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Static Electric Fields

1.1 Infroduction

Electrostatic in the sense static or rest or time in-varying electric fields. Electrostatic field
can be obtained by the distribution of static charges.

The two fundamental laws which describe electrostatic fields are Coulomb’s law and
Gauss’s law:

They are independent laws. i.e., one law does not depend on the other law.

Coulomb’s law can be used to find electric field when the charge distribution is of any
type, but it is easy to use Gauss’s law to find electric field when the charge distribution is
symmetrical.

1.2 Coulomb’s Law

This law is formulated in the year 1785 by Coulomb. It deals with the force a point
charge exerts on another point charge; generally a charge can be expressed in terms of
coulombs.

1 coulomb = 6 x 10" electrons
1 electron charge =—1.6 x 10" Coulombs

Coulomb’s law states that the force between two point charges Q; and Q, is along the
line joining between them, directly proportional to the product of two point charges, and
inversely proportional to the square of the distance between them
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F- K20

R

where K is proportional constant

In SI, a unit for Q; and Q; is coulombs(C), for R meters(m) and for F newtons(N).
1

4r €,

K=

where €, = permittivity of free space (or) vacuum
= 8.854 x 10" farads/meter
_107

farads/m
3671
K :367” =9 x 10’ m/farads
47 x107°
F=£22 (1.2.1)
4 €0 R

Assume that the point charges Q; and Q, are located at (x;, y1, 1) and (X, y2, Z;) With
the position vectors 7 and 7 respectively. Let the force on Q, due to Q, be £, which

can be written as

F=—9% ; n(1.2.2)

2= 7 AR
dre, R?

where @y, is unit vector along the vector Ry, . Graphical representation of the vectors

in rectangular coordinate system is shown in Fig.1.1 Fy

Where a, is the unit vector along X-axis and a, is the

unit vector along Y-axis and a_ is the unit vector along
Z-axis.

From Fig.1.1, we can write 5+ R, =7,
Origin
ie., R,=%-F

Fig. 1.1 Graphical
where h=xa,+ya,+za, representation of the
vectors

K, =X,a, + ),a, +2,a,
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- R
Now F,= 9.0 . P
4rey R |R12|

12

[R|
— QIQZ & .. R.I=R
4z e, R* R o IR

_00, R,

4z e, R

ARy

_90, n-h o(1.2.3)

— 3
472'60 |r2 —rl|

and force on Q, due to Q, is F,, =—F,

If we have more than two point charges i.e., Q;, Q,,... Qn with the position vectors
K, 5, ...y respectively, then the force on a point charge Q, whose position vector is
7,can be written as

_00 F-F_ 00, F-R . 00y F-F

4r e, |7_71| 47z =N |r —r2| 47r =N |,» _’”N|

ZQK (12,4

472'60 |r_rK|

1.3 Electric Field Intensity

Electric field intensity is defined as force per unit charge in an electric field. The other
name of electric field intensity is electric field strength and it is denoted by E .

E="N/C or Volts/meter

Q| M

09 __ 0
e B e T (13,1

ie., E =

Consider a point charge Q with position vector 7, then the electric field intensity E at
some point with position vector 7 due to point charge Q is
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E:MeQ—RzaR L (13.2)
0

where @, is the unit vector along R . Graphical representation of vector is shown in
Fig.1.2 z

FromFig. 1.2, R=7% -7

e R 0 F-T Fig. 1.2 Graphical
= -5 representation

If we have more than one point charge i.e., Q;, Q,,... Qu with the position vectors
7, 7,...7y Tespectively. Then the electric field intensity E at some point with position

vector 7 can be written as

F._@ Tr-h 0, 7-h Oy 7 -7y
drr e |—_—|3 A e |—_—|3 T 4rze |—_—|3
o7 -7 o |F =7 o|r -7y

L oShg 7ok . (133)

4 ey ko |r—rK|

Problem 1.1

Point charges 1 mC and -2 mC are located at (3, 2, —1) and (-1, —1, 4) respectively.
Calculate the electric force on a 10 nC charge located at (0, 3, 1) and the electric field
intensity at that point.

Solution
We know
= 0 < F-rx
F = [0)
4r e, KZ; -l

_10x107) (3@, +a,+2a.) 10 (a, +4a, -3a.)

2
47 e, (mf («/1+16+9)3
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€,=8.854x107" and n=3.14

. 90[(—3@ +a,+2a,)x10°7 . (2a, +8a, —652)]

52.38 132.57

So(3 2 Y, (1 8 V.- 2 6
=90x10 ax(—— j+a (—— j+az(—+ j
5238 132.57) \5238 132.57 5238 132.57
= 90x107°[-0.0723a, —0.0413a, +0.0834 |
= —0.0065a, —0.0037a, +0.0075a, N.

Also we know E =

Q|

0.0065 _ 0.037 _ 0.0075 _
- —~a, — —~a, + —~ 4,
10x10 10x10 10x10
= —650a, —37OEy +750a, kV/m.

Problem 1.2

Point charges 5 nC and -2 nC are located at 2a, +4a, and —3a, + 5a, respectively.
(a) Determine the force on a 1 nC point charge located at a, —3a, +7a, . (b) Find the

electric field £ at a, — 3a,+7a,.

Solution
(a) We know
ol 0 3 r—rg
F= 0
47[601; K|F—rK|3

(-a,-3a,+3a.) 2(4a,-3a,+2a)

(Viroso)  (ViGro+4)

B _9_(—5 8 )_(—15 6 j_(ls 4 j
=9x107| a, | ——— +a + +a, -
82.81 156.169) ”(82.81 156.169 82.81 156.169

= 9x107[ @, (-0.112) +a,(-0.143) + @ (0.155) |

=107 x9x10°x107°| 5

= -1.008, ~1.287a, +1.395a, nN
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(b) E="_,hereQ=1nC

Q|

E=-1.008a,-1.287a,+1.395a. V/m

Problem 1.3

Point charges Q, and Q, are respectively located at (4, 0, —=3) and (2, 0, 1). If Q=4 nC,
Find Q; such that (a) The E at (5, 0, 6) has no Z-component. (b) The force on a test
charge at (5, 0, 6) has no X-component.

Solution

R
We have F =
e have 4”60[;QK |F—FK|3

® E:E: 1 Q1|(5,O,6)—(4,0,—3)|+4><10’9|(5,0,6)—(2,0,1)
Q0 dre («/1+81)3 (\/9+25)3

Given E has no Z — component, considering only Z components on both sides

1 Q1x9+4x10*9x5
Cdre 3 3

[m) ()
0x9 _ 4x107x5

)

3
20( [41
=——| ,/— | nC=-8.3nC
o 9( 17]

(b) Given the force on test charge has no X-component

02 0 4x107 x3
- 3 + 3
am € (vV82)  (V34)

_ 0 4x107x3

)

3
0 = —12( /f—;J nC = —44.95nC
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Problem 1.4

Two point charges of equal mass ‘m’, charge ‘Q’ are suspended at a common point by
two threads of negligible mass and length ‘/’. Show that at equilibrium the inclination
angle ‘«’ of each thread to the vertical is given by Q° = 16 7, mgl* sin’a tan o, (or)

tan’ o 0’

l+tan’e 167 e, mgl*’

if ‘o’ is very small

Q2
Show that a=3————>
167 €, mgl

Solution:

i

Tcos a

mg mg
Fig. 1.3 Suspended charge particles

When two charges are suspended from a common point with threads of length ‘/°, we
can represent graphically as sown in Fig.1.3, where T is the tension in thread ‘mg’ is the
weight of charge towards ground due to gravitational force and F is force on charge at
‘A’(B) due to charge at ‘B’(A). T cos « is the vertical component of ‘7" which is
upwards and 7 sin a. is the horizontal component of ‘7" which is opposite to F. To form
equilibrium either at ‘A’ or ‘B’

Tcos a =mg .....(1.3.4)
Tsina= F ....(1.3.5)

(134) Tsina F

(1.3.5) " Tcosa mg
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where F=

From Fig.1.3

- dmgr e, 41° sin” a

Q2

16mgl*x €, sin’ a

tana =

0’
sinzottanozz—2 .....(1.3.6)
lomgl 7 €,

= Q’'=l6rx < mgl*sin’a tan o .....(1.3.7)
From (1.3.6)
, sin‘a 0*

cos“a 167 €, mgl®

tan’« B 0*
sec’a 167 €, mgl®
tan’ar _ 0*

1+tan’a 167 €, mgl®

If a is very small, sin o =tan o = o

From (1.3.4) Q*=167e,mg I* o

2
o O
l6r €, mgl

2

a=3 0

167 €, mgl*
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Problem 1.5

Two small identical conducting spheres have charges of 2 x 10 and — 0.5 x 10 ° C
respectively. (a) When they are placed 4 cm apart what is the force between them? (b) If
they are brought into contact and then separated by 4 cm. What is the force between
them?

Solution
(a) We know
Fe 00,
4 e, R?
=9x%x10°
4r e,
— 22x107%0.5x107 x9x10°
F =
16x107
=—5.625 uN

(b) When they are brought into contact, charges will be added and again when they are
separated charge will be distributed equally

Q,=0.758 x 10 °C
Q,=0.75x107°C
F =3.164 uN

Problem 1.6

If the charges in the above problem are separated with the same distance in a kerosene
(e:=2), then find (a) and (b) as in the previous problem.

Solution
—  -5.625
(@) F= uN
2
=-2.8125uN
3.164

(b) F, === 1.582 uN
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Problem 1.7

Three equal +Ve charges of 4 x 10 ~° C each are located at 3 corners of a square, side
20 cm. Determine the magnitude and direction of the electric field at the vacant corner

point of the square.

Solution
4x10°C  20em  4x10°C
1 o@ Q2
20 ;m 9:19 20 cm
= 4 Q;
B e 20 em 4x10° C
45
45°
4
E>
Ei
Fig. 1.4
El = Electric field intensity at Q4 due to Q,
_ 9
4r €, R?
= 900 V/m
E, =450 V/m
E;=900 V/m

The electric field intensity at vacant point is

E = E, + E, cos45° + E, cos 45°
900 900
=450+ —=+—
V242
— 450+900+/2

=1722.792206 V/m

1.4 Coordinate Systems

The most widely used coordinate systems are Cartesian or rectangular co-ordinate
system, Circular or cylindrical co-ordinate system, and Spherical co-ordinate system.
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1.4.1 Cartesian Co-ordinate System

In this system the co-ordinates are X, Y, Z in which three are mutually perpendicular to
each other. This system is shown in Fig. 1.5, where a,,a, & a_are unit vectors along X,

Y and Z respectively. In Cartesian co-ordinate system the dot product of any unit vector

with itself gives ‘1°.
ie, a -a =1 =1 a,-a, =1
and the dot product of one unit vector with the other
one gives ‘0’.
1e., a. -
The cross product of one unit vector with the other
unit vector, which is next to the first one in

anticlockwise direction, results the last unit vector in
anticlockwise direction.

V4

X

Fig. 1.5 Cartesian co-ordinate
system

xa,=a, a,xa,=a,

ie., a

. Xa,=a, a,

Consider a general vector A with components A, Ay, A,along X, Y, Z respectively,
then it can be represented in Cartesian coordinate system as
A=4a,+A.a,+4.a,
Here X ranges from — o to o0, Y from — o to o0, and Z from — oo to .

Note:
1. Differential displacement or elemental length is
dl =dxa, +dya, +dza,
2. Differential or elemental normal area is dS = dvdza,
=dxdza,
=dxdya,

3. Differential or elemental volume is dv = dx dy dz

1.4.2 Cylindrical Co-ordinate System

In this system p, ¢ and z are coordinates in which all are mutually orthogonal to each
other.
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Note: If the given problem is of circular symmetry, then it would be better to use

cylindrical coordinates rather than Cartesian coordinates. .

Where p is the radial distance from origin, ¢ is the
azimuthal angle from X-axis to the radial distance and Z az ay
is same as in Cartesian coordinate system. The P
cylindrical coordinate system is shown in Fig. 1.6.

Where a,,a; and a, are unit vectors along radial

axis, azimuthal angle and z-direction respectively.

The dot product of any unit vector with itself gives

X

‘1.
. o o o Fig. 1.6 Cylindrical coordinate
1.e. ap-apzl a¢~a¢=l a,-a, =1 system

The dot product of any unit vector with the other unit vector gives ‘0’
Le. a,-a,=0 a,.a, =0 a,-a,=0

The cross product of any unit vector with the other unit vector, which is next to the
first one in anticlockwise direction, results last unit vector in the anticlockwise direction.

Le., a,xa;=a, g xa,=a, a,xa,=ay,

Consider a general vector 4 with components 4, 4, A, along the three axes, then it
can be represented as

A=Aa,+A,a,+4,a,
In this system 0 < p<oo, 0 < P<27, and -0 <z <0
The relation between Cylindrical and Cartesian coordinate system is shown in Fig.1.7.
The component of p on X-axis is p cos¢ and the component of p on Y-axis is p sin ¢.

X=pcos¢p Y=psin g, 7=z 7
Y Y
from Fig.1.7 tang=— = g=tan"'| —
g b==5=9 (X]

X+ =p’ = p=AX*+Y?

To find the relation among a, and a,,a, consider the 5 Pl . Y

Fig.1.8. A component of a, on a, is
. cos¢ and the component of _% on 7. is Fig.1.7 RelaFlon beth:en cylindrical
p * and cartesian coordinate system

—asing.
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a,can be written as a, =a, cos¢—a, sing

e
To find the relation among @, and a,, a, consider the Fig.1.9. -
The component of a,on a,is a,sing and the component of a, PAb Z
on a,is a,cosg. e
- = . — ¢
a,=a,sing+a,cos¢
The unit vector a, of Cartesian coordinate system and cylindrical Fig. 1.8
coordinate system is same .. @, = a, Y _ g
ag =
We know that in Cartesian co-ordinate system 0 a
A=Aa,+4a,+A4.a,.
90 — ¢
Substituting unit vectors,
— ¢
A=A, (ap cosg—ay sm¢) +4, (ap sing+a, cos¢) + A,a.
A= (Ax cosg+ A4, sin ¢)67p + (Ay cos@— A, sin ¢)67¢ + 4,a. Fig. 1.9

A=A, + Aa,+A.a,
where
A,= A, cos p+ A, sing
Ay=—A.sin p+ A, cos¢
A, =A,
i.e., in matrix form

(4] [ cosg sing O][ 4,

%
A4y |=|-sing cosg 0|4,
A, 0 0 1|4,

The above matrix in terms of unit vectors is given by

Ap a,-a, a,-a, a,-a, A
Ay |=|az-a, az-a, az-a, |4,
A a.a. a.-a, a.,-a. ||lA

z

[
N

L
=
N

<
N
N

z
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A, a-a, ac-a, ac-a, ||4,
or 4,|=la,-a, a,-a, a,a, ||4,
A a-a, ac-a; a. -a, ||A4,

Note:
1. Differential displacement or elemental length is
dl =dpa,+ pd¢a, +dza,

2. Differential or elemental normal area is dS = pd¢ dz a,
=dpdza,
=pdpdpa,

3. Differential or elemental volume is dv = pdp d¢ dz

1.4.3 Spherical Coordinate System

When the given problem is of spherical symmetry, it is better to use spherical coordinate
system to solve the problem instead of either Cartesian or cylindrical coordinate system.

In this system 7, 6 ¢ are coordinates in which all are mutually orthogonal to each
other. Where ‘1’ is the distance from origin to the point (where the vector is located). €is
the co-latitude angle which is taken from z axis to the radial distance and ¢ is same as in
cylindrical coordinate system.

The spherical coordinate system is shown in Fig.1.10. Where a, is the unit vector
along r, @, is the unit vector in increasing direction of 6 and a, is the unit vector in
increasing direction of ¢.

The dot product of any unit vector with itself gives
unity
ie, a-a =1 aya=1 a,a,=1

r r

The dot product of any unit vector with the other unit
vector gives ‘0’

Fig. 1.10 Spherical
’ coordinate system

S

ie, a-a,=0 a,-a,=0 a,-a,=0

The cross product of unit vectors is: a,xa,=ay,,
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To convert from Cartesian to cylindrical or spherical co-ordinate system consider
Fig. 1.11.

The component of r on z-axis is » cos 6, and the component of 7 on p is 7 siné.

z=rcost
p =rsind and s
. p=rsin 0
we know x = pcosg & y = psing
From Cartesian to cylindrical, the conversion is z=rcosd
x=pcosg,y =psing,andz =z [/
: . . prsin@- v
To get conversion from Cartesian to spherical ¢ 7
co-ordinate system, substitute p = r sin @ in the above """ """~ ’
equations. X
Fig. 1.11

x =rsinfcosg,

y =rsindsing, and

z=rcos @
From the above equations » =+/x* + y* +z°
From Fig.1.11 ¢ =tan™" (lj
X
2, .2
+
and tand = (ﬁj _NT TV
z z
242

relation between unit vectors of Cartesian and spherical co-ordinate systems is as follows:
a,=sin @cos ga, + cos fcos ga,—sin ¢ a,
a,=sin dsinga, + cos Isinga,+ cos ¢ a,
a,=cos 8 a,—sin b a,
Note:
1. Differential displacement or elemental length is

dl =dra, +rd0a, +rsinfdpa,
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2. Differential or elemental normal area is
dS =r*sinf@dbdga
=rsin@drdga,
=rdrd0a,

3. Differential or elemental volume is dv = 1’ sin@ drd 0d ¢

1.5 Electric Fields due to Continuous Charge Distributions

So far we have discussed the electric field or force due to point charges. Let us see the
electric field due to continuous charge distribution along a line, on a surface and in a
volume. If the charge is distributed along a line the distribution can be represented with
the line charge density p.(C/m), which is shown in Fig.1.12(a). If the charge is distributed
on a surface it’s distribution can be represented with the surface charge density p,(C/m?),
which is shown in Fig. 1.12(b). If the charge is distributed in a volume it’s distribution
can be represented with the volume charge density p,(C/m’), which is shown in

Fig. 1.12(c).
+++
Rl e
+4++++ ++
+++++ el b ok oo s (R IS
+++++ +++ +H+
(a) a line charge (b) surface charge (c) volume charge

Fig.1.12 Charge distribution

The elemental charge dQ along a line can be written as
dQ = pdil, where dl is the elemental length.

So 0=[p dl
/

Electric field intensity due to line charge distribution is

The elemental charge dQ on a surface can be written as dQ = pds

(15.0)
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= Q=Imﬂ
s
. Electric field intensity due to surface charge distribution is
E — P s dS 5 -
L4r e, R

The elemental charge dQ in a volume can be written as dQ = p,dv

= Q=IAW
". Electric field intensity due to volume charge distribution is
J- p,dv _
L4r e, R? “

1.5.1 Line Charge Distribution

(1.5.2)

.(1.5.3)

Consider a line charge distribution from A to B along Z-axis as shown in Fig.1.13.

Fig.1.13 Finding E due to line charge distribution

Let us find the electric field at point (X, y, z) due to line charge distribution along

Z- axis. We know electric field intensity due to line charge distribution as

-~ dl

2 'R
4T ey R

|
|=u|

where ,dl=dz',

Q
=
B
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Since the charge distribution has cylindrical symmetry, we use cylindrical coordinate
system to obtain Electric field intensity.

From the Fig. 1.13

From the Fig. 1.13

z—z ,
tanog =——=z—z = ptana
ol

2
cosaz%sR=,0seccz:>.[,o2 +(z—z') = pseca

7' =0T —(z-z')=0T - ptana
dz'=0-psec’ada

5P pseczada(pﬁp + ptana Ez)
4z e, plsec’ a

-p, ‘].Zpseczada pseca(ﬁp cosa +a, sina)

3 3

4r e, a psec’ a
P f

=—rL I (cosa @, +sinaa,) da
471'60,004

- . — 2 — 1@
:L[[sma a ] —[cosaa,] ZJ
Pl o

4z e, p



StATIC ELECTRIC FIELDS 19

_~PL

o . p[(sina2 —sinal)ﬁp +(—cosa, +cosal)ﬁz]

which is electric field at point (x, y, z) due to line charge distribution from ‘A’ to ‘B’
along Z-axis. If ‘A’ is tending to — o then o, becomes 1/2 and ‘B’ is tending to o then

o, becomes —7/2.
E=—F sin[—zJ—sin(zj a,+ —cos(—£j+cos(£j a,
dre, p 2 2 2 2

_ 2EppL
dre, p

E-—fL g

2m & p o (1.5.4)

which is the electric field at point (x, y, z) due to infinite line charge distribution along
Z-axis.

1.5.2 Surface Charge Distribution

Consider an infinite sheet lying on XY plane which is perpendicular to Z-axis as shown in
the Fig. 1.14.

¢ P

X
Fig. 1.14 Finding E due to infinite sheet of charge

Assume that the elemental surfaces are located on the sheet at ‘1’ and ‘2’ .
Then the elemental charge dQ on elemental surface ds is dQ = p, ds.

.. The elemental electric field at point (0, 0, h) due to the elemental surface ds is
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JE=—% 5

a
R
dre, R’

where

dQ=p.ds and a, =

Since the surface is infinite it has circular symmetry, hence we can use cylindrical
coordinate system to obtain electric field intensity.

Here ds lieson p and ¢ axises, Hence ds=dp pd¢
From Fig.1.14
pa,+ R = ha,
= R=ha,-pa,

Since the sheet is symmetry with respect to origin on XY plane, for every electric field
due to elemental surface (for example elemental surface located at ‘1°) there will be an
equal and opposite electric field due to the elemental surface on the other side(for
example elemental surface located at ‘2”) in the direction of ‘ p ’ (radial length), so finally
when we add up the electric fields due to all the elemental surfaces on the sheet the
electric field in the ‘p’ direction will get cancelled. We will have only the electric field
perpendicular to the sheet i.e., along Z-direction.

0 ha,
A =N (pz +h2 )3/2

By integrating the above equation, E =

Where Qz'[jpspdpd¢

27w oo
(p )
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= P hp _
E_4” €0 9 d¢£(p2 + 2)3/2 dpa
=32 1 _
_ﬁfeo(zﬁ)i( o) 2d(p)a,
ph 1 (P2+h2)7+1_
:2605 3+1 “
0
. i1 _(h2)—1/2 )
2¢,2| -1/2 |°
E=La (1.5.5)

2¢,

If we observe the above equation, the electric field is independent of the height ‘h’ i.e.,
the point can be considered at anywhere on the Z-axis.

The above equation can be generalized as

=Pz ..(1.5.6)

n
2¢,

|

Where a, is the unit vector which is perpendicular to the sheet.
Consider a parallel plate capacitor of equal and opposite charge on each plate, the

electric field due to these parallel plates can be written as

E=2 g +m(—an)=&an o l(15.7)
2¢, 2¢, =N

Problem 1.8

A circular ring of radius ‘a’ carries a uniform charge p. C/m and is placed on the XY
plane with axis the same as the Z-axis.

(a) Show that E(0,0,n)=— 219" 7
2¢, (h2 +a2)

(b) What values of h gives the maximum value of E

(c) Ifthe total charge on the ring is Q. Find E as ‘a’ tends to zero.
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Solution
(a) Here dl=adg
dQ = py di
= pLad¢
dE = 0 > a,
4r e, R

Y
*\a,
a
dl
X

Fig. 1.15

- x.a R

ar = S =

dQ=pLadg
0= J"D Ladg
when we add up electric fields, the electric field in p direction gets cancelled.
T dQ ha,
- 4 2 2 3/2
T € (a +h )
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¢ padé ha,
U, (auhz)m
pL J. pLah a
47Z'€0 a + h? )3/2 2eoa +h)3

(b)
(@ +#) "1 _h3 @+ n)2n
pLa a 2 :O
z 3
2¢& (a2 +h2)
(@+n)-3=0
a2 =0
2 =d’

a
h=+-"C
2

(c) When ‘a’ tends to zero, it becomes a point charge ‘Q’ located at origin and we
have to find electric field at (0, 0, h) due to point charge ‘Q’ located at origin.
E-—2 4.
drey h

Problem 1.9

Derive an expression for the electric field strength due to a circular ring of radius ‘a’ and
uniform charge density pp C/m. Obtain the value of height ‘h’ along Z-axis at which the
net electric field becomes zero. Assume the ring to be placed in X-Y plane.

Solution
Derivation is as in Problem. 1.8.
ah _
pZL S\3/2 a,
2¢, (a +h )

E:

Which can be written as
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pLa =
5 2 %
2¢, B’ (Zz + 1}
From the above equation we can say that for & = oo, the net electric field becomes zero.

Problem 1.10

A circular ring of radius ‘a’ carries uniform charge py C/m and is in XY-plane. Find the
Electric field at point (0, 0, 2) along its axis.

E=

Solution
Replacing ‘h’ in problem.1.8 with ‘2° and solving, we get
2
_ pPLa =
b= ) 32 9
2¢, (a + 4)

1.5.3 Volume Charge Distribution

Consider a sphere of radius ‘@’ as shown in the Fig.1.16.

Assume elemental volume dv is placed at point (+',8',¢4"). The elemental charge dQ

due to the elemental volume dv, whose volume charge density p, is

do = p.dv
0=p,[dv
3
=p, —7a
Pu3

Fig. 1.16 Finding £ due to volume charge distribution
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The elemental electric field dE due to elemental volume dv is

= d _
e 40
4rey R
p,dv  _
:—zaR
4re, R
where ap =cosaa, +sinaa,

Due to symmetry, the electric field in ‘p’ direction will be zero. Finally total electric
field will be in Z-direction.

= d
E =F-a, = 'Ov—vzcosa
V4r e, R

In spherical coordinate system
dv=dr'r'dd'r'sin0'd¢’'

dv=(r")sin@'dr'dd'd¢’

7 J- P, (r’)2 sin@'dr'dd'd¢’ cosa
: g 4z €, R?
By applying cosine rule in the Fig.1.16

(') =z + R* —=2zRcosa

—(r’)2 +z2+R?

cosa =
2zR
Similarly
R* =z% +(r')* = 2zr' cos @'
.z +(r')2 - R’
= cost) =————— .....(1.5.8)
2zr

On differentiating equation (1.5.8), we get

_2R' dR

—sin@'d@’ =

2zr

sin@'dé' =£,dR
zZr
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Here as @' varies from 0 to 7, R changes from z—7' to z + ' respectively

Substituting coser and sin@'d@’ in E._ equation, we get

Py o ] L RAR P+ R -1 1

E =Y | d¢ dr’
T dre, ¢,-[0 ¢ r'.[() ooz 2zR R?

_ 2 a z+r 2 12
E.=P [ | rl1+5 - |dR ar

8T €y z° Ly pary R

a ,2 z+r'
dr'

472' € 2 z? r,'[ { l_r,
E-_BT j 4y

dreyz
= _ p a P
E =—5— v —7ra

€z 3 Y =N 2?3
E:Laz .(1.5.9)

drey z

The electric field due to a sphere of radius ‘a’ with volume charge density p, is similar
to the electric field due to a point charge which is placed at origin.

Problem 1.11

A circular disk of radius ‘a’ is uniformly charged with p, C/m*. If the disk lies on the
Z = 0 plane with it’s axis along the Z-axis

(a) Show that at point (0, 0, h), E = Ps |- h - |,
2& (h2+a2)

(b) From this derive the E due to an infinite sheet of charge on the Z = 0 plane.
(c) Ifa << h, Show that E is similar to the field due to a point charge.
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Solution

(0,0,h)

ds

Fig. 1.17

(a) dE=—99 ~a,
4rey R
dQ =pyds; ds=dp.pdg
=ps pdpde
pa,+R=ha,
R=ha, - pa,

jpspdpdfzﬁ ~pa, )
Ar € ( +p )3/2
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4 ‘
Ahﬁl(#+pﬁz
2¢, 2 _—3+l
2 0
_ph_ {_2[(}’2 +a2)71/2 _( 2)1/2}}
4e, z
_—psha; 1 1
2& (h2 + az) h
'l ps h —
E:2 1- o e %
o (h +a )
(b) a—> o
E=La
2¢,

(c) when a<<h, the volume charge density becomes a point charge located at origin,

E-—2 4

2 4z
drey h

Pr

oblem 1.12

The finite sheet 0 < x < 1, 0 < y < 1 on the Z = 0 plane has a charge density
ps=xy (X’ +y” +25)"* nC/m’,

Find

(a) the total charge on the sheet
(b) the electric field at (0, 0, 5)
(c) the force experienced by a— 1 nC charge located at (0, 0, 5)

Solution
(@) dO=pds

Q= [pyds



STATIC ELECTRIC FIELDS 29

Lol 3/2
xylx“+y +25) ndxdy

IO IO ( Ty )

=0 y=

n j X j (x2 +y° +25)3/2%d(y2)dx

x=0 y=0

1 1

n I x[(x2 +y7 + 25)5/2}

x=0 0

g i [(x2 +26) (x4 25)”Ed(x2)
x=0

21
52

%[(xz +26)" —(x*+ 25)7/2}1 1

o7

%[(27)7/2 —2(26)7/2 +(25)7/2J

;—5[102275.868 136 -179240.733942 + 78125]

0=33.15nC
(b) Electric field at (0, 0, 5)
= p.ds

dE =—————a,; on Z-plane point is (x, y, 0
dre, RR plane p (x,»,0)

Ez(0,0,S)—(x,y,O) = —xax —yay +552

C_l_Rzi:—xEx—yZvaSEz
R’ |ﬁ|3 (\/x2+y2+25)3
T _ deS i

_547reo |§|3

—j j x(x 32 +25) <107 | az —ya, + 5,

3
X=0 y=0 4z €, ( ,x2+y2+25)

dxdy
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11
- 'f I—xzyﬁx—xyzﬁy+5xyﬁzdxdy><1079

x=0y=0
1 271 37 27
_ ! I —x{y—} Ex—){y—} 5y+5x[y—} a.dxx107°
ar ey 2, 2 o 3 o 2 0
1 2
L [-Xa-2a +2:@ dex10”

3
37! 27! 27!
_— {—x—} c_zx—{x—} 5y+§{x—} a, |x107
4dr e, 6 |, 6 |, 202,

__ | [—lax—l— +§c_zz}<109
dre,| 6 6 7 4

=9x10° —lax—la +§az x107
6" 67 4

(c) F=gE
=(-1nC)[-1.5a, -1.5a, +11.25, |
= 1.5a, +1.5a, ~11.25a,nN

Problem 1.13

A square plane described by -2 < x < 2, -2 <y < 2, z = 0 carries a charge density
12]y| mC/m’. Find the total charge on the plate and the electric field intensity at (0, 0, 10)

Solution
dQ = p ds
0= [pds

f j 12| y|x 107 dxdy

x==2y=-2
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x==2| y=-2 y=0

2 2710 272
=107 —12{y—} +12{y—} dx
x=-2 2 -2 2 0

=107 T 12(2)+12(2)dx

x==2

2 0 2
=107 { [ —12pdy+ | 12ydy}dx

2
= 48x107 j dx=48x107 x4 =192 mC

x==2

pds

d maR ; R=(0,0,10)—(x,»,0)=—xa, —ya, +10a,

— pds R

d 3
dre, R

o pds R

_347ze0 R’

_ i T 12| y|x107 | —xa@, - ya, +10a,
o 3
Sate AT (w/xz +3°+ 100)

2| 0 xa, +y’a,-10ya. 2 —xya, - y*a, +10ya.
=9x10°x12 [ | | ST -
=2 y==2 (x*+ )% +100)

dxdy

y=0 (x2 +y + 100)3/2

Replacing y with —y in the first integral and simplifying

E =108x10° T [ 20d+20), dy | dx
x=-2 y:o(x2+y2+100)

dy ldx
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2 2 32 2 -3/2
:108x106j {—xJ‘ Zya_x(x2+y2+100) dy+10j2ya—z(x2+y2+1oo) dy]dx

x=-2 y=0 y=0

2 2 -3/2 ° -3/2
=108x10° | {—xj a,(x +y7+100) " "d(*)+10 [ @ (x*+y* +100) d(yz)]dx
=0

x=-2 y=0 y
o -12 P s -2 P
=108x10° f —x (x +y_1+/1200) a, +10 (x +y_;1200) a, |dx
=2 0 0
~108x10° j {[2x(x2+104)1/2—2x(x2+100)l/z}c_zx—20[(x2+104)1/2—(x2+100)1/2:|52}dx
x=-2

-1/

x(x2 + 104)_1/2 & x(x2 + 100) ’ are odd functions

-1/2

and (x2 + 104)71/2 & (x2 + 100) are even functions
0 if fisodd

_J;f(x)dx: ij(x)dx if fiseven
0

2

E=-20x108x 10°x 2 ! !

2 - 2 2
o \/x2+(m) \/x +10
2
=-40x108x10°| sinh! (LJ—sinh‘l(ij a
{ J104 10/}, °

2 1
=—40x108x106[sinh_1 [— —sinh7!| = | |a@
J104 5)1°

=—40x108x10°[0.19488 —0.19869],

a,dx

E=16.46 @, MV/m.
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1.6 Electric Flux Density or Displacement Density

It is also called Electric displacement and to understand the concept of Electric flux
density, one needs to know about line integral, surface integral and electric flux, which
are explained as follows.

1.6.1 Line Integral

If a vector 4 is passing through a line as shown in the Fig.1.18.
The line integral can be defined as the tangential component of

vector A along the line, which can be written as
HZ‘cosﬁdL:J.Z.dZ dLyo

L L
Lin/

Fig. 1.18 Evaluation of
line integral

> |

If a line is closed curve then the above integral can be

written as Cﬁz. dl which is called as contour line integral.
L

1.6.2 Surface Integral

Similarly, if a vector 4 is passing through a surface as shown in Fig. 1.19
The flux () of a vector 4 or surface integral can be written as

wzj‘Z‘cosﬁds
’ —
= [4.ds ’

If it is closed surface then the above integral can be be

> |

written as @Z.ds_ which is called as contour surface integral. Fig. 1.19 Evaluation of
s surface integral

1.6.3 Electric Flux

We know that electric field intensity depends upon the medium in which it passes. Let us
define a new vector D such that it is independent of medium i.e.,

D =€, E . Then the flux of D, i.e., W= (jiﬁ.d? , where vy is the electric flux. Which
S

can be defined according to SI units as one line of flux originates from +1 Coloumb and

terminates at —1 Coloumb. So the unit of Electric flux is also Coloumb and D is the
electric flux density whose unit is columb/m”.
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The formulae for D can be obtained by multiplying the formulae of £ with &,.

_Qa (16,1

*+ Electric flux density due to a point charge D, = 17 R

and Electric flux density due to an infinite line with line chare density

pLE

pL is EL = Yol
27p (1.6.2)

Problem 1.14
Determine D at (4, 0, 3) if there is a point charge -5t mC at (4, 0, 0) and a line charge

31 mC/m along the Y-axis

Solution
= 0 ap
D, ==Lk
Q 47 R?

where, R =(4,0,3)-(4,0,0)=(0,0,3)
_ =5z 3a@,x107
4z (9)P

e 3 = -3
_ 36,407 25a. X107 1307 w107 Clm?
4 27 36

—_P Fig. 1.20
a. =

gl

7 =(4,0,3)-(0,0,0)=4a, +3a.

PL
2mp

4,

S

=3—ﬂ><1073 4a, +3a,

27 25
= 0.24a_+0.18a, mC/m’

D =D, +D, =240z, +42a, uC/m”
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1.7 Divergence of a Vector

Divergence: The divergence of a vector A at a given point is the outward flux in a
volume as volume shrinks about the point. It can be represented as
¢ 4-ds

divA=V-A=lim S —— n(17.1)
Av—0 Av

Where V is the del operator or gradient operator. V can be operated on a vector or
scalar. It has got different meanings when it is operating on a vector and scalar. If it is
operating on a scalar V then it can be written as VV which is called as scalar gradient. If
it is operating on a vector 4 with dot product then it is V.4 and it is called as divergence
of vector A4 and If it is operating on a vector 4 with cross product then it is V x 4 and it

M

/ °
®\\ TLT

Fig. 1.21 Flux lines

is called as curl of vector A4 .

\\L// ™~

1
SN/

Physically divergence can be interpreted as the measure of how much field diverges or
emanates from a point. Let us consider the Fig.1.21(a) in which field is reaching to the
point. Divergence at that point is —Ve or it is also called as convergence. In Fig.1.21(b)
the field is going away from the point, therefore divergence is +Ve. In Fig.1.21(c) some
of the flux lines or field lines are reaching to the point and same number of field lines are
leaving from the point hence the divergence is zero.

To determineV.4 let us consider the volume in 7z
Cartesian co-ordinate systems as shown in the Fig.1.22. In
Cartesian co-ordinate system, the vector 4 with it’s unit

vectors and components along X, Y, Z is 4
— Az
A=Aa, +Aa, +A.a, v

Assume the elemental volume AV = AxAyAz. The flux AX
of a vector 4 on Y-axis that enters in to the left side of T /

the volume is AjAxAz. The flux which is leaving from
right side of the volume on Y-axis can be written as X B
(Ay + AAy) AxAz. This equation can be modified as  Fig. 1.22 Evaluation of V. 4



36 BAsSICS OF ELECTROMAGNETICS AND TRANSMISSION LINES

AA 04
[Ay = - Ay]AxAz . So the total flux on Y-axis is 4,AxAz + —~ AxAyAz — A,AxAz

y ay
8Ay
= —— AxAyAz
y
Similarly on X and Z-axises also.
: : o 04, 04, o4
The entire flux in all the directions is y =| —~+——+—= [AxAyAz. We know
ox oy Oz
W= q‘)Z -ds
$a-ds
s an aA)’ aAz
=—2+——+—=
Av ox Oy Oz
Applying Limit on both sides
p-as 04, 04, oA
Lim-=* = — 4+
a0 Ap a0 Ox  Qy Oz
— 04 04
V.- 0A, o4, 0A,
ox oy Oz

Conclusion

The divergence of a vector results a scalar. The divergence of a scalar has no meaning
vV (1+B)=vA+VE
V-(VA)=Vv.A+4-VV

— a Oa, oa
V-4 =(aa~‘ +&+8&}(Axd +4.a,+A4 az)

ax oy oz oo AT
04, 04, oA,
=—=+—2+

ox oy oz

So from the above equation, the gradient operator is

8
v % da, (17.2)
ox oy Oz
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and the scalar gradient is

LV _ oV _ oV _

VV=—a, + :
ox oy 7 oz

1.7.1 Divergence Theorem

Statement

This theorem states that the outward flux flows through a closed surface is same as the

volume integral of divergence of a vector.

A-ds=|V-Adv e (17.3)
-]

Proof:

Consider a vector 4 =4,a, +A4,a,+4.a,.

Similarly ds' =ds.a, +ds,a, +ds,a, and we know that divergence of vector Adie.,

_ 0A
V.A:%J{_—y_lr_%
o oy oz

Assume dv =dx dy dz

consider the volume integral

[v-ddv=] j(%+%+%}dxdydz
> " X 24 z

The second term in the above integral can be written as
04 dA
pa _ b4 _
J-J"[dedydz _gEﬁD—dy dy}dxdz = q%BAydsy

where ds, = The elemental surface on XZ plane.

Similarly the first and third terms can be written as

CﬁSAxdsx and <ﬂ>Azdsz
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[v-Adv=qp(ads, + 4,ds, + A.ds.)
v S
= §p(4a, +4,a, + 4.a,)-(ds,a, +ds,a, +ds.a )=fp4-ds

Hence proved
Formulae for Gradient
in Cartesian co-ordinate system

ov_ ov_ oV_
=—a +—a,+—a

VV=— — (174
ox ' oyt oz ( )
in cylindrical co-ordinate system
VVza—Vﬁ +16—V§¢+6—Va_z ..(1.7.5)
op " p o oz
in spherical co-ordinate system
VVza—VCT,+1 v L o .....(1.7.6)

ay+—————a,
or r o6 rsinf 0¢

Problem 1.15

Find the gradient of the following scalar fields
(a) ¥V =-e"sin 2x cos hy
(b) U= p'zcos2é
() W =10rsin’@cos¢

Solution
(a) Since given V is in x and y, consider gradient in Cartesian co-ordinate system
_ov_ oVv_ oV_

a,+—a,

v ="a + -
ox * oy Y ez

=e “cosh ycos2x2a, +e “sin2xsink ya, +sin2xcoshy e (-1)a,

_ I . o . -
= 2cos2xcoshye “a, +sin2xsinhye ~a, —sin2xcoshy e ~“a,
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(b) Since given U is in p, z and ¢, consider gradient in cylindrical co-ordinate system

VU :a_UEp +la_UC_1¢ +8_Uaz
op p Op 0z

=Zcos2¢2pa, + pz(-sin2¢)2a, + p’cos2¢4a,

(c) Since given W is inr, 0 and ¢, consider gradient in spherical co-ordinate system

ow _ 10w _ 1 ow_
VW =——a, + g +—————a,
or r 060 rsin@ O¢
=10sin’ Ocosga, + (&j%iné’cosecowﬁﬁe +10rsin? 6?(—sin ¢)c7¢. l
r rsiné
Formulae for Divergence of a Vector
in Cartesian co-ordinate system
_ 04
V-A= an + _r + %
&y o (17.7)
in cylindrical co-ordinate system
_ o pA o4
V.=t (r p)+l ( "’Laﬁ .(1.7.8)
p Op p 0¢ oz
in spherical co-ordinate system
_ 10(r4, o(sin6 4 o4
V.= ( )+ It 9)+ L % ..(1.7.9)

2 or rsind 00 rsind O¢

Problem 1.16
Determine the divergence of the following vector fields.
(a) P=x%yz a, + X zy a,+ xy223c72

(b) O=psinga, +pzzc7¢ +zcosda,

= 1 _ . _ _
(©) T=r—zcos6’ a, +rsinfcosga, +cosba,

(d) N=r'sin@a. +sin26cos’ ga, +cosfr’ a,

Solution

(a) Given P = xzyzﬁx +Xxzy a,+ xyzz3ﬁz
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op, OP, oP,
+—+

ox  dy oz

V.P=
=2xyz + X’z + 3xy’Z’
iven Q= psinga, +p’za, +zcosga,
b) Gi L +pza, .

19(p0,) 10(9) a0,
p Op p 09 Oz

V-0=
1 ) 1
=—2psing+—(0)+cos¢
p p

= 2sing + cos¢

. = 1 _ . _ _
(c) Given T =r—200s0 a, +rsinfcosga, +cosba,

2 .
V-f:iza(r T,.)+ 1 8(s1n0T6,)+ 1 %
r or rsin @ o0 rsin@ O¢

=ri2(0)+ rsinngsianos0c0s¢+ rsinﬁ(o)

=2 cos 0 cos¢

(d) Given N =7’sin@ @ +sin20cos’ ga, +cosOr* a,

o(r'N,) 1 o(sinON,) 1 N,
or rsin@ 00 rsin@ O¢

— 1
V-N=—
2

=L25r4sint9+ 1 l—sinz9+sm39 cos” ¢+ 1 (0)
r rsind 2 3 rsin@

=5r7sin 6 — icos2 o+ Sm,30
2r 6rsind

cos” ¢

1.8 Gauss’'s Law and Applications

1.8.1 Gauss Law

Gauss law states that the flux flowing through a closed surface is equivalent to the charge
enclosed by that surface.
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According to the statement = Q,,. .....(1.8.1)

Where v is the flux flowing through a closed surface. Q. is the charge enclosed by the
closed surface.

We know y/=¢l_)-d5
s

The charge enclosed within a volume or closed surface whose volume charge density
py is

0=[p,dv
According to Gauss’s law we can write as

y=§D-ds=[p,dv ....(1.8.1a)
S v

According to divergence theorem we can write

D-ds=|V-Ddv ....(1.8.1b)
§o-as=]

By comparing the volume integrals in equations (1.8.1a) and (1.8.1b) we can write as
py=V-D .(1.8.2)

which is the Maxwell’s first equation for electrostatics (time in-varying fields)

Consider unsymmetrical distribution as shown in
Fig. 1.23a. The flux flowing through the closed surface @
shown in Fig. 1.23ais w =5 -2 =3 nC. The charge
enclosed by the surface is O =3 nC. (a) (b)
Consider an empty closed surface as shown in Fig. 1.23 Closed surface

Fig. 1.23b. Flux flowing through the closed surface shown
in Fig. 1.23b is y = 0 and hence charge enclosed by the closed surface is zero.

Conclusion

Gauss law holds good even if the charge distribution is unsymmetrical as shown in
Figs.1.23a & b. But to find either £ or D, the charge distribution must be symmetrical. It

can be rectangular symmetry or cylindrical symmetry or spherical symmetry.
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If the continuous charge distribution depends on either ‘x’ or ‘y’ or ‘z’, then the
distribution will have rectangular symmetry. So to find either EorD, we can use

rectangular co-ordinates.

If the continuous charge distribution depends only on p and is independent of ¢ and z
then the distribution will have cylindrical symmetry. So, to find either £ or D, we can use
cylindrical co-ordinates.

If the continuous charge distribution depends on ‘r’ and is independent of 6 and ¢ then
the symmetry it will have is spherical. So to find either EorD, we can use spherical

co-ordinates.

1.8.2 Applications of Gauss’s Law - Point Charge

We need to find D at any point surrounded by Q. Assume that the point charge is located
at origin, then a sphere can be assumed, that surrounds the point charge as shown in
Fig.1.24, which shows the problem has spherical symmetry and spherical coordinate
system can be used to obtain D . Let us find out D at point ‘P’ due to a point charge.

The electric flux density D is normal or perpendicular to the spherical surface.
ie,D=D.a,.

The elemental surface ds lies on 8 and ¢ axises. i.e., ds is normal to r axis.
ds =r’sinddbdga.
Flux flowing through the sphere is
v = Cﬁﬁ.dE
s

D
P
2r & _ 'A
v= | [ Da.rsinododga, y
$=00=0 ‘
X

27 7w .
y =D, I I r*sin@d6dg Gaussian

surface
#=06=0

z

Fig. 1.24 Gaussian surface
about a point charge

2
=D, I r’ [—cosé’]g dg
=0
w=2D, 1 [27[]

w=4nr’D,
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The charge enclosed by the sphere is

Qenc = Q
According to Gauss’s law
l// = QEHC
Q=4xr’D,
= Dr = Q 2
4rr
or p-_¢ ~ay
4rr
and E= Lza
dreyr

Which is similar to the formula derived by using Coulomb’s law

1.8.3 Applications of Gauss’s Law - Infinite Line Charge

Let us consider that charge is distributed along Z-axis with the charge density pp C/m.
Since the charge distribution is along a line, a cylinder of length ‘/> can be assumed that
surrounds the line charge distribution as shown in Fig.1.25. Hence it is better to consider

cylindrical coordinate system to find either EorD at a point ‘p’ on the surface of the
cylinder.

—Line charge p; C/m

+— Gaussian surface

P

|

D

X

Fig. 1.25 Gaussian surface about an infinite line charge

Here D the electric flux density is perpendicular to the surface of the cylinder i.e., it
will be in ‘p’ direction in cylindrical co-ordinate systems.
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D=D,a,
The elemental surface ds lies on ¢ and Z axises
ds=pd¢dza,
Flux flowing through the cylinder can be written as
W= 4)5 -ds
s

2z

1
W= I I Dpa,.pdgpdza,
2=0¢=0

] 2z
l//=DppJ dz | d¢

=0 ¢=0
w =D, 27npl
The charge enclosed by the cylinder is
Oene = P11
According to Gauss’s law
W = O
Substitute y and O
pl=D » 27pl
= D = 2'07;

P

D="t g and
27p
é PL_ —

4p
€ 2meyp

o]

Which is similar to the formula derived by using Coulomb’s law.

(1.83)

n(1.8.4)

. from equations (1.8.3) and (1.8.4) in the above equation

.(1.8.3)

Problem 1.17

Given D = zpcos’ ga, C/m’. Calculate the charge density at (1, /4, 3) and the total

charge enclosed by the cylinder of radius Im with -2 < z<2m.
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Solution
We know

p,=V-D
in cylindrical co-ordinate system the divergence can be written as
_la(pr) +la(D¢) n oD,
p Op p 0¢ oz

v

V4

P, = since D has only Z- component
4
p, = pcos’
) 1
(p, )[1, %, 3] = (1)0052 [Zj =3 C/m’

change enclosed = Q. = I p,dv where dv = pdpdédz

1

2r 2
Qe,w=j. J fpcos2¢pdpd¢dz

p=0¢=0z=-2

- j T p’cos® ¢(4)dpds

p=0¢=0

1
=4 | p? {l(2ﬁ)+lsin4¢}dp
', L2 2

P

1 3 4
=4r j pldp=4r L1
3], 3

p=0

Problem 1.18
If D= (2y2 + z)a_x +4xya, +xa, C/m’. Find
(a) the volume charge density at (-1, 0, 3)

(b) the flux through the cube defined by 0 <x<1,0<y<1,0< z <1
(c) the total charge enclosed by the cube
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Solution

According to Maxwell’s I equation

p,=V:D
oD, oD, oD,
py=—+——+
ox oy Oz
=0+4x+0
= 4x C/m’

@ (2,195 =4(-1)=—4C/m’
®) &(©) y=[pdv=0,,

1 1 1

= [ [ [ 4xaxdyd:

x=0 y=0z=0

1 1

= j j 4x(1) dxdy

x=0y=0
1
= [ 4x(1) dx
x=0
) 1
_4 | 220
2 o 2
Problem 1.19

Given the electric flux density D= 0.3r25r nC/m’, in free space. Find

(a) E atpoint (2,25° 90°
(b) the total charge within the sphere r = 3

(c) the total electric flux leaving the sphere r = 4

Solution
(a) Given D =0.3r’a, nC/m’
D __ 03

E: :—_12
€, 8.854x10
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(E), o o0 =L40_a,=1.355x1o“a,ﬁx10-9 =135.5@, V/m
(2.2590°) ~8.854x10"

(b) weknow p,=V-D

_18(r2Dr)+ I o(sinoD,) 1 D, 1
2 or rsind 06 rsing o 1’

0.3(4)1”3 n=12rn
Also known Q= 'fpvdv where dv=rsin@dgr dfdr

= sin@dOdgdr

3 7 27
O= [ [ [12rnr*sin@d@dgdr
=0 0=0 $=0

3 7z
=n [ [12sin0(27)d0dr
=0 0=0

3
=2.4rn I P [—cos@]g dr

r=0

4P
= 2.4;m(2){ﬂ =305.4 nC
0

() 0= } T 2jﬂ1.2 nr’sin@d0dgdr

F=0 =0 ¢=0
Upon simplifying, we get
0=965.09 nC

1.8.4 Applications of Gauss’s Law - Infinite Sheet of Charge

Consider an infinite sheet with surface charge density p; C/m” is lying on XY plane as

shown in the Fig.1.26. Since Electric flux density D is always normal to the surface, we
need to find Electric flux density at any point on either side of the sheet. Since the charge
distribution depends on X and Y axeses, rectangular coordinate system can be used to

find D at any point on either side of the sheet.

Hence Consider a rectangular box that is cut symmetrically by the sheet as shown in
the Fig.1.26. As D is perpendicular to the sheet it will have components only in the
Z-direction i.e., components on X and Y-directions are zero. Let us find out D as
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Infinite sheet 02f
charge pg C/m D

! ep

Area A

/ l Gaussian surface
D

Fig.1.26 Gaussian surface about an infinite sheet of charge

X

Flux flowing through the rectangular box is

1//=955-d§

Here D=D.a, &ds =dsa,

The flux due to bottom and top surfaces of rectangular box exists, but the flux due to
the other surfaces of box is zero.

.. above equation becomes

Y= ij)ch?z -dsa,
N

w=D, Ids+ I ds

top bottom
Assume that the area of the elemental surface as A, then
v =D, [A + A]
w=2A4D,
Charge enclosed by the rectangular box is

O, = [ pyds
Qe = p, [ ds

Qenc = psA
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According to Gauss’s law

W = Qenc
p, A=24D,

and E=

a. o n(1.8.6)

which is similar to the formula derived by using Coulomb’s law.

1.8.5 Applications of Gauss’s Law - Uniformly Charged Sphere

Case I: (r<a)

Consider a sphere of radius ‘a’, which has uniform charge distribution with volume

charge density p, C/m’ as shown in Fig.1.27. Since it is sphere, to find D at any point in
side the sphere, consider a sphere of radius ‘r’ where r < a and is assumed as Gaussian

surface. Hence spherical co-ordinate system can be used to find D .

The charge enclosed by the sphere of radius ‘r’ is Gaussian surface

Qe = [ prdv

r<a
Qé'l‘ll,’ = pVJ.dv
2r 7w r
=P j j _[ r?sin 0dod¢dr Fig. 1.27 Gaussian surface for
¢=06=0r=0 uniformly charged sphere
3
=p,=r
Py 3
The flux flowing through the spherical surface
W= Cﬁﬁ.dE
N

As the flux density is normal to the surface it will have components only in ‘r’
direction.
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T 2r

=D, [ [ r*sin0dody
0=0 =0

=D, 4xr

According to Gauss’s law charge enclosed = flux flowing through the surface
Le., Qe =Y

O — zr =D, 4xr

and E=

.....(1.8.7)
Case Il (r> a)

To find the electric flux density out side the sphere of radius ‘a’, consider a sphere of
radius ‘r’, which is treated as Gaussian surface as shown in Fig.1.28.

Charge enclosed by the sphere of radius ‘r’ is

Oene = Ipvdv

Gaussian

Qe =p, [ v

T 27 a
2 .
=pP j j J. rosin@d0dpdr  gig, 1.28 Gaussian surface
0=0¢=0r=0 for uniformly charged sphere

3
= p,-7a

3
Flux flowing through the surface

v=D, T zf r’sin@d0dg
0=04=0

=D, 4rxr

QOene = v according to Gauss’s law

ol % ra® =D, Ax¥
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Py 3
Dr—3r2a
3
5:’;‘2 a
r
3
and E = p;a a,
3ri g,
5o p.a’dr
3r’ e, 4r
F-—2 2
dre,rt "

which is similar to the formula derived by using Coulomb’s law.

...(1.8.8)

Problem 1.20
A charge distribution with spherical symmetry has density
r
—, 0<r<R
p, = Lo R
0, r>R

Determine E everywhere

Solution:

Replace ‘a’ with ‘R’ in Fig.1.27, Then

Case I: Inside the sphere of radius ‘R’

The charge enclosed by the sphere of radius ‘t’ is Q,,. = I p,dv

Oene = _[po %d"

=0 ZJ? T j%sin9d€d¢dr

$=00=0r=0
-2 zj” d¢ T sinfd6 j Pdr
R ¢=0  6=0 r=0
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The flux flowing through the spherical surface
V= SBE.dE
As the flux density is normal to the surface it will have components only in ‘r’
direction.

= D,T T r*sin@d0do

0=0 p=0
w=D,4rr

According to Gauss’s law charge enclosed = flux flowing through the surface i.e.,
Qenc = W

Po 7y =Dr471'r2
R
D, = £ 2
4R

D =&r2 a,

4R
and E=2= o r’a,

€ 4Re,

Case II: Outside the sphere of radius ‘R’
Charge enclosed by the sphere of radius ‘r’ is
Qenc = J‘pvdv

Qencz.“pO%dv
) 7 27 R
:%j [ [ rsinododgar

0=0 $=0r=0

= p R’

Flux flowing through the surface
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T 2r
w:zyj jrﬂgneded¢

0=0 =0

=D, 4rr

QOene = v according to Gauss’s law

p, -k

o447

— R?
p=£" g

4r

3
and E= pOZR a,

4r° g,

Problem 1.21

A sphere of radius ‘a’ is filled with a uniform charge density of p, C/m’. Determine the
electric field inside and outside the sphere.

Solution

The answer is as derived in section 1.8.5 case-I(inside the sphere) and case-1I(outside the
sphere).

Problem 1.22

A charge distribution in free space has p, = 27 nC/m’ for 0 < » < 10 m and ‘0’ otherwise.
Determine E at7=2mand »=12m

Solution
Replace ‘a’ with 10 m’ in Fig.1.27, Then
Atr=2m

The charge enclosed by the sphere of radius 2m’ is Q,,. = I p,dv

O, = J 2rndv

:2nT-T fr3mn0d9d¢m~

$=06=0r=0

=32z nC
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The flux flowing through the spherical surface
v = Cf)ﬁ. ds

As the flux density is normal to the surface it will have components only in ‘r’
direction.

T 2z
=D, [ [ r*sin0dodg
0=0 =0
=D, 16x
According to Gauss’s law charge enclosed = flux flowing through the surface i.e.,
Qenc = \V

327 n=D, 16n
D, =2n
D=2na. and
E =£=226Er V/m
So
Atr=12m

Charge enclosed by the sphere of radius *12 m’ is
Qenc = _[pvdv

O, = J 2rndv

7 2z 10
=on [ [ [ r'sinododpdr
6=0 ¢=0r=0
= 20z uC
Flux flowing through the surface
T 2r
w=D, | [ r’sinodods
0=0 $=0
=D, 4712

QOene =y according to Gauss’s law



STATIC ELECTRIC FIELDS 55

207y =D, 47 12*
D, =0.0347u

D =0.0347ua, and
E=3.92a,kV/m

1.9 Electric Potential

To find electric field intensity E , so far we have used Coulomb’s law if the charge
distribution is of any type and Gauss’s law if the charge distribution has symmetry.
Another method to find electric field intensity is by using electric potential which is a
scalar. So obviously this method is easier when compared with the other two methods.

If we move a point charge from A to B in an electric field having electric field
intensity E as shown in Fig.1.29.

Origin /

Fig. 1.29 Displacement of point charge in an electrostatic field

The elemental work done to move a point charge by an elemental distance dL is
dW =—F-dL

The total work done in moving a point charge from A to B is
B —_— —_—
W=—[F-dL
4

-ve sign indicates work is being done by an external agent

We have F =QE

B
then W:—JQE-dZ
A
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B
w=-Q[E-dL
4
B
= L__[F.d
o 3
which is work done per unit charge and it is also called potential difference V3.
We know that electric field intensity E due to a point charge is %5.
TENT

and elemental length dL = dra,

then Vg =

__9 9 5.y o (1.9.1)
dreyry, 4drmeyry

Where Vg and V, are absolute potentials at point B and A respectively. From the
above equation Vg is the potential at B with reference to the potential at A.
If A is at oo then V4, = 0.

The above equation can be generalized for a potential (V) at any point having distance
‘T’ as

V=
dre,r

(Here Q is located at origin) .....(1.9.2)

If the point charge is placed at a distance 7', then the electric potential at point ‘r’ can
be written as

yo— 92 c(1.9.3)

4r €, |r - r'|

If we have ‘n’ number of point charges Q;, Q., ...,Q, with position vectors ry, 15, ....,
r, respectively, then the potential at ‘r’ is

2 0, 9, cn(1.9.4)

= + +....
47zeo|r—r1| 47reo|r—r2| 47zeo|r—rn|
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For line charge distribution with charge density py, in the above equation Q can be
replaced by [, dL .

For surface charge distribution with charge density p, in equation (1.9.4), Q can be
replaced by [ pgds .

Similarly Q can be replaced by [p,dv, For volume charge distribution with charge
density p, .

Problem 1.23

Two point charges — 4 uC and 5 puC are located at (2, —1, 3) and (0, 4, —2) respectively.
Find the potential at (1, 0, 1). Assuming ‘0’ potential at infinity.

Solution

__ 9 O

Arey|r—n| 4rey|r—n|
—4x107° . 5x107°
(1,0,1) = (2,-1,3) 47, |(1,0,1)=(0,4,-2)|

4r €,

Simplifying, we get
V=-5872kV

Problem: 1.24

A point charge 3 pC is located at the origin in addition to the two charges of previous
problem. Find the potential at (—1, 5, 2). Assuming V(o) = 0.

Solution:
r—ri=+1+25+4 =5478
rery=N9+36+1 — 6782
r—ry=~J16+1+1 =4.243
3 3 3
- 3x10 +—4><10 +5><10 <9
5.478 6.782 4.243
=10.23kV
Problem 1.25

A point charge of 5 nC is located at the origin if =2 } at (0, 6, —8) find
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(a) the potential at A (-3, 2, 6)
(b) the potential at B (1, 5, 7)
(c) the potential difference V

Solution

PPN R Ew)

4rey\r, r

ra=(=3,2,6)—(0,0,0)= 3> +2° + 6 =7
r=1(0,6,-8)—(0,0,0)=0+6+8 =10
5%107° (1 1}

10°7 10
Xi

7 10
367
V,=3929V
(b) V-V = 0 {i—lj

Areg\ry r
rs=(1,5,7)—(0,0,0)= J1+52 + 72 =75

5x107° 1 1
V,-2=—01— | — _—
? Xlo-g[ﬁ 10}

A
36r

V,-2=
4

Vp=2.696 V.
(C) VAB = VB— VA =-1.233V

*Problem 1.26
A point of 5 nC is located at (-3, 4, 0), while line y = 1, z =1 carries uniform charge

2 nC/m.
(a) IfV=0VatO(0,0,0),find V at A(S, 0, 1).

(b) IfV=100V at B(1, 2, 1), find V at C(-2, 5, 3).
(c) fV=-5VatO, find Vgc.

Solution:
Let the potential at any point be
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V= VQ + VL
Where V) is potential due to point charge
1.€., V, = 0
dre,r

by neglecting constant of integration
and V; is potential due to line charge distribution,

for infinite line, we have

E-—£ g
2reyp ”
= 7 Pr — —
V,=—|Edl =—|———a,dpa
k I 2reyp ” £
VLz—p—Llnp
2w g,

by neglecting constant of integration.

Here p is the perpendicular distance from the line y = 1, z = I(which is parallel to the

x-axis) to the field point.
Let the field point be (x, y, z), then

p=|ry, 2= (5, L D= (y =1 +(z 1)

e Inp+ 0
2r €, dreyr

by neglecting constant of integration.
@ po=[(0,0,0-(0,1,1)|=+2
P, =|5,0,n)-(5,L1)|=1

1, =[(0,0,0)—(-3,4,0)| =5

ry=|(5,0,1) = (-3,4,0)[=9

VO—VA:—Z’OL Inp, + PL Inp, + e ¢
T €, 2r €, dreyr, 4dmeyr,

v, -V, __PL g Po, Q|1
2rey, py dmey| 1, 1y
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2x107° 1nﬁ+ 5%107° [1 1}

-V, = —361n\5+45[%—ﬂ

V,=36In2-4=8477V
®  py= =1
pe =|(-2,5,3)- (2,11 =20

(1,2,1) ~ (-3,4,0)| =21

1,2,)-(1,1,1)

Ty =
re =[(-2,5,3) = (-3,4,0)| =11

Vv, :_p_Lm&LP_L}

2rey, pp 4dmey| 1. 1
VC—100=—36ln\/ﬂ+45[ L] }
I Vit 21

V. —100=-51.052
V.=48.94V
(€)  Vyo=Vo—Vy=4894-100=-51.052 V
1.10 Conservative and Non-Conservative Fields

1.10.1 Conservative Field

If the field is parallel to a straight line as shown in Fig. 1.30. Let 4 be a vector field.
Choose a path P to Q as shown in Fig.1.30. A.dL in moving from P to Q will be ‘M’
(scalar) and 4.dL in moving from Q to P is (-M).

P
- The cﬁZ.deM—M =0. Chosen path may be of any I
shape, the contour line integral of 4.dL becomes ‘0’. The field Q

whose contour line integral gives ‘zero’ is called conservative
(or) irrotational field.

Fig. 1.30 Evaluation of
conservative field
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1.10.2 Non Conservative Field

In the conservative field, the filed vector is parallel to a /R\ (P\
straight line. Let us consider a ﬁel_d i£1 circular fashion as ( \ ( )
shown in Fig.1.31(a). In this case 4.dL in moving from P

to P along the field will not be ‘zero’ because A is always in \ - (

the direction of dL. These types of fields whose contour \)

line integral of A.dL #0 are called non conservative or (@) (®)
rotational fields. The shape of the field need not be circular Fig. 1.31 Evaluation of non-
but it can be of any shape as shown in Fig. 1.31(b). conservative field

1.10.3 Concept of Curl

We know that in non-conservative fields as shown in Fig. 1.30 the contour line integral of
A.dL gives some finite value. This finite value is called circulation.

", circulation = 952.415 . This circulation depends upon the area chosen in the non

conservative field. Let the area be AS. Then the ratio of qSZ.dZ to AS can be considered
as one unit. As the field is normal to this unit we can write the above expression as
$AdL
a,.
AS

In general q‘J will be from point to point. This can be denoted by taking Limit AS—0

which gives curl of vector 4 i.e.,

¢4-dL _

VxA= lim a, (1.10.1)
AS—0  AS
The curl of vector 4 gives circulation that exists on the chosen closed surface.
As VxAor curl of a vector Ais a vector. It can be % ¥
. . R
represented with three components in a rectangular
co-ordinate system i.e., [curl A4 ];, [curl 4 ], [curl A4 ]; along S
X, Y & Z axises with a,,a, & a, as unit vectors respectively. AT Q
X A
VxA =[curl 4], +[curl 4]+ [curl 473 /Ay
To find [curl 4], consider the elemental surface Ay and P(A, Ay, A)

Az which is normal to x-axis as shown in Fig. 1.32.
Fig. 1.32 Evaluation of curl
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_ $4-dL
oo [eurl 4]1= lim
AyAz—0 AyAZ

a

X

Let the components of vector 4 at P be (A, Ay, A,)
Q —_— f—

.. The line integral from P to Q is J.A -dL .
P

" PQ is parallel to Y-axis, 4 can be taken as the Y component of 4 and the
elemental length d/ can be taken as Ay .

.. The above integral becomes AyA,. At Q we have moved a distance by Ay . To find

line integral from Q to R consider the Z component at Q (because QR is parallel to Z-
axis)

. A
". The ‘Z’ component at Q is A4, + 68 = Ay
V

R
.. The line integral i.e., jZ-dZ = [Az + 8;12 Ay)Az
y
0

At ‘R’ we have moved by a distance Az. As RS line is parallel to Y-axis, consider the

Y-component at ‘R’ as 4, +a—yAz
z

S 04
I[A -dL =(Ay +a—yAzJ(—Ay)

4
P —_— —_—
At ‘S’ to find _fA -dL consider the ‘z” component at ‘S’ which is 4,
N

TZ-dL_:AZ(—Az)

_ _ 0 _ _ R_ _ S_ _ P_
$A4-dL=[4-dL+[A-dL+[A-dL+[4-d
P 0 R s

— a142 aAy
= ALy +AD 4T AN, — AN, -~ bty = A bz

Substitute the above equation in [Curl 4 ]; equation
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o4, 94,
— [Gy 0z JAsz_ 04, 04, \_
[Curl 4]; = a.=|—F-—|a,
AzAy Yoy oz

Similarly we can also construct equations for [Curl A4 ], by considering the elemental
surface on ZX plane which is perpendicular to Y-axis

[Curl 4],= @ (an —%j

oz ox

and for [Curl 4 ]; we have to consider the elemental surface on XY plane which is
perpendicular to Z-axis

_ 04
[Curl 4]5= a, —y—%
ox Oy

Curl 4 =[Curl 4]+ [Curl 4]+ [Curl 415

_ 0A 04
V)(A:Ex %__y +E(%_%j+az _y_%
oy 0Oz "\ oz ox ox oy

Which can be written in matrix form as
Cartesian co-ordinate system:

a, a, a,
vxg-l9 9 9
ox oy oz
A A, A

Cylindrical co-ordinate system:

a, pa; a,

vxd=Ltl? o 9o
plop 04 Oz
A4, pd, A

Spherical co-ordinate system:
a, ra, rsinfa,
- 1 |0 0 0
r’sin@|or 00 o¢
A4, rd, rsin@4,
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Stoke’s Theorem

Stoke’s theorem gives the relation between the line integral and surface integral as

ijZ-dyzgSZ-dZ o n(1.10.2)
S L

where 4 is the field vector. According to above equation finding curl of a vector at
every point in a chosen surface and adding all those values will be equal to the contour
line integral of the boundary of the chosen surface.

Proof:

Let us consider a rotational field and choose a surface on it as shown in Fig.1.33.

Fig. 1.33 Rotational field to explain Stoke’s Theorem

We know that

_ ¢A-dL
VxA= lim a,
As—0  AS

The above equation can be written as

IVXZ-dEzSﬁZ-dZ
S L

Which can be proved as

Choose a sub-surface As; (ABCDA). Then above equation becomes
_ B _ C _ D _ A _
[VxA-ds=[4-dL+[4-dL+[4-dL+[4-dL
S A B C D

choose one more sub-surface As, adjacent to As; which is (ADEFA)
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jva ds. =TZ d_+TZ-d_+TZ d‘+fz dL
S A D E F

Let As = As; +As;
IVXZ-d_=JVxZ-d§1 +J.V><Z-d§2
S S S

B C D A A E F A
~ [A-dL+[A-dT+ [A-dT+ [A-dL~[4-dL+[3-dL+[d-dL+ [ 4-dL
A B C D D D E F
B C D E F
~ [A-d+[A-dL+[-dL+ [A-d+]
A B C D E

A
Z-dZ+jA7 dL
F

From the above equation by finding curl of a vector A at all the points in a chosen
surface and adding up all the values will be equal to the contour line integral of the
chosen boundary surface. Adding up all the curls is nothing but integrating the curl of a
vector w.r.t. chosen surface.

. ijZ-dgzgﬂ-dZ
S L

1.11 Relation Between E and V

B
We know that the potential difference between points A and B is Vyz = —IE -dL .

B
Similarly the potential difference from B to A is V4 = f E-dL

" The total potential from moving A to B and back to A is
—_— —_— B_ — p— —_—
Vis+Vas= ~[E-dL + [E-dL=0=§E-dL (111D
4 L

The total work done in moving a point charge from A to B and back to A is ‘0’.

From equation (1.11.1) we can say that the electrostatic fields are conservative fields
or irrotational fields.

According to Stoke’s theorem j VxE-ds = <:f>E -dL
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[VxE-ds=00r VXE=0 (1.11.2)
S

Equation (1.11.1) is a Maxwell’s second equation which is in integral form. Equation
(1.11.2) is also a Maxwell’s second equation which is in differential form

We know the potential difference V =—[E-dL
dv=-E-dL
As E and dL are vectors they can be represented in rectangular co-ordinate system as
E=Ea,+Ea,+E.ga,
dL = dxa, +dya,, +dza,
dv=—(Edx+E,dy+E.dz) n(1.11.3)

In calculus dv can be represented as
dv:@dx+@dy+@dz n(111.4)
ox oy Oz

from (1.11.3) & (1.11.4)

E=-VV

Which is the relation between £ and V.
Problem 1.27

. . 10 .
Given the potential V' = —(2) sind cos¢

(a) Find the electric flux density D at(2,7/2,0)

(b) Calculate the work done in moving a 10 mC charge from point A(1, 30°, 120°) to
B(4, 90°, 60°)
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Solution
(a) We have
E=-VV

Since V is given in spherical co-ordinate system, consider VJV in spherical co-
ordinate system

sinfcos¢ga, +— 9 - a
"o r rsin 6 r 4

_ —[10(—21/‘3) llOcost9cos¢67 N 1 10siné(—sing) _ J

sinfcosga, +— P’ , a
"or r rsin 6 r ’

—[10(—2r‘3) 110cos000s¢c7 L] 1051n9(—sm¢)_]

. B 10si
_ (2051n03005¢ 7+ 1000s3000s¢c_10 N Os13n¢a¢j

r r r

= i—?(2sin000s¢ﬁr —cosfcosda, +sin¢5¢)

D-Fe,
-1
= %[?Ain@cosgbar —cosfcosda, +sin¢c7¢]
—11
= M[Z.l.lﬁ,—mro]
r

D2, %, 0) = 22.1a, pC/m’
2
B p— —
(b) Work done = —QIE dL=-0(-V,3)
A

=0 V-V

v, =20 L 031257
16 2

_101
12

VB— VA =228125V
W =107 x 10 x (V3 — V) =28.125 m]J

V, (-0.5)=-5x05=-25V
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Problem 1.28

Given that E = (3x2 + y)c_zx +xa, k V/m . Find the work done in moving a -2 uC charge
from (0, 5, 0) to (2, —1, 0) by taking the path

(a (0,5,0)—>(2,5,0)>(2,-1,0)

(b) y=5-3x

Solution
(a) Line equation for (0, 5, 0) to (2, 5, 0) is
X=X _VY=nh _ 275

X=X N—=)V Z17%

(2:5,0)
W, =-0K 2}0 ((3x2 +y)Ex +xc7y)(dx(7x +dya, +dzc72)

(0.5, 0)

(2.5, 0)
=-0K I (3)62 +y)dx+xdy
(0.5, 0)

(2)
—2x107° } (3x2 +5)dx+0
(0)

=2x103£3[%3£ +5(2)J

=36 ml
Line equation for (2, 5, 0) to (2, -1, 0)
Z=0 dz=0
x-2 y-5 z-0
2-2 541 0-0
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(2,-1,0)
W, =-0OK I (3x2 +y)dx+xdy
(2,5,0)

-1
W, =—0K [ 2dy = 20K (-1-5) =24 mJ
5

W=W+W,=12m]
(b) Line equation for (0, 5, 0) to (2,5,0)isy=5—3x
dy =-3dx
(2, -1, 0)
W =-0K I (3x2 +y)dx+xdy
(0, 5,0

W=2><10_3j(3x2 +5—3x)dx—3xdx=12 mJ
0

1.12 Electric Dipole and Flux Lines

Electric dipole is formed by separating two point charges of equal magnitude but opposite

in sign by a small distance.
Consider an electric dipole along Z-axis separated by a small distance ‘d’ as shown in

Fig. 1.34.

Z _
,6,4) 4
E
I, Ee
Q (
a2 o= h2
¥ Y
d 1
|
d2 Ie’/y/‘
-Q

Fig. 1.34 Electric dipole to find potential
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Let us find potential at P(r,6,¢) due to electric dipole. We know the potential at ‘P’

due to a point charge +Q is V,, = 0 and potential at ‘P” due to -Q is V_, = 0
TEY 1 4rey r,
Potential at ‘P’ due to electric dipole is
0 0
dreyn, 4meyrn,
__ Q1.1
dre,\n 1
. X d
from Fig.1.34 cosf =——= x=—cosl
dj2 2
K=r—x
d
5 =——cosf+r
2
S N
cosd = Y= 2cosé?
r=n-y
7 =r+icosé’
2
- 0 dl 3 dl
47 & r——cos@ r+—cos6
2 2
0 dcosf
Cdre 2
0 rz—(dcosﬁj
2
if r>>d
V:L(dc‘f‘gj (112.1)
dre,\ r
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1 .
V oc = due to dipole

d .a,= d cosO and here define electric dipole moment p = Od whose unit is C-m.

V:Q(d_'a"): (l_j'é_lr) _ 1 —1
47reor2 47reor2 4re, rzp'

(11222)

7

If the electric dipole center is other than origin, let it be at ' then the above equation

can be generalized as

o . _r=r'_ pAr—r) n(1.12.3)

- ,2p' | |3
4ﬂeo|r—r| r—r 47reo|r—r|

The electric field due to dipole with center at the origin can be obtained as
E=-VV
Since V in equation (1.12.1) is in terms of r and 6 consider VV in spherical co-ordinate
system, then
ov_ 1lov_
a, ———a,
or rod

1

,
= _Qd (2r3 cosfa, + sm319 Eej
4r e, r

0d

=h(2cosé’ﬁr +sin0ay )
ey

=L __(2c0s0a, +sin0a,) (112.4)
dre,r

Problem 1.29

An electric dipole located at the origin in free space has a moment
p=3a,-2a,+a, nCm

(a) Find VatP, (2, 3,4)

(b) FindVatr=2.5, 6=30° ¢=40°
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Solution
(a) We have
_ 1 _r—-r'
- 4re, |r—r'|2 p'|l’—r'|
r'=(0,0,0)

|r—r'|=\/4+9+16 =\/E

(3a, -2, +7,)- (2, +3a, +47.)

V=9%x10° 107
294/29
9 x 4)
=(29§3/2 =0.235V

(b) r=2.5 6=30° ¢=40°
x=rsin ¢cos 8= 0.958
y=rsin ¢sin 6= 0.8035
z=rcos 8=2.165
upon simplifying we get
V=197V

Electric Flux Line

Electric flux line is an imaginary path or line drawn such that it’s direction at any point is
the direction of electric field intensity.

Equipotential Surface
Any surface which has same potential at all points is called as an equipotential surface.
Equipotential Line

The intersection line of equipotential surface with the plane is called as equipotential line.
The work done to move a point charge from one point to other point along equipotential
line is ‘0.

The example for equipotential surface for a point charge is shown in Fig.1.35
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Electric
thick lines

— Equipotential
surface

Fig. 1.35 Equipotential surface

Energy Density of Electrostatic Field

To find energy in the assembly of charges. Let us find the work required to assemble the
charges. Consider a free surface and three point charges Q;, Q, and Q; which are at
infinity. The work required to move Qy from infinity to P; is W= 0.

(" initially the surface has no chargei.e., E=0 .. W, = —QJE-QZ =0)

The work required to move Q, from o to P,
which is shown in Fig.1.36 is W, = Q, V,; where
V,, is potential at P, due to Q,. The work required
to move Q3 from oo to P3 is W3 = Q3(V32 + V31).
Where V3, is potential at P; due to Q,, Vi is
potential at P; due to Q.

WE:W1+W2+W3

Q2

® o

Q3

Fig. 1.36 Assembling of charges

= Q2Var +Q3 (Vi Vi) ....(1.12.5)

Suppose if we move initially Q; from o to a free surface at P;. The work required is
W3 = 0. Then work required to move O, from oo to P, is W, = Q, V3. Work required to
move Q1 from oo to P1 is W1 = QI(VIZ +V13)

.. Total work done Wy =W, + W, + W;
=0+ Vo3t O1(ViatVi3) n(1.12.6)
Add (1.12.5) and (1.12.6)
2We=Qi1(Viz+ Vi3)+ Qa(Var+ Va3) + Q3 (Va2 + Vi)
=QiIVi+QVa+ Q5V;

Wy = % (Q1Vi+Q V2 + Q3 Vi) c(1.12.7)
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Where V| is potential at P, due to Q, & Qs, V; is potential at P, due to Q; & Q; and V;
is potential at P; due to Q; & Q..

If we have ‘n’ number of charges the work required to bring them from oo to a surface
which has initially zero charge is

1 n
W, =EZQka (1.12.8)
k=1
If the surface is having continuous charge distribution then the above equation becomes
W= %J- p.V dL for line charge distribution ~(1.12.9)
L
1 e
W= 5 I p,V dS for surface charge distribution  .....(1.12.10)
s
W, = %J. P,V dv for volume charge distribution  .....(1.12.11)

According to Maxwell’s first equation p, =V -D
1 —
Wy =E'V[(V-D)Vdv cee(1112.12)
Weknow V-AV =A4-VV + V(V . Z) where 4 a general vector and V is a scalar
(V-A)y=v-Av-4.vv

ie., (V-E)VzV-EV—E-VV

from (1.12.12) W, =%j(v-5V—5-VV)dv

1 = 1=
W, =E_[V-DVdv—5J;D-VVdv
According to divergence theorem, first integral can be written as
W, =lj5V.d§—lj5-VVdv
2 S 2 v

1

. : 1 =
For point charges the potential V' oc —, E'oc —
r r
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For dipoles the potential V' oc riz E %

Surface ds oc

If we consider the point charges the product of VandE ocL3 and product of
r

DV anddS o l For very large surface the first integral will become zero.
r
1e—
W, =—5.[D-VVdv

- _%!D.(—E)dv = %[E.Edv

wD=¢,E
Energy = W, =%J-EOE'Edv Joules ~(1.12.13)
The energy density J/m” is % = % € E* =w, Im’ ...(1.12.14)
Problem 1.30

Three point charges —1 nC, 4 nC and 3 nC are located at (0, 0, 0), (0, 0, 1) and (1, 0, 0)

respectively. Find the energy in the system.

Solution
WE = W1 + W2 + W3
=0+ QyVy+ Q3(V3i+Vsyy)

0O Q3{Q1+Qz}

Areyln—n| 4mey||n-n| |n-n)
_ 1 0,05
—4”60(Qle+Q1Q3Jr \/Ej

SEREN DA
10 V2
dr.——

36
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:9(2—7J nJ=13.37n]

2

Problem 1.31

Point charges Q; = 1 nC, Q, =—-2 nC, Q; =3 nC and Q4 =— 4 nC are positioned one at a
time and in that order at (0, 0, 0), (1, 0, 0), (0, 0, —1) and (0, 0, 1) respectively. Calculate
the energy in the system after each charge is positioned.

Solution
Energy after Q, is positioned is W, =0

2x1x107"*
W2:Q2V21=Q2.4”€Q|1 | = 1079 =-18nJ
r, —Kn
o 4z = [(1,0,0) - (0,0,0)|
367
Energy after Q, is positioned W2' =W+ W,=-18nJ

Energy after Q; is positioned
Wi = W, +Q3(VartVs))

-9 _ -9 -9
=—18nJ+3X109 2x10 N 1x10
2, 107 [(0,0,-1)=(1,0,0)| * [(0,0,-1)=(0,0,0)|
367
=-29.18nJ

Energy after Q4 is positioned
W4, = VV; + Q4(V43+V42+V41) =-68.27 nl.

1.13 Convection and Conduction Currents

We know that materials are classified into conductors and non conductors based on
conductivity ¢ (siemens/m or S/m). If ¢ > 1, the materials are called conductors and if
o < 1, the materials are called non conductors. The materials whose conductivity lies
between these two materials are called semiconductors. Technically conductors and non
conductors are called metals and insulators respectively. The basic difference between
conductors and dielectrics (insulators) is: Conductors posses more number of free
electrons to flow current through it, Where as dielectrics contain less number of free
electrons to flow current through it.

If >>1, the conductors are called super conductors.

Current ‘i’ can be defined as charge flowing through a surface per unit time



STATIC ELECTRIC FIELDS 77

Y
dt
Current Density
The current Ai flowing through a surface As is denoted as J, = Ai/AS A/m’.
Ai =J, AS
If current density Jn is perpendicular to the surface AS
Ai =J, AS
If J, is not perpendicular to AS, then Ai=J -AS

The total current flowing through surface is 7 = Ij -ds .
s

Based on how the current I is produced, the current densities are classified in to
(i) convection current density (ii) conduction current density and (iii) displacement
current density.

Convection Current Density

Conductors are not involved for flowing current in case of convection current. Hence it
will not satisfy ohm’s law. The current flowing through an insulating material like liquid
or vacuum is convection current. A beam of electrons through a vacuum tube is an
example of convection current.

Consider a filament which is having volume charge density p, as shown in Fig.1.37

Consider an elemental volume AV = ASAL and | AS Py
assume that the current is flowing in y-direction with A |
velocity Uy. U ay
AL
We know that

AQ = p, AV = p,As Al Fig.1.37 Current in a filament

Dividing with At

80 o
At At
AQ Al
Al = p, ASU w——=Al and —=U
bt At At 7
the current density ~ J = AL p,U
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In general current density J = p,U ....(1.13.1)

which is convection current density and [ is convection current.
Conduction Current Density
Conductors are involved in case of conduction current density. If we apply on electric
field E to a conductor the force applied on electron which is having charge ‘- e’ is
F=—¢E .....(1.13.2)

If an electron having mass ‘m’ is moving with a drift velocity U, according to
Newton’s law the average change in the momentum of electron is equal to the force
applied on it.

Average change in momentum is _mu .n(1.13.3)
T

Equations (1.13.2) = (1.13.3)

. mU =
1.e., —=—ceF
T

—eET
m

U:

Where t = average time interval
m = mass of electron

If we have ‘n” number of electrons in the considered conductor the volume charge
density

p, =—ne
We know that current density
T=p0
: L= —eEr
.. Conduction current density J =—ne
m
J=nlEL ..(1.13.42)
m
J=cE
where
o = conductivity of the conductor = ne? z .....(1.13.4b)

m
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Problem 1.32

If J = %(2 cosfa, +sinfa, ) A/m’. Calculate the current passing through
(a) Hemispherical shell of radius 20 cm.

(b) A spherical shell of radius 20 cm.

Solution
1=[J.ds
Since it is sphere ds = r*sin@dfdga.
(@) ¢=0to2r, 8=0to n/2 and » = 0.2 m for hemispherical shell

27 7wl2
1= | j—%(2am05;+$n05@)r2ﬁn0d9d¢@a
g=00=0"
1 21 7/2
- —j j200s9s1n9d9d¢
" g=00=0
1 27 /2
= _j jsmzededqﬁ
6’ 06=0
_1 J- { cos26’} a4
1 2
= (-1-1)(27)="L =107 =31.44
S (F1=1)(27) == =107

(b) ¢=0to2n, #=0to mand » = 0.2 m for spherical shell

:l j I sin20d0dg

" 4=06=0

2r T
:l J~ [—COSZQ} d
r 2 0

$=0

1 2z
== [0[1—1]d¢_0A
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Problem 1.33

For the current density J =10zsin’ ga, A/m’. Find the current through the cylindrical

surface p=2, 1<z<5m.

Solution
Since it is cylinder ds = pdédza,
We have
1=(7-ds

= j T 10zsin’® gpd g dz

z=14=0

=10p I z(1—cosg)

z=1

=754 A

*Problem 1.34

In a cylindrical conductor of radius 2 mm, the current density varies with distance from
the axis according to J =10°¢ " A/m?. Find the total current I.

Solution
Since it is cylinder ds = pd¢dza,
Herer=p=0.02 m,

J=10°e"" @, Afm®

We know the total current / = Ij ds

27z
1= [ [10°e™ pdgd:
$=02=0

1=27z10°e*"p

I=4rze® =25.65 A
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Problem 1.35

R | . .
If the current density J =—-(cos#a, +sin Hag)A/ m?, find the current passing through a
r

sphere of radius 1.0 m.

Solution

We know the total current / = .[J_ ds

Since it is spherical symmetry ds =r*sin0d0d¢ a,

2

T.dS =" cosOsin0dgdo
r
T 2r
I={ [ cososin0dgdo
6=04=0

1=ﬂjsin2.9d.9
0

ZHE—COSZHJ _0A
2 0

1.14 Polarization in Dielectrics

The basic difference between dielectrics and conductors is that dielectrics have less
number of free electrons compared with the conducting material.

Consider a dielectric molecule with +Ve charge +Q (Nucleolus) and —Ve charge —Q

(electron cloud) as shown in Fig. 1.38

To see the effect of electric field on dielectric materials consider
the dielectric molecule as shown in Fig. 1.38. If we apply electric

field E on to dielectric material, the force on positive charge is
F, = QE which is along the direction of electric field E and the

force on negitive charges is £ =—QFE which is in opposite direction

to £.

Fig. 1.38 Electron
cloud

After applying electric field E, charge is displaced as shown in
Fig.1.39. The charge displacement is equal to sum of the original charge distribution and

a dipole with dipole moment (1_9 = Qg) as shown in Fig.1.39.



82 BAsSICS OF ELECTROMAGNETICS AND TRANSMISSION LINES

After applying electric field, basically we get dipoles

—_— E
and hence the dielectric element is said to be polarized -
: . ST Q -Q
such dielectric material is said to be nonpolar. Examples = + o—o0
are hydrogen, oxygen, nitrogen and the rare gases. d
—>E

Other types of molecules such as water, sulfur dioxide
and hydrochloric acid have built-in permanent dipoles

. Fig. 1.39 Ch displ t
that are randomly oriented. '8 arge Cisp acemen

after applying E
Polarization

Creation of dipoles by applying electric field to the dielectric material is called
polarization. Suppose ‘N’ numbers of dipoles are formed within ‘AV’ volume then the
total number of dipole moments can be written as

pa—— pa—— pa—— N pa——
= 0d, +Qyd, +..+0,d, =Y 0,d,
k=1

Polarization is defined as dipole moment/unit volume of the dielectric whose unit is
(C/m?)

N —
_ Z dek
-, Polarization P=lim ¥ — C/m’ n(1.14.0)
AV—=0 AV

Polarized(bounded) surface charge density p, = P- a, and polarized (bounded)
volume charge density p,, ==V - P

Consider a volume which has dielectric material with volume charge density p,. Then
the total volume charge density p, =p, +p,, =V- D

Pyt P, =V E

= PVZV'EOE_/O,W
pV=V-GOE+V-ﬁ '.‘ppvz—V‘l6
pV=V-(60F?+ﬁ)
p,=V-D
where D=, E+P .....(1.14.2)

The electric flux density D in free space is €, E i.e., P = 0 in free space.

From the above equation we can say that D is getting increased by P in dielectric
materials.
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From the discussion on polarization P is directly related with electric field E
P=X,¢, E ....(1.14.3)
Where Xg is the electric susceptibility. The value of parameter Xg gives how
susceptible the given dielectric material to the applied electric field.
Dielectric constant and strength:
Substitute equation (1.14.2) in equation (1.14.1)
D=, E+X, ¢, E

=€, (1+XE)E

=gy€, E

7

=eF
€
where e=¢€pe; €,=—=14+X;
o
Where € is the permittivity of dielectric material and €;is the permittivity of free
space and €, is the dielectric constant or relative permittivity. The dielectric constant

€, can be defined as the ratio of € to g,.

If electric field strength is more such that it pulls the electrons from the outer shells of
dielectric molecules, then the dielectric material becomes conducting material and we can
say dielectric material has been broken.

.. Dielectric strength can be defined as the maximum electric field with which dielectric
material can tolerate or withstand.

1.15 Linear, Isotropic and Homogeneous Dielectrics

Dielectric materials can be classified into
(1) linear dielectrics
(il)) homogeneous dielectrics
(ii1) isotropic dielectrics.

Linear Dielectrics: If € does not change with electric field then we can say the dielectric
as linear dielectric.

Homogeneous Dielectrics: If € does not change from point to point then we can say the
dielectric as homogeneous dielectric.
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Isotropic dielectrics: If € does not change with the direction then we can say the
dielectric as isotropic dielectric.

Similarly conducting materials are classified as
If ‘o’ is independent of E then the conducting material is linear conducting material.
If ‘c’ is independent of direction then the conducting material is isotropic conductor.

If ‘c’ does not change from point to point then the conducting material is
homogeneous conductor.

1.16 Continvity Equation and Relaxation Time

1.16.1 Continuity Equation

According to conservation of energy the rate of decrease of charge within a volume is
equal to the net outward current flowing through a closed surface

qSJ ds =~ dQ
According to divergence theorem <j§J -ds = jV -Jdv .....(1.16.1a)
dQ .
— can be written as — I [ J p,dv J
0
= —j(—pvjdv ....(1.16.1b)
AN

equations(1.16.1a) = (1.16.1b)
jV-jdv =—J.(ﬁpv)dv
g ot

_9p,
ot

V.-J= ..(1.16.1¢)

which is the continuity current equation.
The left side of the equation is the divergence of the Electric Current Density (j )

This is a measure of whether current is flowing into a volume (i.e., the divergence of J is
positive if more current leaves the volume than enters).

Recall that current is the flow of electric charge. So if the divergence of J is positive,
then more charge is exiting than entering the specified volume. If charge is exiting, then
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the amount of charge within the volume must be decreasing. This is exactly what the right
side is a measure of how much electric charge is accumulating or leaving in a volume.
Hence, the continuity equation is about continuity - if there is a net electric current is
flowing out of a region, then the charge in that region must be decreasing. If there is more
electric current flowing into a given volume than exiting, then the amount of electric
charge must be increasing.

1.16.2 Relaxation Time

To derive the equation for relaxation time,

consider Maxwell’s first equation i.e.,

V-D=p,

V~e}£77=,0V

v.E=2 (1.162)
(S

Consider the conduction current equation (point form of ohm’s law)

J=cE o(1.16.3)
From (1.16.2) V-6 E=c 2>
S

V.- 7= from(1.16.3)

€
-0 o .
%Py _ a& from continuity equation
ot €
0
& = _gﬁz
Py €

on integrating

o
Inp,=——t+Inp,
€

o
Py _ ejf _ e#/(e/o‘)

(1.16.4)
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Which is relaxation time or rearrangement time.

Let us consider the effect of inserting the charge in the interior point of the material
(Material can be conductor or dielectric).

Due to the insertion of charge in the interior point of the material, the volume charge
density decreases exponentially.

Relaxation time can be defined as the time it takes a charge placed within an interior
point of material to drop to e ' = 36.8% of its initial value.

Relaxation time is very short for good conductors and high for good dielectrics. When
we place a charge within a conductor within a short period charge disappears and it
appears on the surface of conductor. Similarly when we place a charge within a dielectric
material the charge remains there for a longer time.

1.17 Poisson’s and Laplace’s Equations

We can find EorDby using Coloumb’s law or Gauss’s law, (if the distribution is
symmetry) if the charge distribution is known. We can also find out EorD, if the

potential difference is known. But in practical situation charge distribution and potential
difference may not be given, in such cases either charge or potential is known only at
boundary. Such type of situations or problems can be tackled either by using Poisson’s
equation or Laplace’s equation.

We know Maxwell’s first equation V - D= Py
Substitute D =€ E in the above equation

V-eE=p,
we know E=-VV

V(-eVV)=p, .....(1.17.12)
which is the Poisson’s equation for in-homogeneous medium.
For charge free medium p, =0

V(-evr)=0 .o.(1.17.1D)
which is the Laplace’s equation for in-homogeneous charge free medium.

For homogeneous medium since € is constant

vy =" (1172

€

which is the Poisson’s equation for homogeneous medium.
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For charge free region p, =0

VWV =0 n(1.17.3)
which is the Laplace’s equation for homogeneous charge free medium.
We know
\24 =6—Vc7x +6—Vc7 +8—VEZ
ox oy 7 oz
2 2 2
V-VV=V2V=612/+612/+612/=0 (117.4)
ox~ oy Oz

Which is Laplace’s equation in rectangular co-ordinate system.
where V? is Laplacian operator

In cylindrical co-ordinate system is

:13( an Lo v _,

VWV =— — |+=—+ =
pop\"op ) o o

(1.17.5)

In spherical co-ordinate system

2
szzizﬁ(rza—V}r 21. i(smea—V}r%@—zzo -..(1.17.6)
r- or or ) r-sinf 0@ 00 ) r°sin“ 6@ 0¢

Problem 1.36

Write Laplace’s equation in rectangular co-ordinates for two parallel planes of infinite
extent in the X and Y directions and separated by a distance ‘d’ in the Z-direction.
Determine the potential distribution and electric field strength in the region between the
planes.

Solution
5 z
V=0
2 2 2

0 12/ L0 12/ L0 12/ 0 N[ v ]

ox~ oy oz d
since the potential is constant in X and Y directions -
o _ov v v _
o oy 't oy

X
oV Fig. 1.40
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> _y
oz
V=Az+B
AtZ=0 V=171,
V1 = O +B
AtZ=d V=1,
Vz =Ad +B
V2:Ad+V1
A= VZ — Vl
d
e v, -V
The Potential distribution is V' = Tz +V
The Electric field strength is
E:—VVI—a—VEZ =—
Z

-n

d

1.18 Parallel Plate Capacitor, Coaxial Capacitor,

Spherical Capacitor

Capacitor may be obtained by separarting two conductors in some medium, which are
having charges equal in magnitude but opposite in sign, such that the flux leaving from
one surface of the conductor, terminates at the other conductor. Medium can be either

free space or dielectric . Generally these conductors are called plates.

Let us consider two conductors with + Q and — Q
charges and are connected to a voltage or potential

difference ‘V’ as shown in the Fig.1.41.

The potential difference ‘V’ can be written in terms of

2
E as potential difference V=V, -V, = —jE -dL
1

The parameter of the capacitor i.e., ‘capacitance’ is
defined as the ratio of charge on one of the conductors to

the potential difference between two conductors.

Fig. 1.41 Two conductors
connected to V
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qSE-dE gSeE ds
ngszd_:?Ed_ o (1L18.1)

1.18.1 Parallel Plate Capacitor

Consider two conductors whose area as ‘A’ and are separated by a distance ‘d’ as shown
in Fig.1.42. X

We know the electric field intensity E between

parallel plate capacitors in free space as E = &En . Q d
o + T
: Enl ps — d i
But from the Fig. 1.41 E=—"(-a,)
€
— . . T . G AN T e T e 0
-+ E will be in opposite direction of x-axis ks,
_ Y Fig. 1.42 Parallel plate
Q=p.A=p, = A capacitor

Where A = area of conductor.

E:~2@
Ae

We know the potential difference between two conductors which are separated by a
distance ‘d’ as

where dL =dxa,

d

V:J'_dQ ng
OAe Ae

c-Q_A<s (1.182)
V d

Energy stored in the parallel plate capacitor is
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Le_pi
Wy =5J‘:e E—‘zdv

2 2 2
WE=lp—dev=lps (Axd)=2224
2 ey, 2 e 2e
Replace p, byg
A
1004d_10° 1, (1183)
T A a0 2

*Problem 1.37

Calculate the capacitance of a parallel plate capacitor with a dielectric, mica filled
between plates.€, of mica is 6. The plates of the capacitor are square in shape with

0.254 cm side. Separation between the two plates is 0.254 cm.

Solution

_&4
d

Here e=€,€,=8.854x107"* x6

We have C

_ 8.854x107 x6x0.254x0.254x107*

C 2
0.254x10"

=0.1349 pF

*Problem 1.38
A parallel plate capacitance has 500 mm side plates of square shape separated by 10 mm
distance. A sulphur slab of 6 mm thickness with €,=4 is kept on the lower plate find the

capacitance of the set-up. If a voltage of 100 volts is applied across the capacitor,
calculate the voltages at both the regions of the capacitor between the plates.

Solution
Given
Area of parallel plates, A = 500 mm x 500 mm = 500 x 500 x 10° m”.
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Distance of separation d = 10 mm = 10 x 10~ m.

Thickness of sulphur slab d,= 6 mm =6 x 10 m.

Relative permittivity of sulphur slab €,=4.

Voltage applied across the capacitor V=100 V.

Here the capacitor has two dielectric media,

One medium is the sulphur slab of thickness (d,)6 mm,

since the distance between the plates(d) is 10 mm

The remaining distance is air d, =d —d, =4 mm.

. The other dielectric medium is air with thickness (d, ) 4 mm.

The capacitance of the parallel plate capacitor with two dielectric media is

co— %4 g
d  dy
€, €,
Here €, (air) =1, €,=¢=4
-12 -6
C=8.854><10 x500x500x10 0402 1F
4x107°  6x107°
+
1 4

The charge Q =CV =0.402 x 10° x 100=4.02 x 10°* C
The value of capacitance (C)) in delectric-1 i.e., air is
€ A 8.854x107"* x500x500x10°

C =
: d, 4x107

=0.55nF

Similarly, The value of capacitance (C,) in delectric-2 i.e., sulphur is

-12 -6
o _SA_4x8.854x1077 x500x500x10° | o o

d, 6x107

Wehave V=V,;+V,

Where V| is the voltage at the region of the capacitor plate near dielectric-1 i.e., air.

and V, is the voltage at the region of the capacitor plate near dielectric-2 i.e., sulphur.

%_2_4.02><10_8

= = =731V
¢, C  055x10”°

Vi

V,=100-73.1=269V
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1.18.2 Co-axial Capacitor

Consider two co-axial cables or co-axial cylinders of length ‘L’ where inner cylinder
radius is ‘a’ and outer cylinder radius is ‘b’ as shown in Fig.1.43. The space between two
cylinders is filled up with a homogeneous dielectric material with permittivity €. Assume
the charge on inner cylinder as Q and on the outer cylinder as —Q.

we have charge enclosed by the cylinder as

Q=<J‘>13~d_? where 5=Dpap and ds = pdgdza, %@

2z L
0=D,p j¢:0d¢L:0 dz=21D,pL =27 € E,pL

Fig. 1.43 Co-axial capacitor
ie 9 _F-_92 4
€., = = a,
€2 pL 2z e pL
To find the capacitance of co-axial capacitor. We need to find the potential difference

between the two cylinders.

V= —j.l_?.dl_ where dl = dpa,
b

Vz—jl_?.dpﬁp
b
-,
s 2meplL
V= Q ln(éJ
2rel a
Q 2rel

=== .....(1.18.4)
vV b
in(%%)
Which is the expression for Coaxial capacitance.

1.18.3 Spherical Capacitor

Consider two spheres i.e., inner sphere of radius ‘a’ and outer sphere of radius ‘b’ which
are separated by a dielectric medium with permittivity € as shown in Fig.1.44. The
charge on the inner sphere is +Q and on the outer sphere is —Q.
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We have charge enclosed by the sphere as
0=¢Dds
s
where D=D.a;

ds =r*sin0d0d¢a,

2 V4
0= I d¢ J. r*siné D, do Fig. 1.44 Spherical capacitor
¢=0  6=0
D, = Q2
Arr
E = 0 >
4rer
F-—2 ~a,
4rer

To find the capacitance of spherical capacitor. We need to find the potential difference
between the two spheres.

v=—[E-dl
b
where dl_:drﬁr
V= —0 der
dreyr
_0 {l_l}
4rela b
c.@__4re_ ....(1.18.5)

Which is the expression for Spherical capacitance.



94

BASICS OF ELECTROMAGNETICS AND TRANSMISSION LINES

Review Questions and Answers

1.

State stokes theorem.

Ans. The line integral of a vector around a closed path is equal to the surface integral of

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

Ans.

the normal component of its curl over any surface bounded by the path.

jvxZ-ds—zgﬁA?-dZ
S L

State coulombs law.

Coulombs law states that the force between any two point charges is directly
proportional to the product of their magnitudes and inversely proportional to the
square of the distance between them. It is directed along the line joining the two
charges.

F _ Q] Q2 5

12 = R
dre, R

State Gauss law for eelectric fields.

The total electric flux passing through any closed surface is equal to the total
charge enclosed by that surface.

Define electric flux.

The lines of electric force is electric flux.

Define electric flux density.

Electric flux density is defined as electric flux per unit area.

Define electric field intensity.

Electric field intensity is defined as the electric force per unit positive charge.
Name few applications of Gauss law in electrostatics.

Gauss law is applied to find the electric field intensity from a closed surface, i.e.,
Electric field can be determined for shell, two concentric shell or cylinders etc.

What is a point charge?

Point charge is one whose maximum dimension is very small in comparison with
any other length.

Define linear charge density.

It is the charge per unit length.
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10.
Ans.

11.
Ans.

12.
Ans.

13.
Ans.
14.
Ans.
15.
Ans.

16.
Ans.

17.

Ans.

Write poisson’s and laplace’s equations.

Poisson’s eqn:

vy =P
S

Laplace’s eqn:
VY =0
Define potential difference.
Potential difference is defined as the work done in moving a unit positive charge
from one point to another point in an electric field.
Define potential.

Potential at any point is defined as the work done in moving a unit positive charge
from infinity to that point in an electric field.

Give the relation between electric field intensity and electric flux density.
D=eE C/m’

Give the relationship between potential gradiant and electric field.
E=-VV

What is the physical significance of div D ?
V.D=-p,

The divergence of a vector flux density is electric flux per unit volume leaving a
small volume. This is equal to the volume charge density.

Define current density

Current density is defined as the current per unit area.
J= L Amp/m’
A

Write the point form of continuity equation and explain its significance.

- 0
v.J=_%

ot

which is the continuity current equation and it’s significance is:
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18.
Ans.

19.
Ans.

20.
Ans.

The left side of the equation is the divergence of the Electric Current Density (7 ) .

This is a measure of whether current is flowing into a volume (i.e., the divergence
of J is positive if more current leaves the volume than enters).

Recall that current is the flow of electric charge. So if the divergence of J is
positive, then more charge is exiting than entering the specified volume. If charge
is exiting, then the amount of charge within the volume must be decreasing. This is
exactly what the right side is a measure of - how much electric charge is
accumulating or leaving in a volume. Hence, the continuity equation is about
continuity - if there is a net electric current is flowing out of a region, then the
charge in that region must be decreasing. If there is more electric current flowing
into a given volume than exiting, then the amount of electric charge must be
increasing.

Write the expression for energy density in electrostatic field.

WEI%EEZ

Write down the expression for capacitance between two parallel plates.

c-¢4
d

What is meant by displacement current?

Displacement current is the current flowing through the capacitor.

Multiple Choice Questions

L.

Q; and Q, are two point charges, which are at a distance 8 cm apart. The force
acting on Q, is given by le =a,9x 107> N. Now we replace Q, with a charge of

the same magnitude but opposite polarity, Q; = — Q,, and we place Q; at a distance
24 cm away from Q;. What is the vector F3; of the force acting on Q5?

(a) F,, =3x107"%a, N (b) F,=-3x10"7a N
31 y 31 ¥
(c) Fy =—1x10"a, N d) F,=1x10""7,N

The intensity of the field due to a point charge (O, at a distance R; = 1 cm away
from it is £1 =1 V/m. What is the intensity E, of the field of a charge O, =40, ata
distance R, = 2 cm from it?

(a) Ex;=1V/m (b) E;=4V/m
(C) E2=2V/m (d) E2:1/2V/1’1’1
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The intensity of the field due to a line charge p;; at a distance »; = 1 cm away from
itis £; = 1 V/m. What is the intensity E, of the field of the line charge p;, =4 at a
distance r, = 2 cm from it?

(a) Ex;=1V/m (b) E;=4V/m

(¢) E;=2V/m (d) E;=%V/m

Charge Q is uniformly distributed in a sphere of radius a;. How is the charge
density going to change if this same charge is now occupying a sphere of radius
a=a,/4?

(a) It will increase 4 times (b) It will increase 64 times

(c) It will increase 16 times (d) It will increase 2 times

A line charge p = 5 x 10~ C/m is located at (x, y) = (0, 0), and is along the z-axis.
Calculate the surface charge density ps (ps > 0) and the location x, (x, > 0) of an

infinite planar charge distributed on the plane at x = x,, so that the total field at the
point P (0. 5 x 107, 0) m, is zero.

(@) p, =1/(27) C/m?, x, = 5x10°m  (b) p, =1/(27) C/m*, Vx

p

(¢) p,=l/m C/m? X, =10x107m (d) p, =1/7 C/m? Vx,

The volume charge density associated with the electric displacement vector in
spherical coordinates (sin Osinga, +cosfsinga, +cos pay, ) is

(a o0 (b) 1

(c) Not compatible (d) sinB

The divergence theorem

(a) Relates a line integral to a surface integral

(b) Holds for specific vector fields only

(c) Works only for open surfaces

(d) Relates a surface integral to a volume integral

The flux of a vector quantity crossing a closed surface

(a) 1is always zero

(b) is related to the quantity’s component normal to the surface

(c) isrelated to the quantity’s component tangential to the surface
(d) isnot related in any way to the divergence of that vector quantity
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10.

11.

12.

13.

14.

The flux produced by a given set of fixed charges enclosed in a given closed region
is

(a) Dependent on the surface shape of the region, but not the volume

(b) Dependent on the total volume of the region, but not the surface shape

(c) Dependent on the ratio of volume to surface area of the region

(d) Not dependent on any of these as long as the charges are inside the region
Consider charges placed inside a closed hemisphere. Consider the flux due to these
charges through the curved regions (Flux A) and through the flat region (Flux B)
(a) Flux A=Flux B

(b) Flux A>Flux B

(c) Flux A<Flux B

(d) Not enough information to decide the relation between Flux A and Flux B

An electron (g, = 1.602 x 107" C) leaves the cathode of a cathode ray tube (CRT)
and travels in a uniform electrostatic field toward the anode, which is at a potential

V, = 500 V with respect to the cathode. What is the work W done by the
electrostatic field involved in moving the electron from the cathode to the anode?

(a) W=5kJ (b) W=8x10"]J
(c) W=8x10""J (d) w=5]

In the previous question, what is the electric field strength £ =|E | if the distance
between the cathode and the anode is 10 cm?

(a) E=5Vm (b) E=500 V/m

(¢) E=50V/m (d) E=5kV/m

The electrostatic potential due to a point charge Q; at a distance r; = 1 cm away
from it is V; = 1 V. What is the potential V, of a charge O, = 40, at a distance
7, =2 cm from it?

(@ V=05V (b)y V,=1V

(c) V,=4V d =2V

The electrostatic potential due to a dipole p; = pia, at a distance r; = 1 cm away

from it along the z-axis, is V; = 1 V. What is the potential V;, of a dipole
P2 = 4p1az at a distance r, = 2 cm from it along the z-axis?

(@ V,=05V by V,=1V
(c) V=4V d V,=2V
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15. The electrostatic potential V =

2x1073

N

€, is the permittivity of vacuum, exists in a region of space (vacuum) in the shape

x V. Where x is measured in meters and

of a parallelogram of size 10 x 10 X 1 cm. What is the electrostatic energy
Wi stored in this region?

(a) W,=2x10""] (b) W,=1x10"]J
E E
(c) W,=4x10""] (d) W, =3x10"7J

16. Which statement is not true?

17.

18.

19.

(a) The static electric field in a conductor is zero
(b) The conductor surface is equipotential

(c) Zero tangential electric field on the surface of a conductor leads to zero
potential difference between points on the surface

(d) The normally directed electrical field on the surface of a conductor is zero

The “skin” effect results in

(a) Current flowing in the entire volume as frequency increases
(b) Current flowing only near the surface as frequency increases
(¢c) Current flowing only near the surface as frequency decreases
(d) Current flowing near the surface at any frequency

As frequency increases, skin effect results in

(a) Decreased resistance

(b) Increased resistance

(¢) No change in resistance

(d) Increase or decrease depending on material properties.

In a parallel-plate capacitor, the charge on the plates is C. What is the electric flux
density magnitude D, if the area of each plate is 4 = 10 * m”. Assume uniform field
distribution.

(a) D=10"C/m? (b) D=10"/g, C/m*
(c) D=10" ¢, C/m* (d) D=10"C/m?

20. For the capacitor in Previous question, find the voltage between its plates, provided

its capacitance is C = 10 pF.
(a) V=885V (by V=0V

(c) V=100V (d V=10"V
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21.

22.

23.

The capacitor in above Q no. 19 and 20 uses dielectric of permittivity e=¢,. The

maximum allowable field intensity (dielectric strength) of this dielectric is
E; = 3MV/m. (If E > Ey, the material breaks down.) What is the maximum
voltage Vimax, up to which the capacitor can operate safely (its breakdown voltage)?

(a) Vmax =885V (b) Vmax =1000V
(c) V,, =3x10°V (d) Vv, =265V

A coaxial capacitor whose cross-section is shown in the figure below has a central
conductor of radius 7 and an outer conductor of radius ;. The region between the
two conductors consists of two regions: (i) the region 1; < p < 1, has a relative
permittivity of &, =2 and (ii) the region r, < p < r; has a relative permittivity of

&,, =1. The radius r, is such that r, /5, =¢* and r,/r, =e where e~2.71.

Py

What is the capacitance per unit length?

(a) C =4re, by Ci=x¢,

(c) C=2re, d) C=7mey2

Poisson’s and Laplace’s equations are different in terms of

(a) Definition of potential (b) Presence of non-zero charge

(¢) Boundary conditions on potential (d) No difference

Answers

) o (d) 17. (b)
@@ 10 (a) 18. (b)
@) 1L () 19. (a)
b 12 () 20. ()
@ 13 () 21. (d
@@  14. (b) 22. (b)
@ 15 (a) 23. (b)
(b) 16 ()

® NSV R W=
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Exercise Questions

1.

10.

11.

12.

13.

14.

15.

State the Coulomb’s law in SI units and indicate the parameters used in the equations
with the aid of a diagram.

State Gauss’s law. Using divergence theorem and Gauss’s law, relate the density D
to the volume charge density p, .

Explain the following terms:

(a) Homogeneous and isotropic medium and

(b) Line, surface and volume charge distributions.

State and Prove Gauss’s law. List the limitations of Gauss’s law.

Express Gauss’s law in both integral and differential forms. Discuss the salient
features of Gauss’s law.

Derive Poisson’s and Laplace’s equations starting from Gauss’s law.

Using Gauss’s law derive expressions for electric field intensity and electric flux
density due to an infinite sheet of conductor of charge density p C/m.

Find the force on a charge of —100 mC located at P(2, 0, 5) in free space due to
another charge 300 uC located at Q(1, 2, 3).

Find the force on a 100 uC charge at(0, 0, 3) m, if four like charges of 20 uC are
located on X and Y axes at £4 m.

Derive an expression for the electric field intensity due to a finite length line charge
along the Z-axis at an arbitrary point Q(x, y, z).

A point charge of 15 nC is situated at the origin and another point charge of —12 nC
is located at the point (3, 3, 3) m. Find £ and V at the point(0, -3, —3).

Obtain the expressions for the field and the potential due to a small Electric dipole
oriented along Z-axis.

Define conductivity of a material. Explain the equation of continuity for time
varying fields.

As an example of the solution of Laplace’s equation, derive an expression for
capacitance of a parallel plate capacitors.

In a certain region J =3’ cosfa, —rsinfa, A/m, find the current crossing the

surface defined by 6=30°,0<¢<27,0<r<2m.





