INTRODUCTION TO SOFTWARE
QUALITY

RLDWIDE, SOFTWARE DEVELOPMENT ORGANIZATIONS
are becoming much more concerned with the process of
developing quality software. Many software organizations

have already established specialized groups to assess and define formal
processes for development. Not all authorities agree that formal
development processes are of overriding importance. Certainly, quality
systems certification is becoming more important. CMM, ISO 9000 (its
European equivalent, EN29000 and the various national versions) are
turning into strategic instruments for many organizations. As public
procurement authorities are basing their purchasing decisions on such
certification, it has even become a matter of corporate survival. The
growth of certification importance is due to the software project world
becoming more competitive and precarious. Customers and suppliers
are both seeking to shift the burden of risk-taking onto others. On the
other hand, risk-taking is potentially very profitable. In order to limit
the risks, project management must adopt new proactive professional
approaches.

This book presents a methodology that controls risk using quality
management integrated with advanced software project management.
The methodology is practical and implementable so that you can use
it now. Furthermore, adopting quality management procedures will
prove valuable no matter whether your intention is simply to improve
your software production or to achieve certification in some standard
such as ISO 9000 or CMM or IEEE1074. Note that considerable attention
is placed upon continuing to improve development and product
practices. For those who are aiming at certification, remember, once
ISO 9000 (or CMM, or whatever) certification is won, the job is not

2 INTRODUCTION TO SOFTWARE QUALITY
20000000000 PPOSOO0OROCORRO0eO00DPROSRRPOOPROOSRRORDPRRGEEERBRPRS

over. Certification must be maintained and renewed, usually on a yearly
basis.

The emphasis of the 1990s is global competition. This has caused a
tremendous increase in the awareness of quality as a prime strategic
weapon. The unprecedented speed at which the ISO 9000 series of
standards have become the status quo ante of quality systems is the best
possible proof of this statement. Even if this standard is “replaced” by
something improved, this does not change the result, only strengthens
it. Quality systems certification is a ripening concept in the industrial
world. Anyone not doing it is going to be left behind.

Your next question is probably: “ ... but this book is about software ... ?”
That is part of the point. Do you really believe that if purchasers
(customers, those pests that just happen to pay the bills) who are
increasingly accustomed to demanding and receiving quality are going
to continue to make an exception for software? Do you really think that
we can continue to say silly things, as we all do in our “warranty”
statements, that we do not accept any responsibility for our systems? How
long do you think the courts of the world are going to continue to accept
that?

Many countries have now established ISO 9000, CMM level 2 or 3, or
an equivalent, as a prerequisite for purchases by government authori-
ties. Since governments always buy a lot, this is going ta help these
countries to compete against you. This is not something that is going to
happen five years from now. This is happening now, in the software that
you are competing against.

The ISO 9000 series has quickly been adopted by many nations and
regional bodies and is rapidly supplanting prior national and industry
standards. It has been adopted by the European Committee for
Standardization (CEN). One of CEN's purposes is to harmonize quality
standards and eliminate trade restrictions within the EEC.

(Quality Progress, May 1991)

The objectives of this book are to guide the planning and organizing
for quality in the software produced by organizations. Among the
procedures to be implemented are the processes. of organizing various
methodologies for quality metric analysis. In particular, instructions on
how and when to deploy them.

Total quality management (TQM) means the use of control techniques
for making and achieving goals. These goals are usually taken to mean
all of the company’s goals. Somehow, software has usually managed
to remain the exception. Even in very well-managed organizations,
software frequently runs out of control. Why? Mostly because we simply
do not really fully understand how to control the creative processes.
Software TQM must include the use of plans, analysis and control

QUALITY AS A MANAGEMENT INFORMATION SYSTEM 3
LA R NN S R RS RN R R N R R N N R N N N R R NN N R NN NN NN

of software and the goals that cause (or allow) quality software “to
happen.” TQM for software includes extensive and detailed explanations
of software quality assurance plans and the processes of planning. The
standard for plans to be used is based on a mixture of the IEEE standard
for software quality assurance plans as well as several other US and
international standards.

Quality, as a Management Information System

The purpose of a management information system (MIS) is to supply
management with information required to reach policy decisions, make
plans, set objectives and exercise control over operations and to
ensure that those objectives are achieved. However, an information
system is unlikely to prove successful unless combined with sound
strategic planning - short-term goals must be based on long-term plans.
Without strategic planning, management becomes opportunism with
limited chances for success. It is important that such a management
information system be as simple as possible to use, and produce only
useful information. In common with all such systems, it is very dependent
upon the quality of its input data. For the past 150 years, systems analysts
have labored to improve management, manufacturing and sales/
distribution processes. While in many cases, the best information systems
may very well be manual, for the past 35 years, this has increasingly been
performed by computer (or rather, with the aid of one). It has long been
axiomatic that complex activities can only be managed via accurate
information systems.

It is known that sound budget and costing systems are vital as sources
for planning and pricing decisions. A basic control procedure consists of
a comparison of actual costs with expected costs and of actual volumes
with standard volumes. When variances begin to infer an increase in risk,
the information system must provide for communication to management
so that remedial action may begin. Other commonly expected reports to
management may be weekly production or backlog reports. Information
should include rudimentary production control with links to inventory
and scheduling.

This type of reporting takes place for almost all endeavors today —
except that of creating and maintaining software. It is our belief
that this has been the case primarily because the process has been basi-
cally little understood, or perhaps even misunderstood. Very recently,
great progress has been made in the understanding of the software
process. This includes coalescing and maintaining definitions of pro-
cesses. Among the functions supported partially or fully by software
engineering methodologies, are the following (see Figure 1.1).

@ INTRODUCTION TO SOFTWARE QUALITY
S0 saeeORRBOGGOSESESNSSSEROSESEOSRSOSNSROSOSEOESBSSGEROABROSBSROSGERORERSBRBORBSBOGROOBOROSOTEOSS

* Definition of software development processes and life-cycle
models.

* Tailoring of organizational standard processes to a defined
project-specific development process.

* Production of plans, including tasks, resources and technologies.

* Guided enactment of process tasks.

* Tracking of project progress and measurement of work products
and process performance (including modifications, as needed).

* Reviews and audits of defined project artifacts for conformance
with internal and external standards.

* Selection and use of pre-defined generic and standard software
engineering artifacts, if desired, based on a variety of de-facto and
official international standards.

Production standards Process (incl. models)

\
Expertise data-set

Project needs

Roadmap
new/next
technology

Metrics

feedback
Track projec
(and process

Define
processllife-cycle
Strategic planning)

Metrics feedback

Process (incl. models)

management
Derive project >\ information
nfe_c';cli Tasks/deliverables
definition
and process o] Tasks | Tocks

data | feedback
Y
Tasks database

Execution
data

conditions

Figure 1.1 Software development processes, as a system.

The underlying philosophy of the system/methodology is the following:

* We believe that the process of creating and maintaining software
is now sufficiently understood that an information system for the
management of information systems, can be implemented. This is
discussed in detail in the section on records collection and dquality
metrics.

* We believe that a system which takes into account only processes
or only deliverables, is basically insufficient. At the very minimum,
both must be accounted for. Preferably, more than that. The
checklists accompanying this book show, extensively, how this is
done.

SOFTWARE MODELING AND COMMONLY USED MODELs 5
I LE R EE NN EEEENEEEE RN RN EEENE R N RN NN NERERNNERERENEE N NNNNNRNEN-NRERNNHNHN]

* We believe that a primary difficulty facing any systems analysis is
to ascertain the existence of a continuous source of accurate
and dependable data. The task of gathering this data must be
performed without becoming a burden.

* We believe that software quality assurance (coupled with software
engineering) is systems analysis of the software development
process.

At some philosophical level, it could be said that this book is about:
systems analysis, of systems analysis. Or more properly, a systems
analysis view of how software development and maintenance needs to
be better managed.

Software Modeling and Commonly Used Models

There are many models in use today to describe what software
professionals do and how software is, or may be, produced. Some of
these models are very good, some acceptable and others rather less than
adequate. Some of these are very generic and some are very parochial.
In developing the approach for this book, there were a number of choices
as to which models to use and which would be largely ignored. In the
end what governed the choice primarily was: (a) that the model addres-
ses efficiently the subject chosen, i.e., software quality management and
(b) those models which are most important in the marketplace. If you
will, those that have the best “salesmen” — though this does a certain dis-
service.

For example, there are the so-called “waterfall model” and “spiral
model” of approaching software development management. These
are excellent, for what they cover. However, they only cover very
little.

Another example, is a model called “Trillium™ developed by Bell
Canada, Northern Telecom and Bell-Northern Research. This is an
excellent model and deserves more attention than the industry
has awarded it. Unfortunately, it is not very well known, possibly because
it was developed to be specific for a particular environment. As its name
implies, it is designed for the Telecom market and hence is too narrow
in scope to be widely adopted, or for this book.

There is also the IEEE Std 1074 model for software life-cycle manage-
ment.” This is both reasonably good and includes thorough coverage
(though it is overly complex). Perhaps this is the reason that it does not
seem to be used very much - only by a few organizations inside the
USA and almost not at all outside. Most of this book is devoted to the
view of software quality management as defined by the model in
IEEE Std 730.

6 INTRODUCTION TO SOFTWARE QUALITY

In the end the choice was to base the book upon the IEEE model for
software quality planning, and to compare it with the ISO 9000 model
for quality management, even though this is very far from software, and
the Software Engineering Institute’s (SEI) Capability Maturity Model
(CMM). The reasons for the ISO 9000 model is first in the communality
in the titles and second (admittedly) its importance in the marketplace
(popularity). It is very important for this book to be useful and applicable.
Much more important then for it to be “academically correct” whatever
that means. The reason for choosing the second is slightly more complex.
Certainly, it should be chosen for its technical merits. But it covers all of
the software life-cycle, which is rather more than needed for this book
- software quality management is a “nonphase oriented” task. The de-
tails of the software life-cycle are not directly of interest. However, the
CMM model is too important to be ignored in this book. In the end, the
decision there was mostly a question of what would be most relevant to
readers.

One final word about models. Throughout the book a lot will
be written about all three models (ISO 9000, CMM and IEEE Std 730).
It is important for the reader to understand that this book is attempting
to discuss the best possible ways for assuring the quality of software
that is being developed or maintained. The standard models have
different objectives. ISO 9000 discusses organizing a quality manage-
ment function for a company. CMM discusses how to assess the
processes being used for developing software functionality. These are
different. However, the model at the head of this effort is IEEE Std 730.
Its objectives are precisely the same as those of this book (other than
the question of criticality of the software, which is avoided). We may
make critical remarks about ISO 9000. However, these critiques are
only in terms of the goal that this book is discussing. Please, do not
misunderstand our intentions. We think that ISO 9000 is an excellent
standard, but its goals are not the book’s goals. We may make critical
remarks about CMM. Once again, these critiques are only in the terms

‘of our goals. CMM is an excellent tool if process assessment is your goal.

It is not the goal of this book. That is why they are both secondary while
IEEE Std 730 is the primary model. One can compare models that have
affinity, without claiming that they are the same and without forcing the
issues.

One of the most basic, and important tasks of quality assurance is
evaluation; that is to know the value of what you are doing and the value
of any possible improvements, whether this is self-evaluation, self-
assessment or an external assessment. This is one of the basic goals of
this book. To help you to understand how to go about doing this for
yourself and your company, and to do this quickly and inexpensively. As
external assessments cost in the order of tens of thousands of dollars, this
alone may be all you need the book for.

THE STRUCTURE OF THE MODEL 7

Webster's dictionary? defines evaluate as:

‘To determine value of; appraise; express numerically.

While the same book defines assessment as:

Act of appraising and fixing proportionate levy; the amount at which a
property is valued for taxation.’

While the people performing assessments of companies are not refer-
ring to taxes, the concepts of appraisal and proportionment are appro-
priate.

This book intends to serve the software developing organization as a tool
for designing and implementing software quality assurance and
software quality management functions. In this sense, the book is
eminently suitable for use with ISO 9000 or the SEI’'s CMM. (More on both
of these later. If you do not recognize these acronyms, do not worry about
it, you will. Otherwise you would not be reading this book.) While this
is not a “cookbook,” it is intended to allow fast and convenient imple-
mentation of quality management of the software process. As such, the
book includes specific subsections to help the practitioner expedite task
implementation.

Part of any quality implementation process must include tools which
can be used to readily evaluate the quality level of a task or process being
performed. For this purpose, we provide various checklists. Some of them
are for management of the software process, as performed by the
installation (or project). In this case, they will be similar to the kinds of
things you will see when you are externally audited for ISO 9000 certi-
fication or for CMM “level n” certification. But at least as important, you
will also use them for both self-evaluation and for evaluating any sub-
contractors. (If you try to use them to evaluate an employee you will be
hung up to dry over a burning briar patch! This is not what they are
intended for.) In any case, the major problem addressed is a swift and
accurate collection of data that reflects how processes are being per-
formed. In most cases, there is a process of some kind for management
of the software process. What we are adding, is the ability to evaluate
quickly and consistently both of which are very important. In addition
to the.checklists, there are also worksheets and forms which have proven
very useful and applicable.

8 INTRODUCTION TO SOFTWARE QUALITY
S0P P PO0OO0OPPOONOOO0OOOOOPRRNOOPRPROOGEOOONRNOOOONRROEROGOBDRONRPOIOIOTESDS

This book is designed to benefit all those organizations which are too
large to be managed trivially — that means more than, say, five people.
There is a basic need to simply get started! This is, by no means, an easy
thing to do. Many projects, staffed by first-rate professionals, simply have
no idea how to begin the subject of quality management. This puts them
off the subject and so they do nothing. At very least, this makes their
competition very happy. The project team may think that they are
working “lean and mean.” Usually they are just working much harder
than is necessary. For some reason, quality management of software is
still not taught, certainly not as part of the computer science curriculum.
Viewing the development of the computer milieu, it is obvious that an
increased emphasis upon optimization of management techniques could
potentially benefit the majority of projects.

In utilizing the tools of quality management, we can more easily know
what we are supposed to build, what we are building and what we have
built. Not only that, but we can measure progress. That does not mean
we cannot use quality management incorrectly. (Remember the old rule
of the system’s analyst: “computerizing a sloppy factory, makes for
computerized slop!”) With almost no effort, anything can be made to go
wrong. However, the tools of quality management, when implemented
intelligently and with proper forethought, can serve as the focal point for
a real discipline, at a very low cost to the project. This means that not
only can we know what has happened, we can support the product
effectively. We can repeat the good things we have done and learn from
them.

The general structure of the book is intended to imitate, as much as
possible, the structure of IEEE 730. This is an excellent model for the
design of the quality assurance function - the function and the plan of
operations for the function will then appear similar. Unfortunately, there
are still some weaknesses in the standard. These are discussed later on
in the book. Where the standard is lacking, we have taken the liberty to
expand upon the subject. Occasionally, the reason for expansion is not
really a weakness in the standard or a lack of some function, but a
decision by the various committees upon a specific delegation of tasks
to different documents. The best example of this is the ideas of reviews
and audits. The standard defines them in a very minimal manner
because they are relegated to a different standard (IEEE 1061, Verifica-
tion and Validation). This is, of course, perfectly legitimate and proper.
Delegation of authority is a necessity of any management. So it is, and
was for the committees that wrote the standards. However, this book
needs to address all relevant issues so that you, the practitioner, can have
the needed tools to accomplish your job, quickly and efficiently.

THE THREE CPIs 9

The concept of TQM is beginning to spread throughout the world and is
now starting to make an impact on software development organizations.
This is more then just a “new fad.” The implementation of TQM in an
organization forces management to push the primary focus of all
activities in a direction of continuous process improvement (CPI). Con-
tinuously improving all of the organization’s processes is, in any case, very
difficult. In the “western world” (Europe and North America) produc-
tivity enhancements over the past 100 years have averaged about 4.5%
per annum for industrial processes and about 0.9% per annum for
services. Clearly, the competitive imperative forces us to at least under-
stand this, but even more so, to improve upon it. The concept of TQM
for software is an overall technique for organizing and using methods
of quality planning and metric analysis, such that results obtained are
usable and repeatable.

The concept of software total quality management is intended to
guide the quality assurance practitioner in planning and organizing
for quality of software produced by the organization from which his
or her living is coming. Quality planning is a primary tool — you cannot
know where you are going if you do not know where you intended to
go. Clearly, a first real step must be building the quality assurance
(QA) plan and managing the quality goals defined by the plan. The
quality task is particularly difficult when attempting to plan the quality
of software, which is only little understood. This is true even for engineers
who have had quality assurance training (whether hardware engineers
or software engineers). Such training itself is rare enough. For those
engineers (even first-rate professionals) who have not had such (QA)
training, very little understanding exists of the issues involved vis-a-vis
software.

Experience has repeatedly demonstrated that attempting to under-
stand software quality and the assurance of software’s quality, as
simply an extension of software engineering techniques, is doomed
to fail. Software engineering is an iterative system for knowledge
acquisition. The major problems in systems today are error fixing
and the problems caused by this (collectively called maintenance).
These problems are most poignantly described by error propagation,
which is the logical equivalent of wear-down in hardware. “Total
quality management for software” acts firstly as an aid to the process of
orgamz.mg the various methods for quality planning and metric analy-
sis. But also, to instruct the user in proper methods of employing these
methods, such that results obtained are usable and repeatable. Too often,
the literature is rife with “statistics” which cannot be independently
verified.

10 INTRODUCTION TO SOFTWARE QUALITY
000800 OSSORPOPRIRIEASAROOSIBTOERIBSNASEISIBRBEROINDNIAOSTOSERPREROERNBSROIASEODPODOPBSOESEBSBROEDOIEBSIBSTAEREDRTS

Quality metric analysis is used as a tool for understanding effects of
various variables upon the way systems are developed and maintained.
This must have both an immediate and a long-term effect upon systems
acquisition. The knowledge thus gained is incorporated into the QA plan
(of the system, and/or the software). It then becomes a primary manage-
ment aid for enhanced understanding and improved management of the

tems: in operation, in production and in acquisition by the organiza-
tion. This feedback is then used by management for bettering the quality
goals defined via the QA plan. No feedback mechanism can be of value
if these input values cannot be verified.

While planning for quality, as in any other management discipline, a
good understanding of “where you are going” — what your quality goals
are - is a prerequisite for effectiveness of the planning process. Knowing
“where you are going” means to be able to plan what the quality attri-
butes are to be, and what the proposed “relative value” (quantitative) of
each attribute needs to be. Not only that, but all this usually needs to be
done before the system itself is particularly clear. The software QA
practitioner needs to have a set of tools for both professional purposes,
and for allowing project management/client management to quantify
their quality goals for the project/product in development. (To eliminate
overuse of the “/* double terms, for the remainder of this book, the words
“project” and “product,” and the terms “client management” and
“project management” will be used interchangeably.)

Most organizations selling consulting for TQM claim, at least in their
marketing literature, that the type of organization is not relevant to their
techniques. This is quite simply not correct. When one of the authors
discussed the questions with some of them (and actually discussed it
personally with executive officers of Crosby Associates International Inc.,
Conway Quality Inc., Organizational Dynamics Inc., and representatives
of the Juran organization) they all acknowledged that they had no real
understanding of software and had never analyzed when software was
similar to other kinds of problems and when it was not. In instances of
implementing their techniques there have been very pointed differences,
where a software-oriented orgamzahon has been concerned. Parhcu.lar-
ly, when I mentioned to them that in software there is no manufac
process, but only design, they were universally unhappy. This forced
them to re-evaluate the comment that organization type is irrelevant.
The result is that they may need some sort of a “mental fix” - actually,
we all do. What is more important for us, is that this now causes us to
change the mode of thought based-upon the software producers being
accustomed to being always “feared” by the organization. Nonetheless,
they still think that way, and it is still always the case that we cannot
afford the luxury.

TQM uses control techniques for making and achieving goals. This
is usually taken to mean all corporate goals. Somehow, software has
usually managed to remain the exception. Even in very well-managed

TOTAL QUALITY MANAGEMENT PrRACTICE 11
C B BN B B B B B BN BN BN BN N BN IR OB BN BN BN NN BN BN BN B BN BN B OB BN BN BN BN BN BN OB OB BN BN BN B N OB B B N N NN N N NN N N N

organizations, the software frequently runs out of control. Why? Mostly
because we simply do not really understand how to fully control the
creative processes. Software TQM must include the use of plans, analysis
and control of software and goals which allow for quality software to
happen. Quality planning is a primary tool. Clearly; a first real step
must be establishing an agreed baseline, followed by building a quality
plan and managing defined goals. A basis of control must be an under-
standing of how software quality may be measured. It is imperative
that we base analysis upon these measurements. This analysis must
have both an immediate and a long-term effect upon systems acquisi-
tion. This ensures deeper understanding and allows better management
of the system: in operation, production and in acquisition by the

orgaxﬁzaﬁon.

Total Quality Management Practice

As stated above, the usually accepted concepts of TQM, as promulgated
by the various “management gurus,” are based upon the same concepts
being discussed here. The only difference is that your normal, everyday
management guru does not know software. They seem to think that
products just happen. Clearly, this is not the case in a software company.
Nor is it the case in an engineering company that develops and markets
products which happen to be software rich. Many products today may
have as much as a 90% software content (measured in terms of total
investment ifi their development). In discussions that one of the authors
has had with several of these highly skilled professionals (and, do not
misunderstand us, we have a great deal of respect for these people and
both admire and learn from their work), they have always emphasized
that they really did not understand software, but they thought it was
essentially the same as anything else! This is not quite accurate. Figure
1.2 on the next page, shows a typical enterprise structure. Notice that
software is simply not there. Why? Is this simply an oversight on their
part? Hardly! These people are much too professional and experienced
for that. We must be aware that certain kinds of systems are too complex
for trivial analysis (e.g,, traffic, weather, biological, economic). Major
information systems of all kinds, whether oriented towards information
processing or real-time may be as complex as biological systems. In
any case, the discussion centers around the idea that one must plan
to do better and that all these ideas are a challenge to traditional manage-
ment philosophy.

The difference then, is that software is all development (design).
Remember, industrial processes are intrinsically stable — they are
algorithmic processes. Information sciences are intrinsically unstable.
The usual models just do not work.

12 INTRODUCTION TO SOFTWARE QUALITY
2000000 RORPRPRERSIOONODRONOCEOERNODOROEROODEDPOIOOSOROROOOEOOODROOSGEOORDOOBRODRS

(Personnel ' (Accountlng) Qanufacturlng) Galesfmarketlrg

Figure 1.2 GURUware.

Well, if the usual models do not work, what, if anything, can be learned
from them?
The answer is: the three CPIs!

« Continuous process improvement.
e Continuous product improvement.
s Continuous productivity improvement.

Interesting, is it not? We said three different things with the same
acronym. The great big secret is, in software they are all the same. The
stupid expression; “If it ain't broke, don't fix it!” is simply that, stupid!
That is the surest way to not stay in business for any length of time. Even
monopolies understand that today.

We are asking you, on a continuous basis, to think about what you are
doing, about how you are doing it and about how much it is (and should
be) costing you. We are asking you, on a continuous basis:

* to improve your products
to improve your processes and
» to improve your productivity

As T] Watson said, we are asking you to think. Nasty, isn't it?

The First Steps to Planning for Quality

An organization engaged in the development, acquisition or maintenance
of software — whether for profit or as an internal service to the company —
must have a view of quality and its meaning to them in relation to the
proposed product. Our wish at this point is to suggest what that view
might be to achieve the sort of results we think you desire. Look at Figure
1.3. It displays the relationship with which management needs to be

THE FIRST STEPS TO PLANNING FOR QuALITY 13
LI B O B B B B BN BB NN N O B BB NN B BB NN NN N NN N NN NNENMNENENHNESREMSHNNRHNENEHSESHNEHNHN]

Development & rework

Suitability
schedule
cost

Productivity

Figure 1.3 Management relations for quality.®

concerned for software. Let us use this drawing to establish a few basic
principles and put them in their place. Let’s look at the right-hand side
of the drawing,. Notice that quality is the arm, from which productivity
swings. In software, quality and productivity just do not separate!
They are part of the same thing. This is axiomatic to any understanding
of quality, as it relates to software. Crosby’s famous book said “Quality
is free.” This is not quite true (close, but not quite). What is absolutely
true (certainly for software) is that what really is costly, is a lack of
quality. Generating, then hunting and fixing bugs is a very expensive,
wasteful and unproductive way of life.

There is a major difference between software and hardware. In soft-
ware the defects are built in. In hardware they are a function of
time. Understanding this is a prerequisite to a plan for quality.

Now let’s look at the left-hand side. Development and rework are the
balance arm of quality. What swings from them are the three keys to any
project’s success: suitability of the produced system to the clients’
expectations, delivery on the agreed date and price that is considered
appropriate. Now isn’t that a nasty lot of things to say? If you do not like
it, you deserve it.

To be kept in perspective, quality concepts must be understood in
terms of accepted definitions. “Accepted” means definitions as used by
commonly used industry standards. The standards “ANSI/IEEE STD 730"
and “ANSI/IEEE STD 610.12”; the American National Standard
Institute/Institute of Electrical and Electronic Engineers Standards for
Software Quality Assurance Plans and for Software Engineering Term-
inology. From those sources, one can see that the definition, is actually
composed of two parts. The definition of what quality means:

14 INTRODUCTION TO SOFTWARE QUALITY
2000000 P00 SOOPRROSORPRRRGSSRRRORCEORRRREPRPOERROOREREPRPOEOSERNDNRERSRSEBEDS

The totality of features and characteristics of a product or service that
bear on its ability to satisfy given needs (ANSI/ASQC A3-1978).

And, the definition of what quality assurance means:

A planned and systematic pattern of all actions necessary to pro-
vide adequate confidence that material, data, supplies, and services
conform to established technical requirements and achieve satisfactory

performance.

The software QA plan provides the necessary framework for planning
of:

... systematic actions necessary to provide adequate confidence that the
item or product conforms to established technical requirements.

This sounds.rather trivial. However, experience has shown that this is
quite a complicated and delicate — not to mention, diplomatic — task. The
total quantity of activities and tasks which need to be addressed is quite
large. In a general term, we call it software auditing,

The software audit process improves the availability and reliability
of software and the products supported by software. The process is
designed to be analogous to the quality control function in manufacturing
of “regular” products. This concept of quality auditing, like any quality
audit concept, must be soundly based. Standards are one of the necessary
parts of the baseline against which things can be measured. For our
application, we are in need of more than this. We need an overall concept
of planning. The resulting plan must mclude both the procedures and
planned analysis of productivity and quality.’

The procedure

There are certain fundamental requirements for any quality improve-
ment process to be successful. These requirements can be stated as a list
of points as shown in Table 1.1.

Now, how is this to be accomphshed" A set of four activities must be

implemented by the organization.

* First, establish a baseline for measurement. Whether this process
is called software practices assessment or software maturity index
(as the SEI calls'it) or software process model is not important. This
process measures the state-of-the-practice used by the organiza-
tion in its development activities.

* Second, develop a comprehensive quality plan, which includes
productivity and goals, along with the technology goals to be used
by the organization. Software engineering is immature on princi-
ples. That is why pure SE activities have not really had a major
impact on the productivity of our systems (by the by, the most
profound impact has come from reusable packages such as trans-

THE FIRST STEPS TO PLANNING FOR QuALIiITY 13
00000080 ARSOP eSO RSORBROOeERRRORRRSSRBROOROROSRRPOIORSRBROBDRORRORDS

Table 1.1

Accept the quality process

Management commits to the improvement process as corporate culture
There is always room to improve what is being done

Preventing problems is smarter than reacting to them

Management focus, leadership and participation

A performance standard of zero defects

Participation by all employees, as individuals and as groups

Focus improvement on processes, not people

action monitors and databases). This plan is wholly dependent
upon the total commitment of management. TQM, particularly for
software, begins with the most senior management of the concern
(e.g., the CEO).

* Third, implement your plan. The implementation must include all
three types of goals (productivity, quality and technology).

* Finally, the fourth aspect. Everything must include measurement,
measurement and measurement! Of course, as stated in several
other places in this book, this measurement is not a religiuus rite.
It is used, after rigorous analvsis, as feedback for the software
organization.

The most difficult comprehension problem is establishing your corpor-
ate baseline. Even all the corporate awareness discussed previously is not
sufficient if there is not a reliable picture of where the organization stands
in comparison to the industry, and what the plan for improvement needs
to be. Also, of course, we cannot prove improvement unless we have
means for measuring it. This implies that we need to start measuring our
current state before starting to improve it.

Only after this measurement can the quality attributes be determined,

with their constituent parts. Once these parts exist and are
allocated to attributes of suitability, maintainability er both, the last and
final aspect may be determined, that of the quality attribute relationships.
This closes the circle. Once this framework exists, determining the
software quality through the product life-cycle (concept, requirements,
design, implementation, testing, installation and checkout, operations
and maintenance® and finally retirement”).

An excellent example of how things should be accomplished can be
taken from the quest for quality at the Philips Corporation. They call this
quest, “company-wide quality improvement principles.” This particular
example is taken from their Singapore subsidiary, and was reported in
a newsletter of the American Society for Quality Control (ASQC).

16 INTRODUCTION TO SOFTWARE QUALITY
LE N N AR NN N EEEEENESEENERESENENSERENEHNHSE-SRHERBRS-SENENERNENRNENRHESRNNENNENHREN]

* Customer satisfaction. A perfect interface must be achieved
between company performance and customer needs in all aspects
that customers consider to be important.

* Leadership. Quality improvement is primarily a task and responsi-
bility of management as a whole.

* Total involvement. There must be total involvement of all
employees at all levels and in all functions. Equally important is the
complete involvement of all suppliers of goods and services.

* Integrated approach. Integration must be achieved between
functions and between levels. Traditional organizational barriers
must be removed.

* Systematic approach. A systematic approach must start with a
clearly defined business strategy, which is then translated into an
improvement policy with objectives and priorities. These must be
followed by detailed planning, implementation and monitoring of
progress.

* Defect prevention. Defects must be prevented from occurring,
Performance must be the result of built-in capabilities.

* Continuous improvement. The approach should not have the
character of a campaign or a project. Excellence can only be
achieved by continuously investing in improvement, step-by-step,
year after year.

* Maximum quality. Long-term objectives must be set which reflect
the will to strive for excellence. The path towards excellence must
be marked by challenging but achievable and acceptable targets.

* Education and training. Widespread attention will be given to

. education and training. A new work culture can only be realized
if people are more than ever prepared to make their contribution.

The point referring to continuous improvement is particularly interesting.
It “just happens” to be a fact of business life that nearly every major suc-
cessful corporation in the world places continuous quality improvement
as a primary corporate policy. A sadder example was reported by Busi-
ness Week on July 4, 1988; under the title; “Missed deadlines at Lotus
t Corporation” (see Table 1.2, below). Lotus was clearly one

of the brightest and most interesting of companies in the software market-
place. They enjoyed some amazing successes. They also had some very
interesting failures (we can, of course, say the same for any other major
software company) which have been publicly reported. An intelligent
learns from the mistakes of others. Lotus learned their lessons,
and they should be applauded for that — but it was too late, they are no
an independent company and their upper management has been
replaced. That is what the Business Week article was about and, in a very
real sense, that is what “total quality management for software” is all about.
Problems of products being delayed, or even canceled, have multi-
dimensional costs. These costs include both lost product sales and

A Case Stupy 17
([E N NN NN NN NN NN NN NN N NN NN NN NN NN NN NNNNNENNRMNNHNNNNNNNRENNNN]

Table 1.2 An example of what is happening in industry

Product Announced Promised for Status

Modern Jazz March, 1987 1Q 1988 Canceled June
16, 1988

1-2-3rel. 3 April, 1987° 1Q 1988 4Q 1988

1-2-3G April, 1987 4Q 1988 1Q 1989

1-2-3M April, 1987 1Q 1988 1Q 1989

DBMS April, 1987 4Q 1988 2Q 1989

1-2-3 MAC October, 1987 3Q 1988 1Q 1989

AGENDA November, 1987 2Q 1988 3Q 1988

decreased customer confidence. Both of these are intangibles which are
difficult to measure directly, but this difficulty must not be allowed as
an excuse to ignore them. We all remember that Lotus started at about
the same time as Microsoft and in the beginning they were in competition
as to who would be the leader. Lotus has now been purchased by the
largest fish. They are not going to be leading anything now.

John Cullyer from the Royal Signals and Radar Establishment (RSRE),
UK Ministry of Defence (MOD). VIPER microprocessor, a 32-bit RISC
chip designed for safety-critical applications.

RSRE performed a study of NATO software in the 1980s, using a static
analysis technique in which a program is represented as a directed
graph, various expressions are associated with the arcs and conclusions
regarding correctness are derived from them. Of the modules (not
n: zessarily whole programs) which RSRE sampled from the NATO
inventory, one in ten were found to contain errors, and of those, one in
20 (or one in 200 overall) had errors serious enough to result in loss of
the vehicle or plant! About the same findings were made whether the
code came from Britain, the USA, or West Germany.

VIPER is an attempt to address this problem. The project was felt to
be so urgent that it was funded within 48 hours of submission. There
is no stack (“We don't like stacks — they overflow”). There are no
interrupts; all device handling must be done by polling. Cullyer said that
it is not possible to verify programs that permit interrupts. “l don’t think
we have all persuaded our bosses that there is a problem. If we do not
implement these methods, there will be a lot of accidents and a lot of
people will die. If we do implement them there will still be accidents,
but we will limit the casualties.” He also mentioned that new MOD
software procurement standards require formal development tech-
niques for critical software. MOD regulations explicitly prohibit any cost

18 INTRODUCTION TO SOFTWARE QUALITY
20000000000 COORRPPOROORROOORORROOIOROPRRROOSERNORRRRRRRROBDRORRRRRORRES

saving that might increase hazard to life - you are not allowed to trade
lives off against money.

The shuttle is a totally “fly-by-wire” craft. The onboard flight control
software is built from about 500,000 lines of HAL/S source code; the
total error rate for the software was 0.11 errors/thousand source lines
(or about 55 errors). IBM got the error rate down to 2.2 errors per 1000
lines in 1932 and to 0.11 per 1000 lines at the end of 1985. The figures
referred to errors discovered by the customer and undiscovered errors
remain. For instance, how they could be sure the abort sequence
software was error. free, since it had never actually been used? The
answer is that they exercised it in a software simulator.

How can one determine how many consecutive failure-free tests
would be needed to establish with 99% confidence that the probability
of failure is less than one in a billion? Commonsense suggests that it
must be at least a billion, perhaps more. Miller derived that you actually
need around 4.61 billion, and presented the rule of thumb that to obtain
confi dence that the probability of failure is less than 107, you need
about 10*"W*%9) trials. He pomted out that in most cases it is only
practical to test up to around 10° trials, which can only reveal bugs that
appear with frequency 107 or greater.

People sometimes say that good engineering practlces ensure that
the probability of failure is much less than 107*°, This is rather
illogical if testing reveals any errors at all. If the tests reveal frequent
bugs, why should you believe that your good engineering practices
have prevented the subtle ones? Performing binary patches to
weapons software in the field is a common practice in the US services;
the UK standards prohibit this. Cullver mentioned that the UK has only
11 scientists and engineers who review the entire avionics; he estimated
that there were only about 50 people in whole western world looking
after civil avionics safety.®

t The copy | am referring to is: “Trillium: Model for Telecom Product Development
and Support Process Capability,” Bell Canada, Release 3.0, December 1994, The
word “Trillium” is not listed as trade marked by this document.

2 Currently undergoing a process of revision.

3 Webster's New lllustrated Dictionary, Editors-in-chief Allan S. Kullen and Frederick
Reinstein, Books, Inc., 1970.

4 In software, quality and productivity just do not separatet

5 In 1985, software costs for the United States Department of Defense were roughly
$11 billion. In the USA, as a whole, the total outlay for software was about
$70 billion; worldwide the costs for software reached about $140 billion — that
was 11 years ago. The present rate of growth in the worldwide software market is
about 12%. (As reported by Barry W. Boehm, TRW, September, 1987, /EEE
Computer.)

6 Operations and maintenance is called here, one stage. This is where the majority
of resources are consumed. While it is true that, conceptually, every maintenance

NoTes 19

project is a development project in the small, it is also very important to remember
the additional onus that is placed upon these activities.

7 The actual fact of retirement seldom needs to be examined. By this point it is usually
too late to do anything significant or to learn a great deal about it. Most software
systems live for 15-20 years. At that point, no one cares anymore, they simply wish
to get the old stuff out of the way and get on with the new system.

8 Taken from “Testing for the individual programmer,” JC Cherniavsky and WR
Adrion, NTIS, US Department of Commerce, PB 166960.

