W is a subset.

Hence W is vector space itself. So by the definition W will be sub space of V.
Theorem 3. The necessary and sufficient conditions for a non-empty subset W of a vector space $V(F)$ to be a subspace of V are
(i) $\alpha \in W, \beta \in W \Rightarrow \alpha-\beta \in W$
(ii) $a \in F, \alpha \in W \Rightarrow a \alpha \in W$

Proof: As theorem 2.
Theorem 4. V be a vector space and W is non empty subset of V then W will be sub space of V if and only if $\forall \alpha, \beta \in W, a \in F \Rightarrow a \alpha+\beta \in W$.
Proof: As theorem 2.

Examples on Vector Sub Spaces

Example 1. The set W of ordered trails $\left(k_{1}, k_{2}, 0\right)$ where $k_{1}, k_{2} \in F$ is a subspace of $V_{3}(F)$.

Solution. Let $\alpha=\left(k_{1}, k_{2}, 0\right)$, and $\beta=\left(l_{1}, l_{2}, 0\right)$ be any two element of W. Where $k_{1}, k_{2}, l_{1}, l_{2} \in F$. If a, b be any two elements of F, we have

$$
\begin{aligned}
& a \alpha+b \beta=a\left(k_{1}, k_{2}, 0\right)+b\left(l_{1}, l_{2}, 0\right) \\
&=\left(a k_{1}, a k_{2}, 0\right)+\left(b l_{1}, b l_{2}, 0\right) \\
&=\left(a k_{1}+b l_{1}, a k_{2}+b l_{2}, 0\right) \\
& \because a k_{1}+b l_{1}, a k_{2}+b l_{2} \in F \quad \text { so } \\
& a \alpha+b \beta \in W
\end{aligned}
$$

Hence W is a subspace of $V_{3}(F)$.

Example 2. Prove that the set of all solution (l, m, n) of the equation $l+m+2 n=0$ is a subspace of the vector space $V_{3}(R)$
Solution. Let $W=\{(l, m, n): l, m, n \in R$ and $l+m+2 n=0\}$
To prove that W is a subspace of $V_{3}(R)$ or R^{3}.
Let $\alpha=\left(l_{1}, m_{1}, n_{1}\right)$ and $\beta=\left(l_{2}, m_{2}, n_{2}\right)$ be any two elements of W. Then

$$
\begin{aligned}
& l_{1}+m_{1}+2 n_{1}=0 \\
& l_{2}+m_{2}+2 n_{2}=0
\end{aligned}
$$

If a, b be any two elements of R, we have

$$
\begin{aligned}
a \alpha+b \beta & =a\left(l_{1}, m_{1}, n_{1}\right)+b\left(l_{2}, m_{2}, n_{2}\right) \\
& =\left(a l_{1}, a m_{1}, a n_{1}\right)+\left(b l_{2}, b m_{2}, b n_{2}\right) \\
& =\left(a l_{1}+b l_{2}, a m_{1}+b m_{2}, a n_{1}+b n_{2}\right)
\end{aligned}
$$

Now $\left(a l_{1}+b l_{2}\right)+\left(a m_{1}+b m_{2}\right)+2\left(a n_{1}+b n_{2}\right)$

$$
\begin{aligned}
& =a\left(l_{1}+m_{1}+2 n_{1}\right)+b\left(l_{2}+m_{2}+2 n_{2}\right) \\
& =a \cdot 0+b \cdot 0=0
\end{aligned}
$$

So $a \alpha+b \beta=\left(a l_{1}+b l_{2}, a m_{1}+b m_{2}, a n_{1}+b n_{2}\right) \in W$
Thus, $\alpha, \beta \in$ Wand $a, b \in R \Rightarrow a \alpha+b \beta \in W$.
Hence W is a subspace of $V_{3}(R)$.
Example 3. If V is a vector space of all real valued continuous functions over the field of real numbers R, then show that the set W of solutions of the differential equation.

$$
\frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+12 y=0 \text { is a subspace of } V
$$

Solution. We have $W=\left\{y: \frac{d^{2} y}{d x^{2}}-7 \frac{d y}{d x}+12 y=0\right\}$
It is clear that $y=0$ satisfies the given differential equation and as such it belongs to W and thus $W \neq \Phi$.

Now let $y_{1}, y_{2} \in W$ then

$$
\begin{align*}
& \frac{d^{2} y_{1}}{d x^{2}}-7 \frac{d y_{1}}{d x}+12 y_{1}=0 \tag{i}\\
& \frac{d^{2} y_{2}}{d x^{2}}-7 \frac{d y_{2}}{d x}+12 y_{2}=0 \tag{ii}
\end{align*}
$$

Let $\mathrm{a}, \mathrm{b} \in R$. If W is to be subspace then we should show that $a y_{1}+b y_{2}$ also belongs to W i.e. It is a solution of the given differential equation. We have

$$
\begin{aligned}
& \frac{d^{2}}{d x^{2}}\left(a y_{1}+b y_{2}\right)-7 \frac{d}{d x}\left(a y_{1}+b y_{2}\right)+12\left(a y_{1}+b y_{2}\right) \\
& \quad=a \cdot\left(\frac{d^{2} y_{1}}{d x^{2}}-7 \frac{d y_{1}}{d x}+12 y_{1}\right)+b\left(\frac{d^{2} y_{2}}{d x^{2}}-7 \frac{d y_{2}}{d x}+12 y_{2}\right) \\
& \quad=a \cdot 0+b \cdot 0
\end{aligned}
$$

Thus a $y_{1}+\mathrm{b} y_{2}$ is a solution of the given differential equation and so it belongs to W . Hence W is a subspace of V.

Algebra of subspaces

Theorem 1. The intersection of any two subspaces W_{1} and W_{2} of a vector space $V(f)$ is also a subspace of $V(f)$.
Proof : Let V be a vector space over field F and W_{1}, W_{2} are two subspaces of V. It is clear that $\overline{0} \in W_{1}$ and $\overline{0} \in W_{2}$ so $W_{1} \cap W_{2} \neq \Phi$

Let, $\quad \alpha, \beta \in W_{1} \cap W_{2}$ and $a, b \in F$

$$
\begin{aligned}
& \alpha \in W_{1} \cap W_{2} \Rightarrow \alpha \in W_{1} \text { and } \alpha \in W_{2} \\
& \beta \in W_{1} \cap W_{2} \Rightarrow \beta \in W_{1} \text { and } \beta \in W_{2}
\end{aligned}
$$

$\because W_{l}$ is subspace of V so

$$
\begin{aligned}
& \forall a, b \in F, \alpha, \beta \in W_{1} \Rightarrow a \alpha+b \beta \in W_{1} \\
& \forall a, b \in F, \alpha, \beta \in W_{2} \Rightarrow a \alpha+b \beta \in W_{2} \\
& a \alpha+b \beta \in W_{1} \cap W_{2}
\end{aligned}
$$

So, $W_{1} \cap W_{2}$ is subspace of V.

Theorem 2. The union of two subspaces is a subspace if and only if one is contained in the other .

Proof: Suppose W_{1} and W_{2} are two subspaces of V.
Condition is necessary: Let $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$, then we will prove that $W_{1} \cup W_{2}$ will be subspace of V.
${ }_{\text {If }} W_{1} \subseteq W_{2} \Rightarrow W_{1} \cup W_{2}=W_{2}$ and if $W_{2} \subseteq W_{1} \Rightarrow W_{1} \cup W_{2}=W_{1}$.
But W_{1} and W_{2} both are subspace of V, so $W_{1} \cup W_{2}$ will be subspace of V.
Condition is sufficient: Let W_{1} and W_{2} be two subspaces of V such that $W_{1} \cup W_{2}$ be also subspace of V, we have to show that $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$. Let us assume that W_{1} is not a sub set of W_{2} and W_{2} is also not a subset of W_{1}.
$\therefore \quad W_{1} \subseteq W_{2} \Rightarrow \exists \alpha \in W_{1}$ such that $\alpha \notin W_{2}$
and $\quad W_{2} \subseteq W_{1} \Rightarrow \exists \beta \in W_{2}$ such that $\beta \notin W_{1}$
But, $\quad \alpha \in W_{1} \cup W_{2}$
and

$$
\beta \in W_{1} \cup W_{2}
$$

But $W_{1} \cup W_{2}$ is subspace of V so

$$
\begin{array}{ll}
& \alpha+\beta \in W_{1} \cup W_{2} \\
\Rightarrow & \alpha+\beta \in W_{1} \text { or } \alpha+\beta \in W_{2} \\
\text { If } & \alpha+\beta \in W_{1} \text { and } \alpha \in W_{1},-\alpha \in W_{1} \\
\Rightarrow \quad & (\alpha+\beta)-\alpha \in W_{1} \Rightarrow \beta \in W_{1}
\end{array}
$$

Which is a contradiction, again if

$$
\begin{array}{ll}
\Rightarrow & \alpha+\beta \in W_{2} \text { and }-\beta \in W_{2} \\
\Rightarrow & (\alpha+\beta)+(-\beta) \in W_{2} \\
\Rightarrow & \alpha \in W_{2}
\end{array}
$$

Again we get a contradiction. Hence either $W_{1} \subseteq W_{2}$ or $W_{2} \subseteq W_{1}$.
Theorem 3. Intersection of any family of subspaces of a vector space is a subspace.
Proof: As above

Linear combination : Let $V(f)$ be a vector space if $\alpha_{1}, \alpha_{2}, \ldots \ldots . \alpha_{n} \in V$ then any vector $\alpha \in V$

$$
\alpha=a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{n} \alpha_{n} \text { where } a_{i} \in F \text { is called a linear combination of the }
$$ vectors $\alpha_{1}, \alpha_{2} \ldots, \ldots . \alpha_{n}$.

Linear span : Let $V(f)$ be a vector space and S be any non empty subset of V. Then the linear span of S is the set of all linear combinations of finite sets of elements of S and is denoted by $L(S)$. Thus we have

$$
L(S)=\left\{a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{n} \alpha_{n}, \alpha_{i} \in V, a_{i} \in F\right\}
$$

Linear dependence and linear independence. Let V be a vector space over field F. A finite set $S=\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots . \alpha_{n}\right\}$ is said to be linearly dependent if

$$
a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots . .+a_{n} \alpha_{n}=\overline{0}
$$

Where $\alpha_{i} \in V, a_{i} \in F$, and all $a_{i} \mathrm{~s}$ may not zero. There will be minimum one $a_{i} \neq 0$.

A finite set $S=\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots . \alpha_{n}\right\}$ is said to be linearly independent if $a_{1} \alpha_{1}+a_{2} \alpha_{2}+\ldots .+a_{n} \alpha_{n}=\overline{0}$

Where α_{i} 's $\in V$ and a_{i} 's $\in F$ and all $a_{i}{ }^{\prime} \mathrm{s}=0$
Any infinite setof vectors of V is said to be linearly independent if its every finite subset is linearly independent, otherwise it is linearly dependent.

Example 4. Show that the vector $(1,2,0),(0,3,1),(-1,0,1)$ forms linearly independent set over field R.

Solutions. Let,

$$
S=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}
$$

Where,

$$
\alpha_{1}=(1,2,0), \alpha_{2}=(0,3,1), \alpha_{3}=(-1,0,1)
$$

Let $a_{1}, a_{2}, a_{3} \in F$ such that

$$
a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}=\overline{0}
$$

Then S will be linearly independent if all $a_{1}=a_{2}=a_{3}=0$

Now

$$
\begin{aligned}
& a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}=\overline{0} \\
& a_{1}(1,2,0)+a_{2}(0,3,1)+a_{3}(-1,0,1)=(0,0,0)
\end{aligned}
$$

$$
\begin{aligned}
& \left(a_{1}, 2 a_{1}, 0\right)+\left(0,3 a_{2}, a_{2}\right)+\left(-a_{3}, 0, a_{3}\right)=(0,0,0) \\
& \left(a_{1}-a_{3}, 2 a_{1}+3 a_{2}, a_{2}+a_{3}\right)=(0,0,0) \\
& a_{1}+0 a_{2}-a_{3}=0 \\
& 2 a_{1}+3 a_{2}+0 a_{3}=0 \\
& 0 a_{1}+a_{2}+a_{3}=0
\end{aligned}
$$

Coefficient matrix

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 0 & -1 \\
2 & 3 & 0 \\
0 & 1 & 1
\end{array}\right],|A|=\left|\begin{array}{ccc}
1 & 0 & -1 \\
2 & 3 & 0 \\
0 & 1 & 1
\end{array}\right| \\
& =1[3]-0-1[2] \\
|A| & =1 \neq 0
\end{aligned}
$$

\therefore Rank A $=3$, hence there will be only one solution $a_{1}=a_{2}=a_{3}=0$
Hence $S=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is linearly independent.
Example 5. Show that $S=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is linearly dependent over field \boldsymbol{R}. Where $\alpha_{1}=(1,3,2), \alpha_{2}=(1,-7,-8), \alpha_{3}=(2,1,-1)$.

Proof: Let $\quad a_{1}, a_{2}, a_{3} \in R$
Now, $a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}=\overline{0}$

$$
\begin{aligned}
\Rightarrow & a_{1}(1,3,2)+a_{2}(1,-7,-8)+a_{3}(2,1,-1)=(0,0,0) \\
\Rightarrow & \left(a_{1}+a_{2}+2 a_{3}, 3 a_{1}-7 a_{2}+a_{3}, 2 a_{1}-8 a_{2}-a_{3}\right)=(0,0,0) \\
& a_{1}+a_{2}+2 a_{3}=0 \\
& 3 a_{1}-7 a_{2}+a_{3}=0 \\
& 2 a_{1}-8 a_{2}-a_{3}=0
\end{aligned}
$$

Coefficient matrix

$$
\begin{aligned}
A & =\left[\begin{array}{rrr}
1 & 1 & 2 \\
3 & -7 & 1 \\
2 & -8 & -1
\end{array}\right] \\
|A| & =\left|\begin{array}{rrr}
1 & 1 & 2 \\
3 & -7 & 1 \\
2 & -8 & -1
\end{array}\right| \\
& =1[7+8]-1[-3-2]+2[-24+14] \\
& =15+5-20=0 \\
|A| & =0
\end{aligned}
$$

So rank of $\mathrm{A}<3$

Rank of $\mathrm{A}<$ number of unknowns
So there is minimum one $a_{i} \neq 0$
So $S=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is linearly dependent.
Example 6. If α, β, γ are linearly independent vectors of $V(f)$ where F is any sub field of complex numbers than prove that $\alpha+\beta, \beta+\gamma, \gamma+\alpha$ are also linearly independent.

Solution. Let a_{1}, a_{2}, a_{3} be scalar then

$$
\begin{align*}
& a_{1}(\alpha+\beta)+a_{2}(\beta+\gamma)+a_{3}(\gamma+\alpha)=\overline{0} \\
& \left(a_{1}+a_{3}\right) \alpha+\left(a_{1}+a_{2}\right) \beta+\left(a_{2}+a_{3}\right) \gamma=\overline{0} \tag{i}
\end{align*}
$$

But α, β, γ are linearly independent. Therefore (i) implies

$$
\begin{aligned}
& a_{1}+0 a_{2}+a_{3}=0 \\
& a_{1}+a_{2}+0 a_{3}=0 \\
& 0 a_{1}+a_{2}+a_{3}=0
\end{aligned}
$$

The coefficient matrix A of these equations is

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 0 & 1 \\
1 & 1 & 0 \\
0 & 1 & 0
\end{array}\right] \\
& |A|=1[0]+0+1[1-0]=1 \neq 0
\end{aligned}
$$

Rank $A=3=$ number of unknowns
There is only one solution

$$
a_{1}=a_{2}=a_{3}=0
$$

So $\alpha+\beta, \beta+\gamma, \gamma+\alpha$ are also linearly independent.
Basic of a vector space : A subset $S=\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots, \alpha_{n}\right\}$ of a vector space $V(f)$ is said to be a basis of $V(f)$ if
(i) S consists of linearly independent vectors i.e.,

$$
a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}=\overline{0}
$$

all a_{i} 's are zero, $\forall a_{i} \in F, \alpha_{i} \in V$
(ii) $L(S)=V(f)$ i.e., every element of V can be written as linear combination of element of S.
Example 7. Show $S=\{(1,2,1),(2,1,0),(1,-1,2)\}$ forms a basis of R^{3}.
Proof: Since $\operatorname{dim} R^{3}=3$
So $\quad L(S)=V\left(R^{3}\right)$
Now we only to prove that S is linearly independent
Let $a_{1}, a_{2}, a_{3} \in F$ such that

$$
a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}=\overline{0}
$$

We will prove that $a_{1}=a_{2}=a_{3}=0$
Now

$$
\begin{aligned}
& a_{1}(1,2,1)+a_{2}(2,1,0)+a_{3}(1,-1,2)=(0,0,0) \\
& \left(a_{1}+2 a_{2}+a_{3}, 2 a_{1}+a_{2}-a_{3}, a_{1}+0 a_{2}+2 a_{3}\right)=(0,0,0) \\
& a_{1}+2 a_{2}+a_{3}=0 \\
& 2 a_{1}+a_{2}-a_{3}=0 \\
& a_{1}+0 a_{2}+2 a_{3}=0
\end{aligned}
$$

Coefficient matrix

$$
\begin{aligned}
A & =\left[\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & -1 \\
1 & 0 & 2
\end{array}\right] \\
|A| & =\left|\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & -1 \\
1 & 0 & 2
\end{array}\right| \\
& =1[2-0]-2[4+1]+1[0-1] \\
& =2-10-1 \\
& \neq 0
\end{aligned}
$$

So rank of $A=3=$ no of unknown
So there is only one solution $a_{1}=a_{2}=a_{3}=0$
So $S=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ is linearly independent
So S forms the basis of R^{3}.
Example 8. Select a basis of $R^{3}(R)$ from the set $S=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}, \alpha_{4}\right\}$ where

$$
\alpha_{1}=(1,-3,2), \alpha_{2}=(2,4,1), \alpha_{3}=(3,1,3), \alpha_{4}=(1,1,1)
$$

Solution.If any three vectors in S are linearly independent, then they will form a basis of the vector space $R^{3}(R)$.

First we take $S_{1}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$
For this we take $a_{1}, a_{2}, a_{3} \in R$ such that $a_{1} \alpha_{1}+a_{2} \alpha_{2}+a_{3} \alpha_{3}=\overline{0}$

$$
\begin{aligned}
& \text { i.e., } a_{1}(1,-3,2)+a_{2}(2,4,1)+a_{3}(3,1,3)=(0,0,0) \\
& \left(a_{1}+2 a_{2}+3 a_{3},-3 a_{1}+4 a_{2}+a_{3}, 2 a_{1}+a_{2}+3 a_{3}\right)=(0,0,0) \\
& a_{1}+2 a_{2}+3 a_{3}=0 \\
& -3 a_{1}+4 a_{2}+a_{3}=0 \\
& 2 a_{1}+a_{2}+3 a_{3}=0
\end{aligned}
$$

Coefficient matrix

$$
\begin{aligned}
& A=\left[\begin{array}{ccc}
1 & 2 & 3 \\
-3 & 4 & 1 \\
2 & 1 & 3
\end{array}\right] \\
& |A|=0
\end{aligned}
$$

So rank of $\mathrm{A}<3$
i.e., rank of $\mathrm{A}<$ no. of unknowns

So $S_{1}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ are linearly dependent
Now we take $S_{2}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{4}\right\}$
Then we get

$$
|A|=\left|\begin{array}{ccc}
1 & 2 & 1 \\
-3 & 4 & 1 \\
2 & 1 & 1
\end{array}\right|=0
$$

So rank of $A=$ No. of unknown
So $\left[\alpha_{1}, \alpha_{2}, \alpha_{4}\right]$ is linearly independent
So $S_{2}=\left\{\alpha_{1}, \alpha_{2}, \alpha_{4}\right\}$ forms the basis of $R^{3}(R)$.
Linear Transformation: Let $U(f)$ and $V(f)$ be two vector space over the same field $F . T: U \rightarrow V$ is said to be linear transformation if

$$
\begin{align*}
& T(a \alpha+b \beta)=a T(\alpha)+b T(\beta) \tag{i}\\
& \forall \alpha, \beta \text { in } U \text { and } a, b \text { in } F
\end{align*}
$$

in another way the properly (i) can be defined in two ways
(i) $T(\alpha+\beta)=T(\alpha)+T(\beta)$ and
(ii) $T(a \alpha)=a T(\alpha), \forall a \in F, \alpha, \beta \in U$

Example 9. The function $\quad T: V_{3}(R) \rightarrow V_{2}(R)$ defined by $T(a, b, c)=$ $(a, b), \forall a, b, c \in R$, is a linear transformation from $V_{3}(R)$ into $V_{2}(R)$.

Proof: If $T: V_{3}(R) \rightarrow V_{2}(R)$ will be linear transformation then

$$
\begin{aligned}
& T(a \alpha+b \beta)=a T(\alpha)+b T(\beta) \\
& \alpha=\left(a_{1}, b_{1}, c_{1}\right) \in V_{3}(R) \\
& \beta=\left(a_{2}, b_{2}, c_{2}\right) \in V_{3}(R) \text { and } a, b \in R \\
& \text { Now } a \alpha+b \beta=a\left(a_{1}, b_{1}, c_{1}\right)+b\left(a_{2}, b_{2}, c_{2}\right) \\
& =\left(a a_{1}, a b_{1}, a c_{1}\right)+\left(b a_{2}, b b_{2}, b c_{2}\right) \\
& =\left(a a_{1}+b a_{1}, a b_{2}+b b_{2}, a c_{1}+b c_{2}\right) \\
& \text { L.H.S. }=T(a \alpha+b \beta) \\
& =T\left(a a_{1}+b a_{2}, a b_{1}+b b_{2}, a c_{1}+b c_{2}\right) \\
& =\left(a a_{1}+b a_{2}, a b_{1}+b b_{2}\right), \text { by def. of } T \\
& =\left(a a_{1}, a b_{1}\right)+\left(b a_{2}, b b_{2}\right) \\
& =a\left(a_{1}, b_{1}\right)+b\left(a_{2}, b_{2}\right) \\
& =a T\left(a_{1}, b_{1}, c_{1}\right)+b T\left(a_{2}, b_{2}, c_{2}\right) \\
& =a T(\alpha)+b T(\beta)=\text { R.H.S. }
\end{aligned}
$$

So T is linear transformation from $V_{3}(R) \rightarrow V_{2}(R)$

Range and Null space of a linear transformation

Let U and V be two vector spaces over the same field F and let T be a linear transformation from U into V.

Then the range of T is written as $R(T)$ and it is the set of all vectors β is V such that $\beta=T(\alpha)$ for some $\alpha \in U$.

$$
\text { Range } T=\{T(\alpha)=\beta: \alpha \in U, \beta \in V\}
$$

Null space of a linear transformation

Let U and V be two vector spaces over same field F and let T be a linear transformation from U into V. Then the null space of T is written as $N(T)$ and it is the set of all vectors α in U such that $T(\alpha)=\overline{0}$ for some $\alpha \in U$.

That is $N(T)=\{\alpha \in U: T(\alpha)=\overline{0} \in V\}$

It is to be noted that if we take T as vector space homomorphism of U into V, then the null space of T is also called the karnel of T.

Rank and nullity of a linear transformation

Let U and V be two vector spaces over the same field F and T be a linear transformation from U to V, with U as finite dimensional.

The rank of T is denoted by $\rho(T)$ and it is the dimension of the range of T i.e.,

$$
\rho(T)=\operatorname{dim} R(T)
$$

The nullity of T is denoted by $v(T)$ and it is the dimension of null space of T i.e., $v(T)=\operatorname{dim} N(T)$

Note: Let $T: U(F) \rightarrow V(F)$ be a linear transformation from U into V. Suppose that U is finite dimensional. Then $\operatorname{rank} T+$ nullity $T=\operatorname{dim} U$.

Example 10. Show that the mapping $T: V_{2}(R) \rightarrow V_{3}(R)$ defined as $T(a, b)=(a+b, a-b, b)$ is a linear transformation from $V_{2}(R) \rightarrow V_{3}(R)$. Find the range, rank, null space and nullity of T.
Solution: Let $\alpha=\left(a_{1}, b_{1}\right), \quad \beta=\left(a_{2}, b_{2}\right)$ be arbitrary elements of $V_{2}(R)$. Then $T: V_{2}(R) \rightarrow V_{3}(R)$ will be a linear transformation if

$$
\begin{aligned}
& \begin{aligned}
& T(a \alpha+b \beta)=a T(\alpha)+b T(\beta), \forall a, b \in R \\
& \qquad \alpha, \beta \in V_{2}(R), a, b \in R \text { then } a \alpha+b \beta \in V_{2}(R) \\
& \text { Now, } T(a \alpha+b \beta)=T\left[a\left(a_{1}, b_{1}\right)+b\left(a_{2}, b_{2}\right)\right] \\
&=T\left[\left(a a_{1}, a b_{1}\right)+\left(b a_{2}, b b_{2}\right)\right] \\
&=T\left[\left(a a_{1}+b a_{2}, a b_{1}+b b_{2}\right)\right] \\
&=\left[\left(a a_{1}+b a_{2}\right)+\left(a b_{1}+b b_{2}\right),\left(a a_{1}+b a_{2}\right)-\left(a b_{1}+b b_{2}\right),\left(a b_{1}+b b_{2}\right)\right] \\
&=\left[a\left(a_{1}+b_{1}\right)+b\left(a_{2}+b_{2}\right), a\left(a_{1}-b_{1}\right)+b\left(a_{2}-b_{2}\right),\left(a b_{1}+b b_{2}\right)\right] \\
&=a\left(a_{1}+b_{1}, a_{1}-b_{1}, b_{1}\right)+b\left(a_{2}+b_{2}, a_{2}-b_{2}, b_{2}\right) \\
&=a T\left(a_{1}, b_{1}\right)+b T\left(a_{2}, b_{2}\right) \\
&=a T(\alpha)+b T(\beta)
\end{aligned}
\end{aligned}
$$

So $\quad T(a \alpha+b \beta)=a T(\alpha)+b T(\beta)$
So T is a linear transformation from $V_{2}(R)$ into $V_{3}(R)$.
Now $\{(1,0),(0,1)\}$ is a basis for $V_{2}(R)$
We have, $T(1,0)=(1+0,1-0,0)=(1,1,0)$

$$
T(0,1)=(0+1,0-1,0)=(1,-1,1)
$$

The vectors $T(1,0), T(0,1)$ span the range of T.
Thus the range of T is sub space of $V_{3}(R)$ spanned by the vectors $(1,1,0)$ and ($1,-1,1$).

Now the vectors $(1,1,0),(1,-1,1) \in V_{3}(R)$ are linearly independent if $x, y \in R$,
Then

$$
\begin{array}{ll}
& x(1,1,0)+y(1,-1,1)=(0,0,0) \\
\Rightarrow & (x+y, x-y, y)=(0,0,0) \\
\Rightarrow & x+y=0, x-y=0, y=0 \\
\Rightarrow & x=0, y=0
\end{array}
$$

The vectors $(1,1,0),(1,-1,1)$ form a basis for range of T.
Hence $\operatorname{rank} T=\operatorname{dim}$ of range of $T=2$
Nullity of $T=\operatorname{dim}$ of $V_{2}(R)-\operatorname{rank}$ of $T=2-2=0$
Null space of T must be the zero subspace of $V_{2}(R)$
Otherwise $(a, b) \in$ null space of T
$\Rightarrow \quad T(a, b)=(0,0,0)$
$(a+b, a-b, b)=(0,0,0)$
$a+b=0$
$a-b=0$
$b=0$
$\Rightarrow \quad a=0, b=0$
$\therefore(0,0)$ is the only element of $V_{2}(R)$ which belong to null space of T.
\therefore Null space of T is the zero subspace of $V_{2}(R)$.

Representation of transformation by matrices

Let U be an n-dimensional vector space over the field F and let V be an m-dimensional vector space over the field F.

We take two ordered basis

$$
\beta=\left\{\alpha_{1}, \alpha_{2}, \ldots \ldots \alpha_{n}\right\} \text { and } \beta^{\prime}=\left\{\beta_{1}, \beta_{2}, \ldots \ldots \beta_{m}\right\}
$$

for U and V respectively
Let $T: U \rightarrow V$ be a linear operator: since T is completely determined by its action on the vectors α_{j} belonging to a basis for U. Each of the n vectors $T\left(\alpha_{j}\right)$ is uniquely expressible as a linear combination of $\beta_{1}, \beta_{2}, \ldots \ldots \beta_{m}$. For $j=1,2, \ldots \ldots n$.

Then, $\quad T\left(\alpha_{j}\right)=a_{1 j} \beta_{1}+a_{2 j} \beta_{2}+\ldots . .+a_{m j} \beta_{m}=\sum_{i=1}^{m} a_{i j} \beta_{i}$
The scalars $a_{1 j}, a_{2 j}, \ldots . . a_{m j}$ are the co-ordinates of $T\left(\alpha_{j}\right)$ in the ordered basis β^{\prime}.
The $m \times n$ matrix whose $j^{\text {th }}$ column $(\mathrm{j}=1,2, \ldots \ldots . n)$ consists of these co-ordinates is called the matrix of the linear transformation T relative to the pair of ordered basis β and β^{\prime}. It is denoted by the symbol $\left[T: \beta: \beta^{\prime}\right]$ or simply by $[T]$ if the basis is understood. Thus,
$[T]=\left[T: \beta: \beta^{\prime}\right]=$ matrix of T relative to ordered basis β and $\beta^{\prime}=\left[a_{i j}\right]_{m \times n}$
and

$$
T\left(\alpha_{j}\right)=\sum_{i=1}^{m} a_{i j} \beta_{i}, \forall j=1,2, \ldots \ldots n
$$

Example 11. Find the matrix of the linear transformation T on $V_{3}(R)$ defined as $T(x, y$, $z)=(2 y+z, x-4 y, 3 x)$ with respect to the ordered basis β and also with respect to the ordered basis β ' where
(i) $\beta=\{(1,0,0),(0,1,0),(0,0,1)\}$
(ii) $\beta^{`}=\{(1,1,1),(1,1,0),(1,0,0)\}$

Solution.

(i) We have

$$
\begin{aligned}
T(1,0,0) & =(0,1,3)=0(1,0,0)+1(0,1,0)+3(0,0,1) \\
T(0,1,0) & =(2-4,0)=2(1,0,0)-4(0,1,0)+0(0,0,1) \\
\text { and } T(0,0,1) & =(1,0,0)=1(1,0,0)+0(0,1,0)+0(0,0,1)
\end{aligned}
$$

so by def of matrix of T, with respect to β, we have

$$
[T]_{\beta}=\left[\begin{array}{ccc}
0 & 2 & 1 \\
1 & -4 & 0 \\
3 & 0 & 0
\end{array}\right]
$$

(ii) We have $T(1,1,1)=(3,-3,3)$

We have to express $(3,-3,3)$ as a linear combination of vectors in $\beta^{`}$.

$$
\begin{aligned}
& \text { Let }(a, b, c)=x_{1}(1,1,1)+y_{1}(1,1,0)+z_{1}(1,0,0) \\
& \qquad \begin{array}{l}
=\left(x_{1}+y_{1}+z_{1}, x_{1}+y_{1}, x_{1}\right) \\
x_{1}+y_{1}+z_{1}=a, x_{1}+y_{1}=b, x_{1}=c \\
\text { So } \\
x_{1}=c, y_{1}=b-c, z_{1}=a-b
\end{array}
\end{aligned}
$$

For (3, $-3,3$), putting $a=3, b=-3, c=3$

$$
\begin{equation*}
x_{1}=3, y_{1}=-6 \text { and } z_{1}=6 \tag{i}
\end{equation*}
$$

So, $T(1,1,1)=(3,-3,3)=3(1,1,1)-6(1,1,0)+6(1,0,0)$
Also, $\quad T(1,1,0)=(2,-3,3)$
Putting $a=2, b=-3$ and $c=3$ in (i) we get
$T(1,1,0)=(2,-3,3)=3(1,1,1)-6(1,1,0)+6(1,0,0)$
Similarly, $T(1,0,0)=(0,1,3)$
So, $\quad a=0, b=1, c=3$
$T(1,0,0)=(0,1,3)=3(1,1,1)-2(1,1,0)-1(1,0,0)$
So, $\quad[T]_{\beta^{\prime}}=\left[\begin{array}{rrr}3 & 3 & 3 \\ -6 & -6 & -2 \\ 6 & 5 & -1\end{array}\right]$

Practice Problems

1. Suppose R be the field of real numbers. Which of the following are subspace of $V_{3}(R)$:
(i) $\{(a, 2 b, 3 c): a, b, c \in R\}$,
(ii) $\quad\{(a, a, a): a \in \mathrm{R}\}$
(iii) $\{(a, b, c): a, b, c$ are rational numbers $\}$
2. In $V_{3}(R)$, where R is the field of real numbers, examines each of the following sets of vectors for linear independence/ dependence.
(i) $\{(2,1,2),(8,4,8)\}$
(ii) $\quad\{(-1,2,1),(3,0,-1),(-5,4,3)\}$
(iii) $\{(2,3,5),(4,9,25)\}$
(iv) $\{(1,2,1),(3,1,5),(,-4,7)\}$

Ans. (i) Dependent, (ii) Dependent (iii) Independent (iv) Dependent.
3. Show that the three vectors $(1,1,-1),(2,-3,5)$ and $(-2,1,4)$ of R^{3} are linearly independent.
4. Determine if the set $\{(2,-1,0),(3,5,1),(1,1,2)\}$ is a basis of $V_{3}(R)$.
5. Show that the vectors $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1), \alpha_{3}=(0,-3,2)$ form a basis of $V_{3}(R)$. Express each of the standard basis vectors as a linear combination of $\alpha_{1}, \alpha_{2}, \alpha_{3}$.
6. Show that the set $\{(1, i, 0),(2 i, 1,1),(0,1+i, 1-i)\}$ is a basis for $V_{3}(c)$.
7. Let $T: V_{3}(R) \rightarrow V_{3}(R)$ defined by

$$
T\left(x_{1}, x_{2}, x_{3}\right)=\left(3 x_{1}+x_{3},-2 x_{1}+x_{2},-x_{1}+2 x_{2}+4 x_{3}\right)
$$

What is the matrix of T in the ordered basis $\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ where $\alpha_{1}=(1,1,0), \alpha_{2}=(-1,2,1), \alpha_{3}=(2,1,1)$.

$$
\text { Ans. } T=\frac{1}{4}\left[\begin{array}{ccc}
17 & 35 & 22 \\
-3 & 15 & -6 \\
2 & -14 & 0
\end{array}\right]
$$

