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Chapter 

1 
Static Electric Fields 

1.1 Introduction 
Electrostatic in the sense static or rest or time in-varying electric fields. Electrostatic field 
can be obtained by the distribution of static charges. 

 The two fundamental laws which describe electrostatic fields are Coulomb’s law and  
Gauss’s law: 

 They are independent laws.  i.e., one law does not depend on the other law. 

 Coulomb’s law can be used to find electric field when the charge distribution is of any 
type, but it is easy to use Gauss’s law to find electric field when the charge distribution is 
symmetrical.  

1.2 Coulomb’s Law  
This law is formulated in the year 1785 by Coulomb. It deals with the force a point 
charge exerts on another point charge; generally a charge can be expressed in terms of 
coulombs. 

    1 coulomb = 6 × 1018 electrons 

    1 electron charge = –1.6 × 10–19 Coulombs 

Coulomb’s law states that the force between two point charges Q1 and Q2 is  along the 
line joining between them, directly proportional to the product of two point charges, and 
inversely proportional to the square of the distance between them 
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 where K is proportional constant  

 In SI, a unit for Q1 and Q2 is coulombs(C), for R meters(m) and for F newtons(N). 
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 Assume that the point charges Q1 and Q2 are located at (x1, y1, z1) and (x2, y2, z2)   with 
the position vectors 1r and 2r  respectively.  Let the force on Q2 due to Q1 be 12F  which 
can be written as 

      1 2
12 2 12

04
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 R

Q Q
F a

R
                                              …..(1.2.2) 

 where 
12Ra is unit vector along the vector 12R . Graphical representation of the vectors 

in rectangular coordinate system is shown in Fig.1.1 

 Where xa is the unit vector along X-axis and ya is the  

unit vector along Y-axis and za  is the unit vector along 

Z-axis.   

 From Fig.1.1, we can write  1 12 2 r R r  

   i.e.,   12 2 1 R r r  

 where   1 1 1 1  x y zr x a y a z a   

       2 2 2 2  x y zr x a y a z a  

Fig. 1.1 Graphical 
representation of the 

vectors 
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 and force on Q1 due to Q2 is 21 12 F F  

 If we have more than two point charges i.e., Q1, Q2,… QN with the position vectors 

1 2, , .... Nr r r respectively, then the force on a point charge Q, whose position vector is 
,r can be written as  
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                                     …..(1.2.4) 

1.3  Electric Field Intensity 
Electric field intensity is defined as force per unit charge in an electric field.  The other 
name of electric field intensity is electric field strength and it is denoted by E .  

      
F

E
Q

   N/C    or  Volts/meter  

 i.e.,    
2 2

0 04 4
 

 
Q Q Q

E
Q R R 

                                  …..(1.3.1) 

 Consider a point charge Q with position vector ,r  then the electric field intensity E  at 
some point with position vector 1r due to point charge Q is  
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 where Ra  is the unit vector along R . Graphical representation of vector is shown in 
Fig.1.2 

From Fig. 1.2, 1 R r r  
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 If we have more than one point charge i.e., Q1, Q2,… QN with the position vectors 

1 2, ,.... Nr r r  respectively. Then the electric field intensity E at some point with position 
vector r can be written as  
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N N

N

Q r rQ r r Q r r
E

r r r r r r  
 

        
3

10

1

4 




 

N

K
K

K K

r r
Q

r r
                                …..(1.3.3) 

Problem 1.1 
Point charges 1 mC and –2 mC are located at (3, 2, –1) and (–1, –1, 4) respectively.  
Calculate the electric force on a 10 nC charge located at (0, 3, 1) and the electric field 
intensity at that point. 

Solution 
We know  
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Fig. 1.2  Graphical  
representation 
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12
0  8.854 10    and 3.14   

  = 
   3

3
3 2 10 2 8 6

90 10
52.38 132.57




      
 
  

x y z x y za a a a a a
 

  = 3 3 2 1 8 2 6
90 10

52.38 132.57 52.38 132.57 52.38 132.57
                        

x y za a a  

  = 390 10 0.0723 0.0413 0.0834      x y za a a  

   = 0.0065 0.0037 0.0075  x y za a a
 
N. 

 Also we know   
F

E
Q

 

   = 
9 9 9

0.0065 0.037 0.0075

10 10 10 10 10 10    
  x y za a a

 
   = 650 370 750  x y za a a

 
kV/m. 

Problem 1.2 
Point charges 5 nC and –2 nC are located at 2 4x za a  and –3 5x za a respectively.                     

(a) Determine the force on a 1 nC point charge located at 3 7x y za a a  . (b) Find the 

electric field – 3 7x y zE at a a a . 

Solution 
(a)    We know 
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3
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
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r rQ
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r r
 

  = 
 
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 
 

9 9 9
3 3

3 3 2 4 3 2
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1 9 9 16 9 4

 
          

     

x y z x y za a a a a a

 

  = 9 5 8 15 6 15 4
9 10

82.81 156.169 82.81 156.169 82.81 156.169
                         

x y za a a  

  =      99 10 0.112 0.143 0.155       x y za a a  

  = 1.008 1.287 1.395 nNx y za a a    
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(b)   F
E

Q
, here Q = 1 nC 

    1.008 1.287 1.395 V / mx y zE a a a    

Problem 1.3 
Point charges Q1 and Q2 are respectively located at (4, 0, –3) and (2, 0, 1). If Q2 = 4 nC, 
Find Q1 such that (a) The E  at (5, 0, 6) has no Z-component. (b) The force on a test 
charge at (5, 0, 6) has no X-component. 

Solution 

We have 
2

3
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K
K

K K
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F Q
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


 
  

(a) 
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  Given E  has no Z – component, considering only Z components on both sides 

    
   

9
1

3 3
0

91 4 10 5
0

4 82 34

 
     

  

Q


 

       
   

9
1

3 3

9 4 10 5

82 34

  
 

Q

 

     

3

1
20 41

8.3nC
9 17

Q nC
 

     
 

 

(b) Given the force on test charge has no X-component 
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Problem 1.4 
Two point charges of equal mass ‘m’, charge ‘Q’ are suspended at a common point by 
two threads of negligible mass and length ‘l’.  Show that at equilibrium the inclination 
angle ‘’ of each thread to the vertical is given by Q2 = 16 0 mgl2 sin2 tan , (or) 

3 2

2 2
0

tan

1 tan 16


 
Q

mgl


 

, 

  if ‘’ is very small 

  Show that   
2

3
2

016



Q

mgl



 

Solution: 

 

Fig. 1.3 Suspended charge particles 

 When two charges are suspended from a common point with threads of length ‘l’, we 
can represent graphically as sown in Fig.1.3, where T is the tension in thread ‘mg’ is the 
weight of charge towards ground due to gravitational force and F is force on charge at 
‘A’(B) due to charge at ‘B’(A).  T cos  is the vertical component of ‘T’ which is 
upwards and T sin  is the horizontal component of ‘T’ which is opposite to .F  To form 
equilibrium either at ‘A’ or ‘B’ 

   T cos   = mg  …..(1.3.4) 

   T sin  = F   …..(1.3.5) 

     
 
 
1.3.4 sin

1.3.5 cos
 

T F

T mg



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                   tan
F

mg
     

 where   
2

2
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

Q

F
r

   

 From Fig.1.3     
/ 2
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 
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l
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2
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


  

             

2

2 2
04 4 sin




Q
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2

2 2
0

tan
16 sin

Q

mgl


 



 

     

2
2

2
0

sin tan
16

Q

mgl
 





 …..(1.3.6) 

     
2 2 2

016 sin tanQ mgl     …..(1.3.7) 

 From (1.3.6) 

     

2 2
2

2 2
0

sin
cos tan

cos 16

Q

mgl

 
 


  

     

3 2

2 2
0

tan

sec 16

Q

mgl


 


  

     
3 2

2 2
0

tan

1 tan 16

Q

mgl


 


   

 If  is very small, sin  = tan  =  

 From (1.3.4)  Q2 = 160 mg l2 3 
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3
2
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


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mg l


  

     
2

3
2
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


Q
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


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Problem 1.5 
Two small identical conducting spheres have charges of 2 × 10–9 and – 0.5 × 10 –9 C 
respectively. (a) When they are placed 4 cm apart what is the force between them? (b) If 
they are brought into contact and then separated by 4 cm.  What is the force between 
them? 

Solution 
(a)   We know  

     
2

0

21

4 R

QQ
F




  

                                                     9

0

1
9 10

4
 


   

          
9 9 9

4

2 10 0.5 10 9 10

16 10
F

 



     



 

              = – 5.625 N 

(b)    When they are brought into contact, charges will be added and again when they are 
separated charge will be distributed equally                         

       Q1 = 0.758 × 10 –9 C  

     Q2 = 0.75 × 10 –9 C 

     164.3F N 

Problem 1.6 
If the charges in the above problem are separated with the same distance in a kerosene   
(r = 2), then find (a) and (b) as in the previous problem.  

Solution 

(a) 
5.625

2


kF N 

            = – 2.8125 N 

(b) 
3.164

2kF  = 1.582 N 
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Problem 1.7 
Three equal +Ve charges of 4 × 10 –9 C each are located at 3 corners of a square, side              
20 cm. Determine the magnitude and direction of the electric field at the vacant corner 
point of the square. 

Solution 

 
Fig. 1.4 

 1E  = Electric field intensity at Q4 due to Q1 

      = 
2

0

1

4 R

Q

  
      =  900 V/m 

   2E  = 450 V/m 

   3E = 900 V/m 

 The electric field intensity at vacant point is  

   
o o

2 1 3cos45 cos45  E E E E  

        

900 900
450

2 2
    

      450 900 2      

            = 1722.792206 V/m 

1.4 Coordinate Systems 
The most widely used coordinate systems are Cartesian or rectangular co-ordinate 
system, Circular or cylindrical co-ordinate system, and Spherical co-ordinate system. 

 



 STATIC ELECTRIC FIELDS 11

1.4.1 Cartesian Co-ordinate System 
In this system the co-ordinates are X, Y, Z in which three are mutually perpendicular to 
each other. This system is shown in Fig. 1.5, where ,  & ax y za a are unit vectors along X, 

Y and Z respectively. In Cartesian co-ordinate system the dot product of any unit vector 
with itself gives ‘1’.  

  i.e., x xa a  = 1       = 1    z za a  = 1 

 and the dot product of one unit vector with the other 
one gives ‘0’. 

 i.e., x ya a  = 0   y za a  = 0   z xa a  = 0 

The cross product of one unit vector with the other 
unit vector, which is next to the first one in 
anticlockwise direction, results the last unit vector in 
anticlockwise direction. 

 i.e., x y za a a       y z xa a a    z x ya a a   

 Consider a general vector A with components Ax, Ay,  Az along X, Y, Z respectively, 
then it can be represented in Cartesian coordinate system as 

    x x y y z zA A a A a A a  
 

 Here X ranges from –  to , Y from –  to , and Z from  –  to . 

Note: 

1. Differential displacement or elemental length is 

    x y zdl dxa dya dza   

2. Differential or elemental normal area is  xdS dy dz a  

                ydx dz a  

            zdx dy a  

3. Differential or elemental volume is dv = dx dy dz 

1.4.2 Cylindrical Co-ordinate System 

In this system ,  and z are coordinates in which all are mutually orthogonal to each 
other. 

Fig. 1.5  Cartesian co-ordinate 
system 
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Note: If the given problem is of circular symmetry, then it would be better to use 
cylindrical coordinates rather than Cartesian coordinates. 

Where  is the radial distance from origin,  is the 
azimuthal angle from X-axis to the radial distance and Z 
is same as in Cartesian coordinate system. The 
cylindrical coordinate system is shown in Fig. 1.6. 

Where ,a a   and za  are unit vectors along radial 

axis, azimuthal angle and z-direction respectively.  

The dot product of any unit vector with itself gives 
‘1’. 

 i.e.      1a a      1a a     1z za a   

 The dot product of any unit vector with the other unit vector gives ‘0’ 

 i.e.      0a a      . 0za a    0za a   

 The cross product of any unit vector with the other unit vector, which is next to the 
first one in anticlockwise direction, results last unit vector in the anticlockwise direction. 

 i.e., za a a     za a a        za a a    

 Consider a general vector A with components A, A, Az along the three axes, then it 
can be represented as  

    z zA A a A a A a       

 In this system 0   < ,  0   < 2, and – < z <  

The relation between Cylindrical and Cartesian coordinate system is shown in Fig.1.7.  

The component of  on X-axis is   cos and the component of  on Y-axis is  sin . 

   X =  cos , Y =  sin , Z = z    

from Fig.1.7 1tan tan
Y Y

X X
        

 
 

    2 2 2 2 2    X Y X Y   

 To find the relation among xa and a , a  consider the 

Fig.1.8. A component of a  on xa  is 

cosa   and the component of a   on xa  is 

sina   . 

Fig.1.7 Relation between cylindrical 
and cartesian coordinate system 

Fig. 1.6  Cylindrical coordinate 
system 
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Fig. 1.8 

 xa can be written as cos sinxa a a     

To find the relation among ya  and ,  a a   consider the Fig.1.9. 

The component of a on ya is sina   and the component of a  

on ya is cosa  . 

   sin cos ya a a    

The unit vector za of Cartesian coordinate system and cylindrical 

coordinate system is same  za = za  

We know that in Cartesian co-ordinate system  

    x x y y z zA A a A a A a   . 

 Substituting unit vectors, 

   cos sin sin cos    x y z zA A a a A a a A a                                    

   cos sin cos sinx y y x z zA A A a A A a A a          

    z zA A a A a A a       

 where   

   A = Ax cos  + Ay sin 

   A = – Ax sin  + Ay cos 

   Az = Az 

 i.e., in matrix form 

    

cos sin 0

sin cos 0

0 0 1

x

y

z z

A A

A A

A A

     
           
          





 
   

 The above matrix in terms of unit vectors is given by 

    


















































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Fig. 1.9 
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 or  
x x x x z

y y y y z

z z z z z z

A a a a a a a A

A a a a a a a A

A a a a a a a A

  

  

 

      
           
          

 

 
Note: 

1. Differential displacement or elemental length is 
       zdl d a d a dz a     

2. Differential or elemental normal area is  dS d dz a    

            d dz a  

             zd d a    

3. Differential or elemental volume is dv = d d dz 

1.4.3 Spherical Coordinate System 
When the given problem is of spherical symmetry, it is better to use spherical coordinate 
system to solve the problem instead of either Cartesian or cylindrical coordinate system. 

 In this system r, ,  are coordinates in which all are mutually orthogonal to each 
other. Where ‘r’ is the distance from origin to the point (where the vector is located).  is 
the co-latitude angle which is taken from z axis to the radial distance and  is same as in 
cylindrical coordinate system. 

 The spherical coordinate system is shown in Fig.1.10. Where ra is the unit vector 

along r, a  is the unit vector in increasing direction of  and a  is the unit vector in 

increasing direction of . 

 The dot product of any unit vector with itself gives 
unity  
  i.e.,  1r ra a   1a a        1a a    

 The dot product of any unit vector with the other unit 
vector gives ‘0’  

  i.e.,  0ra a   0a a             0ra a   

The cross product of unit vectors is: ra a a   , 

ra a a   , ra a a    

 Here   0  r < ,    0    ,  and     0    2. 

Fig. 1.10 Spherical 
coordinate system 
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 To convert from Cartesian to cylindrical or spherical co-ordinate system consider      
Fig. 1.11. 

 The component of r on z-axis is r cos , and the component of r on  is r sin. 

    z = r cos  

     = r sin  and  

 we know x =  cos & y =  sin 

From Cartesian to cylindrical, the conversion is                   
x =  cos, y =  sin, and z = z 

 To get conversion from Cartesian to spherical                
co-ordinate system, substitute  = r sin  in the above 
equations. 

    x = r sin cos,  

    y = r sin sin, and  

    z = r cos  

 From the above equations 2 2 2r x y z    

 From Fig.1.11 1tan
y

x
     

 
 

 and   
2 2

tan
   

 

x y

z z

  

     
2 2

1tan 


x y

z
  

relation between unit vectors of Cartesian and spherical co-ordinate systems is as follows: 
    xa = sin  cos  ra + cos  cos  a – sin  a  

    ya = sin  sin ra + cos  sin a + cos  a  

    za = cos  ra – sin  a  

Note: 

1. Differential displacement or elemental length is 

  sin  rdl dr a rd a r d a     

 

 

Fig. 1.11 
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2. Differential or elemental normal area is  

  2 sin rdS r d d a    

                sinr drd a   

               
rdrd a

 

3. Differential or elemental volume is dv = r2 sin drdd 

1.5 Electric Fields due to Continuous Charge Distributions 
So far we have discussed the electric field or force due to point charges.  Let us see the 
electric field due to continuous charge distribution along a line, on a surface and in a 
volume.  If the charge is distributed along a line the distribution can be represented with 
the line charge density L(C/m), which is shown in Fig.1.12(a). If the charge is distributed 
on a surface it’s distribution can be represented with the surface charge density s(C/m2), 
which is shown in Fig. 1.12(b).  If the charge is distributed in a volume it’s distribution 
can be represented with the volume charge density v(C/m3), which is shown in                         
Fig. 1.12(c).  

 

Fig.1.12  Charge distribution 

 The elemental charge dQ along a line can be written as  

  dQ = ldl, where dl is the elemental length. 

  So   l
l

Q dl    

    Electric field intensity due to line charge distribution is 

      
2

04
l

R
l

dl
E a

R







                                        …..(1.5.1) 

 The elemental charge dQ on a surface can be written as dQ = sds 
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     Q = s
S

ds  

  Electric field intensity due to surface charge distribution is 

      
2

04
s

R
s

ds
E a

R





  …..(1.5.2) 

 The elemental charge dQ in a volume can be written as dQ = vdv 

     Q = v
v

dv  

  Electric field intensity due to volume charge distribution is  

     
2

04
v

R
v

dv
E a

R







                                                   …..(1.5.3) 

1.5.1 Line Charge Distribution 

Consider a line charge distribution from A to B along Z-axis as shown in Fig.1.13. 

 

Fig.1.13  Finding E  due to line charge distribution 

 Let us find the electric field at point (x, y, z) due to line charge distribution along                   
Z- axis. We know electric field intensity due to line charge distribution as 

     
2

04
l

R
l

dl
E a

R







 

 where   R
R

a
R

 , dl = d z , 
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 Since the charge distribution has cylindrical symmetry, we use cylindrical coordinate 
system to obtain Electric field intensity. 

 From the Fig. 1.13 

       zR a z z a     

     
2

04
L

l

dz R
E

R R








 

        
 

  3 3/2220 04 4
zL L

l l

a z z adz dzR

R z z

      
   

 
 

  
   

       
 

  3/22204
zL

l

a z z adz

z z

    
  




 
 

From the Fig. 1.13 

     tan tan
    

z z
z z  


 

      22 'cos sec sec      R z z
R

       

   z  = OT –  z – z = OT –  tan 

   d z = 0 –  sec2 d 

     
 2

3 3
0

sec tan  

4 sec

zL

l

d a a
E




 
     

  
 

        

 22

3 3
0 1

sec sec cos sin

4 sec

zL
d a a





      
  




 
 

       

2

0 1

(cos sin )
4

L
za a d







  

 


 
 

 

       
 2 2

110

sin cos
4

L
za a

 
 

  
 
         
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   2 1 2 1

0

sin sin cos cos
4

L
za a

    
 
         

 which is electric field at point (x, y, z) due to line charge distribution from ‘A’ to ‘B’ 
along Z-axis.  If ‘A’ is tending to –  then 1 becomes /2 and ‘B’ is tending to  then 
2 becomes –/2.          

             0

sin sin cos cos
4 2 2 2 2

L
zE a a

    
 

                                           

           0

2

4
La 

 


  

     02
LE a


 


  …..(1.5.4) 

 which is the electric field at point (x, y, z) due to infinite line charge distribution along 
Z-axis. 

1.5.2 Surface Charge Distribution 
Consider an infinite sheet lying on XY plane which is perpendicular to Z-axis as shown in 
the Fig. 1.14. 

 

Fig. 1.14  Finding E  due to infinite sheet of charge 

Assume that the elemental surfaces are located on the sheet at ‘1’ and ‘2’ . 

Then the elemental charge dQ on elemental surface ds is dQ = s ds.   

 The elemental electric field at point (0, 0, h) due to the elemental surface ds is   
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2

04
R

dQ
dE a

R


  
 where 

     sdQ ds  and R
R

a
R

  

 Since the surface is infinite it has circular symmetry, hence we can use cylindrical 
coordinate system to obtain electric field intensity. 

 Here ds  lies on   and   axises, Hence ds d d    

  From Fig.1.14   

     za R ha  
 

      zR ha a   

    
3

04

dQ R
dE

R



 

         
 3/22 204

za hadQ

h


 

 


 
 

 Since the sheet is symmetry with respect to origin on XY plane, for every electric field 
due to elemental surface (for example elemental surface located at ‘1’) there will be an 
equal and opposite electric field due to the elemental surface on the other side(for 
example elemental surface located at ‘2’) in the direction of ‘  ’ (radial length), so finally 
when we add up the electric fields due to all the elemental surfaces on the sheet the 
electric field in the ‘’ direction will get cancelled. We will have only the electric field 
perpendicular to the sheet i.e., along Z-direction. 

 By integrating the above equation,
 3/22 204

zhaQ
E

h 


 
  

 Where   sQ d d  
 

     

    
 

2

3/22 2 00 0

1

4
z

s

ha
E d d

h






 


   

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 

2

3/22 20 0 0
4

s
z

h
E d d a

h




 
 
  

 
 

        
     3/22 2 2

0 0

1
2

4 2
s

z

h
h d a


  



 
 

 
 

        

 
3

12 2 2

0

0

1
32 2 1
2

s
z

hh
a




  

 
  

   
    

     

  1/22

0

1

2 2 1/ 2
s

z

hh
E a


     

    

     
02

s
zE a





  …..(1.5.5) 

 If we observe the above equation, the electric field is independent of the height ‘h’ i.e., 
the point can be considered at anywhere on the Z-axis. 

 The above equation can be generalized as  

     
02

s
nE a





  …..(1.5.6) 

 Where na is the unit vector which is perpendicular to the sheet.  

 Consider a parallel plate capacitor of equal and opposite charge on each plate, the 
electric field due to these parallel plates can be written as  

     
   

0 0 02 2
ss s

n n nE a a a
 

   
  

  …..(1.5.7) 

Problem 1.8 
A circular ring of radius ‘a’ carries a uniform charge L C/m and is placed on the XY 
plane with axis the same as the Z-axis. 

(a) Show that  
 3/22 2

0

0,0,
2

L
z

ah
E h a

h a




 
. 

(b)   What values of h gives the maximum value of E  

(c) If the total charge on the ring is Q.  Find E  as ‘a’ tends to zero. 
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Solution 
 (a) Here  dl = a d 

    dQ = L dl 

               = L ad 

    
2

04 r

dQ
dE a

R



 

 

Fig. 1.15 

    r
Ra
R

; 
2 3
ra R

R R
 

    
 3/22 204

za a hadQ
dE

a h





   
 

 

   dQ = L a d 

     daQ L   

when we add up electric fields, the electric field in   direction gets cancelled. 

    
 3/22 204

zhadQ
E

a h


 
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                             2/322
04 ha

ahda zL


  



 

            z
LzL a

ha

ah
d

ha

aha
2/322

0

2

0
2/322

0 24 



 



 

 

 

 (b)  0
dE

dh
  

    

 
 

3/22 2 2 2 1/2

32 20

3
.1 ( ) 2

2 0
2

L
z

a h h a h ha
a

a h

   


 
 

   (a2 + h2) – 3h2 = 0 

   a2 – 2h2 = 0 

   2h2 = a2 

    
2

a
h    

(c) When ‘a’ tends to zero, it becomes a point charge ‘Q’ located at origin and we 
have to find electric field at (0, 0, h) due to point charge ‘Q’ located at origin. 

      
2

04
z

Q
E a

h



 

Problem 1.9  
Derive an expression for the electric field strength due to a circular ring of radius ‘a’ and 
uniform charge density L C/m. Obtain the value of height ‘h’ along Z-axis at which the 
net electric field becomes zero. Assume the ring to be placed in X-Y plane. 

Solution 
Derivation is as in Problem. 1.8. 

     
 3/22 2

02

L
z

ah
E a

a h




 
 

Which can be written as 
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3/22
2

0 2
2 1

L
z

a
E a

a
h

h




 
  

   

 From the above equation we can say that for h = , the net electric field becomes zero. 

Problem 1.10  
A circular ring of radius ‘a’ carries uniform charge L C/m and is in XY-plane. Find the 
Electric field at point (0, 0, 2) along its axis. 

Solution 
Replacing ‘h’ in problem.1.8 with ‘2’ and solving, we get 

     
 

2

3/22
02 4


 

L
z

a
E a

a


 

1.5.3 Volume Charge Distribution 

Consider a sphere of radius ‘a’ as shown in the Fig.1.16.   

 Assume elemental volume dv is placed at point ( , , )r     .  The elemental charge dQ 

due to the elemental volume dv, whose volume charge density v is  

      dQ = vdv 

     
v

v

Q dv 
 

        

34

3v a 
  

 

Fig. 1.16  Finding E  due to volume charge distribution 
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 The elemental electric field dE  due to elemental volume dv is  

     
2

04
R

dQ
dE a

R


  

         
2

04
v

R

dv
a

R







 

 where      cos sinR za a a    

 Due to symmetry, the electric field in ‘’ direction will be zero.  Finally total electric 
field will be in Z-direction. 

     
2

0

cos
4

v
z z

v

dv
E E a

R





  


 

 In spherical coordinate system 

    sindv dr r d r d          

        2( ) sin    dv r dr d d    

     

 2

2
0

sin cos

4
v

z
v

r dr d d
E

R

    


    



 

 By applying cosine rule in the Fig.1.16  

    
2 2 2( ) 2 cosr z R zR       

      

 2 2 2

cos
2

r z R

zR


  


 
 Similarly 

    
2 2 2( ) 2 cosR z r zr        

      
 22 2

cos
2

z r R

zr


 
 


 …..(1.5.8) 

 On differentiating equation (1.5.8), we get 

     

2
sin

2

R
d dR

zr
    

  

     
sin

R
d dR

zr
   

   



 BASICS OF ELECTROMAGNETICS AND TRANSMISSION LINES 26 

 Here as  varies from 0 to ,  R changes from z r  to z r respectively 

 Substituting cos  and sin d    in zE  equation, we get  

    
2 2 2 2

2
2

0 0 0

1
 

4 2
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2
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

 z
Q

E a
z

 …..(1.5.9) 

 The electric field due to a sphere of radius ‘a’ with volume charge density v is similar 
to the electric field due to a point charge which is placed at origin. 

Problem 1.11 
A circular disk of radius ‘a’ is uniformly charged with s C/m2.  If the disk lies on the      
Z = 0 plane with it’s axis along the Z-axis 

(a) Show that at point (0, 0, h), 
 1/22 20

1
2

 
      

s
z

h
E a

h a


  

(b) From this derive the E due to an infinite sheet of charge on the Z = 0 plane. 

(c) If a << h, Show that E  is similar to the field due to a point charge. 
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Solution 

 

Fig. 1.17 

(a)   
2

04
r

dQ
dE a

R



 

     dQ = s ds;   ds = d. d,   

                  = s d d 

     za R ha   

      zR ha a  

     
 
 3 22 204




 


zs

s

ha ad d
E

h

   
 

 

     
 

2

3/22 20 0 0
4

a
s

z
h

E a d d
h

  
 


 

 
 

            
   3/22 2 2

0 0

1
2

4 2

a
s

za h h d


  



 

 
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 
3

12 2 2

0

0

1
32 2 1

2

a

s
z

hh
a




 
 

    
    

             
    1/2 1/22 2 2

0

2
4

s
z

h
a h a h

          

          
 2 2

0

1 1

2
s zha

hh a


 

         

     
 1/22 20

1
2

s
z

h
E a

h a


 
        

 (b)  a  ;      

     
02

s
zE a





 

(c)  when a<< h, the volume charge density becomes a point charge located at origin, 

     
2

04
z

Q
E a

h



 

Problem 1.12 
The finite sheet 0 < x < 1, 0 < y < 1 on the Z = 0 plane has a charge density                          
s= xy (x2 + y2 + 25)3/2 nC/m2. 

Find  

(a) the total charge on the sheet 

(b) the electric field at (0, 0, 5) 

(c) the force experienced by a – 1 nC charge located at (0, 0, 5) 

Solution 
(a)  dQ = s ds 

     Q = s
s

ds  
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            =  
1 1

3/22 2

0 0

25
 

  
x y

xy x y n dx dy  

                 =  
1 1

3/22 2 2

0 0

1
25 ( )

2
x y

n x x y d y dx
 

    

                 =  
1 15/22 2

00

2 1
25

5 2
x

n x x y dx


      

                 =    
1

5/2 5/22 2 2

0

1
26 25 ( )

5 2
x

n
x x d x



       

                 =    
17/2 7/22 2

0

1
26 25

5 7

n
x x     

 

                 =      7/2 7/2 7/2
27 2 26 25

35

n      

                 =  102275.868136 179240.733942 78125
35

n
   

    Q = 33.15 nC 

(b)  Electric field at (0, 0, 5) 

     
2

04
s

R

ds
dE a

R







;         on Z-plane point is (x, y, 0)   

       0,0,5 , ,0 5x y zR x y xa ya a       

     

 2 3 3
2 2

5

25

  
 

 

x yR z
a xa ya aR

R R x y
 

     
3

04
 


sds R

E
s R




 

        

 
 

3/22 2 91 1

3
2 200 0

25 10 5

4
25

x y z

x y

xy x y xa ya a
dx dy

x y




 

 
      

  
    

 

 
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1 1
2 2 9

0 0 0

1
5 10

4 x y z
x y

x ya xy a xya dx dy




 

    
  

 

      

1 1 11 2 3 2
2 9

0 0 0 0 0

1
5 10

4 2 3 2x y z
x

y y y
x a x a x a dx






     
               


 

     

1 2
9

0 0

1 5
10

4 2 3 2x y z
x

x x
a a xa dx






    
 

 

     

1 1 13 2 2
9

0 0 0 0

1 5
10

4 6 6 2 2x y z
x x x

a a a



      
                    

    

9

0

1 1 1 5
10

4 6 6 4x y za a a


          

    

9 91 1 5
9 10 10

6 6 4x y za a a           
    1.5 1.5 11.25   x y za a a  V/m 

(c)   F = qE  

       1 1.5 1.5 11.25      x y znC a a a   

       = 1.5 1.5 11.25x y za a a  nN 

Problem 1.13 
A square plane described by –2 < x < 2, –2 < y < 2, z = 0 carries a charge density                 
12|y| mC/m2. Find the total charge on the plate and the electric field intensity at (0, 0, 10) 

Solution 

  dQ = s ds 

  Q = s
s

ds  

     = 
2 2

3

2 2

12 | | 10
x y

y dxdy

 

   
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     = 
2 0 2

3

2 2 0

10 12 12
x y y

y dy y dy dx

  

 
  

  
    

     = 

0 22 2 2
3

2 2 0

10 12 12
2 2

x

y y
dx

 

   
    

   
  

     =    
2

3

2

10 12 2 12 2
x

dx



  

     = 
2

3 3

2

48 10 48 10 4 192 mC
x

dx 



      

     
2

04
s

R

ds
dE a

R







;    0, 0, 10 , ,0 10     x y zR x y xa ya a  

     
3

04
sds R

dE
R





  

     
 


s

s

R

Rds
E

3
04



 

     
 

2 2 3

3
2 202 2

1012 | | 10

4
100

x y z

x y

xa ya ay
dx dy

x y




 

 
   

  
    

 

 
   

   
   

2 22 2
6

3/2 3/22 2 2 22 0

0 10 10
9 10 12

2 100 100 

                  

x y z x y z

x y

xya y a ya xya y a ya
dy dy dx

y x y x y
 

 Replacing y with –y in the first integral and simplifying  

    
 

2 2
6

3/22 2
2 0

2 20
108 10

100

x z

x y

xya ya
E dy dx

x y 

 
        

 
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   

2 2 2
3/2 3/26 2 2 2 2

2 0 0

108 10 2 100 10 2 100x z
x y y

x ya x y dy ya x y dy dx
 

  

 
        

  
  

  

   
2 2 2

3/2 3/26 2 2 2 2 2 2

2 0 0

108 10 100 ( ) 10 100 ( )x z
x y y

x a x y d y a x y d y dx
 

  

 
        

  
  

   
2 21/2 1/22 2 2 22

6

2
0 0

100 100
108 10 10

1/ 2 1/ 2x z
x

x y x y
x a a dx

 



                           


   

        2
1/2 1/2 1/2 1/26 2 2 2 2

2

108 10 2 104 2 100 20 104 100
   



                  x z
x

x x x x a x x a dx

 

     1/2 1/22 2104 & 100 areoddfunctions
 

 x x x x  

   1/2 1/22 2and 104 & 100 are even functionsx x
 

   

   

0

0 if isodd

( )
2 ( ) if iseven


 



 
a

a

a

f

f x dx
f x dx f

 

  E = –20 × 108 × 106 × 2

 

2

2 2 2
20

1 1
 

10104

 
 

 
 

 

 z
x

a dx
xx

 

     

2

6 1 1

0

40 108 10 sinh sinh
10104

z
x x

a            
     

      6 1 12 1
40 108 10 sinh sinh

5104
                

za  

      640 108 10 0.19488 0.19869     za  

  E = 16.46 za  MV/m. 
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1.6 Electric Flux Density or Displacement Density  
It is also called Electric displacement and to understand the concept of Electric flux 
density, one needs to know about line integral, surface integral and electric flux, which 
are explained as follows. 

1.6.1 Line Integral 

If a vector A  is passing through a line as shown in the Fig.1.18.  
The line integral can be defined as the tangential component of 
vector A  along the line, which can be written as 

    
cos .

L L

A dL A dL  
 

 If a line is closed curve then the above integral can be 

written as .
L

A dl which is called as contour line integral.   

1.6.2 Surface Integral 

Similarly, if a vector A  is passing through a surface as shown in Fig. 1.19 

The flux () of a vector A   or surface integral can be written as  

    
cos

s

A ds  
 

        = .
s

A ds   …..(1.6.2.1) 

 If it is closed surface then the above integral  can be be  

written as .
s

A ds which is called as contour surface integral. 

1.6.3 Electric Flux  
We know that electric field intensity depends upon the medium in which it passes.  Let us 
define a new vector D such that it is independent of medium i.e.,  

 0D E .  Then the flux of D , i.e., .
S

D ds  , where  is the electric flux.  Which 

can be defined according to SI units as one line of flux originates from +1 Coloumb and 
terminates at –1 Coloumb. So the unit of Electric flux is also Coloumb and D   is the 
electric flux density whose unit is columb/m2. 

Fig. 1.18 Evaluation of  
line integral 

Fig. 1.19  Evaluation of 
surface integral 
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 The formulae for D  can be obtained by multiplying the formulae of E  with 0.  

 Electric flux density due to a point charge 
24
R

Q

aQ
D

R
  …..(1.6.1) 

 and Electric flux density due to an infinite line with line chare density 

        2
L

L Lis D a






                    (1.6.2) 

Problem 1.14 
Determine D  at (4, 0, 3) if there is a point charge –5 mC at (4, 0, 0) and a line charge 
3 mC/m along the Y-axis 

Solution 

24
R

Q

aQ
D

R
   

 where,      4,0,3 4,0,0 0,0,3R     

            
 

3

3 2

3 105

4 9


 za


 

3 3
33 10 5 105

0.139 10
4 27 36

z z
z

a a
a

 
  

      C/m2 

    a



 

       4,0,3 0,0,0 4 3x za a        

    2
L

LD a




 

              

3 4 33
10

2 25
x za a


 

 
 

              = 0.24 0.18x za a  mC/m2 

    2240 42 μC/mQ L x zD D D a a     

 

 

Fig. 1.20   
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1.7 Divergence of a Vector 

Divergence: The divergence of a vector A  at a given point is the outward flux in a 
volume as volume shrinks about the point.  It can be represented as  

 
0

   

lim S

v

A ds

div A A
v 



   



 …..(1.7.1) 

 Where  is the del operator or gradient operator.   can be operated on a vector or 
scalar.  It has got different meanings when it is operating on a vector and scalar.  If it is 
operating on a scalar V then it can be written as V which is called as scalar gradient.  If 
it is operating on a vector A with dot product then it is .A and it is called as divergence 
of vector A and If it is operating on a vector A  with cross product then it is A and it 
is called as curl of vector A . 

 

Fig. 1.21  Flux lines 

 Physically divergence can be interpreted as the measure of how much field diverges or 
emanates from a point.  Let us consider the Fig.1.21(a)  in which field is reaching to the 
point.  Divergence at that point is –Ve or it is also called as convergence.  In Fig.1.21(b) 
the field is going away from the point, therefore divergence is +Ve.  In Fig.1.21(c) some 
of the flux lines or field lines are reaching to the point and same number of field lines are 
leaving from the point hence the divergence is zero.  

 To determine .A  let us consider the volume in 
Cartesian co-ordinate systems as shown in the Fig.1.22. In 
Cartesian co-ordinate system, the vector A  with it’s unit 
vectors and components along X, Y, Z is  

   x x y y z zA A a A a A a    

 Assume the elemental volume V = xyz.  The flux 
of a vector A  on Y-axis that enters in to the left side of 
the volume is Ayxz. The flux which is leaving from 
right side of the volume on Y-axis can be written as             
(Ay + Ay) xz. This equation can be modified as Fig. 1.22  Evaluation of . A  
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y
y y

y

A
A x z

 
      

. So the total flux on Y-axis is Ayxz + 



yA

y
xyz  – Ayxz 

         = 
Ay

y




 xyz 

 Similarly on X and Z-axises also. 

 The entire flux in all the directions is yx z
AA A

x y z
x y z


  

         
.  We know 

s

A ds  
 

     

ys x z

A ds
AA A

v x y z


 

  
   


 

 Applying Limit on both sides 

     
0 0

ys x z

v v

A ds
AA A

Lim Lim
v x y z   


 

  
   


 

       

yx z
AA A

A
x y z

 
   

    
Conclusion 

The divergence of a vector results a scalar.  The divergence of a scalar has no meaning 

     
  . .A B A B      

 

       .VA V A A V     
 

     
 zzyyxx

zyx aAaAaA
z

a

y

a

x

a
A 



















 .
 

       z

A

y

A

x

A zyx














  

 So from the above equation, the gradient operator is 

     yx z
aa a

x y z

 
   

  
    …..(1.7.2) 

              



 STATIC ELECTRIC FIELDS 37

 and the scalar gradient is 

     x y z
V V V

V a a a
x y z

  
   

  
 

1.7.1 Divergence Theorem 

Statement 

This theorem states that the outward flux flows through a closed surface is same as the 

volume integral of divergence of a vector. 

    
vs

  A ds A dv      ….. (1.7.3) 

Proof: 

 Consider a vector x x y y z zA A a A a A a   . 

 Similarly x x y y z zds ds a ds a ds a    and we know that divergence of vector A i.e.,  

    

 
    

  
yx z

AA A
A

x y z  

 Assume dv = dx dy dz  

 consider the volume integral  

    yx z

v v

AA A
Adv dx dy dz

x y z

  
        
     

 The second term in the above integral can be written as 

    
  

    
      y y

y y
v s s

A dA
dx dy dz dy dx dz A ds

y dy
 

 where dsy = The elemental surface on XZ plane. 

 Similarly the first and third terms can be written as  

      and  x x z z
s s

A ds A ds    
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      
v

Adv ( )  x x y y z z
s

A ds A ds A ds  

                  =            x x y y z z x x y y z z
s s

A a A a A a ds a ds a ds a A ds   

 Hence proved 

Formulae for Gradient 

     in Cartesian co-ordinate system 

    x y z
V V V

V a a a
x y z

  
   

  
 …..(1.7.4) 

 in cylindrical co-ordinate system 

    
1

 
  

   
    z
V V V

V a a a
z

 …..(1.7.5) 

 in spherical co-ordinate system 

    
1 1

sinr
V V V

V a a a
r r r   

  
   

  
 …..(1.7.6) 

Problem 1.15 
Find the gradient of the following scalar fields 

(a) V = e–z sin 2x cos hy   

(b) U = 2z cos2 

(c) W = 10r sin2 cos 

Solution 
 (a) Since given V is in x and y, consider gradient in Cartesian co-ordinate system 

   

  
   

  x y z
V V V

V a a a
x y z  

          =  cos cos2 2 sin2 sin sin2 cos 1z – z z
x y ze h y x a e x h y a x h y e a     

          = 2cos2 cos sin2 sin sin2 cos   z z z
x y zx h y e a x h y e a x h y e a  
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 (b) Since given U is in , z and , consider gradient in cylindrical co-ordinate system 

   

1  
   

   z
U U U

U a a a
z     

            2cos2 2 sin2 2 cos2 zZ a z a a           

 (c) Since given W is in r,  and , consider gradient in spherical co-ordinate system 

   

1 1

sin

  
   

  r
W W W

W a a a
r r r     

            
 2 210 1

10sin cos 2sin cos cos 10 sin sin .
sin

     
 

r
r

a a r a
r r       

  
 Formulae for Divergence of a Vector 

     in Cartesian co-ordinate system 

    

 
    

  
yx z

AA A
A

x y z  …..(1.7.7) 

 in cylindrical co-ordinate system 

    
   1 1  

    
  

z
A A A

A
z

 

   
  …..(1.7.8) 

 in spherical co-ordinate system 

    
   2

2

sin1 1 1

sin sin

 
    

  
rr A AA

A
r r rr


   

 …..(1.7.9) 

Problem 1.16 
Determine the divergence of the following vector fields. 

(a) 2 3 2 3
x y zP x yz a x zy a xy z a    

(b) 2sin cos zQ a z a z a        

(c) 
2

1
cos sin cos cosrT a r a a

r
        

(d) 3 2 2sin sin 2 cos cosrN r a a r a        

Solution 

(a) Given 2 3 2 3
x y zP x yz a x zy a xy z a    
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 
    

  
yx z

PP P
P

x y z  
             = 2xyz + x3z + 3xy2z2 

(b) Given  2sin cos zQ a z a z a        

    
   1 1 z

Q Q Q
Q

z
 

   

  
    

  
 

              1 1
2 sin 0 cos  

 
    

                        = 2sin + cos 

(c) Given 
2

1
cos sin cos cosrT a r a a

r
        

    
   2

2

sin1 1 1

sin sin

rr T TT
T

r r rr

 
    

  


   
 

        2

1 1 1
0 2sin cos cos 0

sin sin
r

r rr
    

 
 

     = 2 cos  cos 

(d) Given 3 2 2sin sin 2 cos cosrN r a a r a        

    
   2

2

sin1 1 1

sin sin

rr N NN
N

r r rr


   

 
    

  
 

               4 2
2

1 1 1 sin3 1
5 sin sin cos 0

sin 2 3 sin
r

r rr

  
 

      
 

 

               2 2 21 sin 3
5 sin cos cos

2 6 sin
r

r r

  


    

1.8 Gauss’s Law and Applications 

1.8.1 Gauss Law 
Gauss law states that the flux flowing through a closed surface is equivalent to the charge 
enclosed by that surface.  
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 According to the statement   = Qenc   …..(1.8.1) 

Where  is the flux flowing through a closed surface. Qenc is the charge enclosed by the 
closed surface. 

 We know  
S

D ds    

 The charge enclosed within a volume or closed surface whose volume charge density 
v is  

       v
v

Q dv  

 According to Gauss’s law we can write as  

     v
v

D ds dv
s

      …..(1.8.1a) 

 According to divergence theorem we can write 

     D ds D dv
s v

      …..(1.8.1b) 

 By comparing the volume integrals in equations (1.8.1a) and (1.8.1b) we can write as          

     Dv     …..(1.8.2) 

 which is the Maxwell’s first equation for electrostatics (time in-varying fields) 

 Consider unsymmetrical distribution as shown in              
Fig. 1.23a. The flux flowing through the closed surface 
shown in Fig. 1.23a is   = 5 – 2 = 3 nC.  The charge 
enclosed by the surface is Q = 3 nC.   

 Consider an empty closed surface as shown in                  
Fig. 1.23b. Flux flowing through the closed surface shown 
in Fig. 1.23b is  = 0 and hence charge enclosed by the closed surface is zero. 

Conclusion 

Gauss law holds good even if the charge distribution is unsymmetrical as shown in 
Figs.1.23a & b. But to find either orE D , the charge distribution must be symmetrical.  It 

can be rectangular symmetry or cylindrical symmetry or spherical symmetry.  

Fig. 1.23 Closed surface 
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 If the continuous charge distribution depends on either ‘x’ or ‘y’ or ‘z’, then the 
distribution will have rectangular symmetry. So to find either orE D , we can use 

rectangular co-ordinates.  

 If the continuous charge distribution depends only on  and is independent of  and z 
then the distribution will have cylindrical symmetry. So, to find either orE D , we can use 

cylindrical co-ordinates. 

 If the continuous charge distribution depends on ‘r’ and is independent of  and  then 
the symmetry it will have is spherical. So to find either orE D , we can use spherical                     

co-ordinates. 

1.8.2 Applications of Gauss’s Law – Point Charge 

We need to find D  at any point surrounded by Q. Assume that the point charge is located 
at origin, then a sphere can be assumed, that surrounds the point charge as shown in 
Fig.1.24, which shows the problem has spherical symmetry and spherical coordinate 
system can be used to obtain D . Let us find out D  at point ‘P’ due to a point charge. 

 The electric flux density D  is normal or perpendicular to the spherical surface.               
i.e., r rD D a .   

 The elemental surface ds lies on   and  axises. i.e., ds is normal to r axis. 

   
2sin rd s r d d a    

 Flux flowing through the sphere is 

    .D ds
s

    

   
2

2

0 0

. sinr r rD a r d d a
 

 

   
 

                                

    
2

2

0 0

sin
 

  rD r d d
 

 

     

        
2

2
0

0
rD r cos d



 






   

     22 2 rD r   

    
24 rr D   

Fig. 1.24 Gaussian surface 
about a point charge 
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 The charge enclosed by the sphere is 

    encQ Q  
 According to Gauss’s law 

     encQ  

   24 rQ r D  

    
24r

Q
D

r
  

 or    
24

Q
D ar

r
  

 and 
2

04
r

Q
E a

r



 

 Which is similar to the formula derived by using Coulomb’s law 

1.8.3 Applications of Gauss’s Law - Infinite Line Charge 

Let us consider that charge is distributed along Z-axis with the charge density L C/m.  
Since the charge distribution is along a line, a cylinder of length ‘l’ can be assumed that 
surrounds the line charge distribution as shown in Fig.1.25. Hence it is better to consider 
cylindrical coordinate system to find either orE D  at a point ‘p’ on the surface of the 
cylinder. 

 

Fig. 1.25 Gaussian surface about an infinite line charge 

 Here D  the electric flux density is perpendicular to the surface of the cylinder i.e., it 
will be in ‘’ direction in cylindrical co-ordinate systems. 
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    D D a    

 The elemental surface ds lies on   and Z axises 

      d s d dz a   

 Flux flowing through the cylinder can be written as 

    
S

D ds    

    
2

0 0

.
l

z

D a d dza


 


   
 

    

    
2

0 0

l

z

D dz d





  
 

                                                                               

    2D l      …..(1.8.3) 

  The charge enclosed by the cylinder is 

    enc LQ l                                                                              …..(1.8.4) 

 According to Gauss’s law 

     encQ         

 Substitute  and encQ  from equations (1.8.3) and (1.8.4) in the above equation 

    
2Ll D l 

 

    
2

LD 



 

    
2

LD a 



  and 

    
0 02

LD
E a 

  


 
              …..(1.8.5) 

 Which is similar to the formula derived by using Coulomb’s law. 

Problem 1.17 

Given 2cos zD z a   C/m2.  Calculate the charge density at (1, /4, 3) and the total 
charge enclosed by the cylinder of radius 1m with   –2 <  z < 2 m. 
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Solution 
We know 

      v D  

 in cylindrical co-ordinate system the divergence can be written as 

    
   1 1 z

v

D D D

z
 


   

  
  

  
 

    z
v

D

z
 




   since D  has only Z- component 

    2
v cos    

        2 1
1 cos1,  , 3 4 24

 
 
 

   
 

v
    C/m3 

 change enclosed = Qenc = v
v

dv   where dv =  d d dz 

    
1 2 2

2

0 0 2

cos
  

   enc
z

Q d d dz


 

      

                
1 2

2 2

0 0

4cos d d
 

  


 

     

                 
1

2

0

1 1
4 2 sin 4

2 2
d



    


     

                 

11 3
2

0 0

4
4 4 C

3 3
d



    


 
   

 
  

Problem 1.18 

If  22 4x y zD y z a xy a x a     C/m2.  Find  

(a) the volume charge density at (–1, 0, 3) 

(b) the flux through the cube defined by 0 < x < 1, 0 < y < 1, 0 <  z  < 1 

(c) the total charge enclosed by the cube 



 BASICS OF ELECTROMAGNETICS AND TRANSMISSION LINES 46 

Solution 
According to Maxwell’s I equation 

    v D    

    

 
  

  
yx z

v

DD D

x y z


 
         = 0 + 4x +0 

         = 4x C/m3 

(a)     1,0,3
4 1 4v 

    C/m2 

(b)  & (c)     v enc
v

dv Q    

     

1 1 1

0 0 0

4
  

   
x y z

x dx dy dz

 

     

 
1 1

0 0

4 1
 

  
x y

x dx dy

 

     
 

1

0

4 1


 
x

x dx
 

    

12

0

4
4 2

2 2

 
   

 

x
C

 

Problem 1.19 

Given the electric flux density 20.3 rD r a  nC/m2, in free space. Find  

(a) E at point  (2, 25o, 90o) 

(b) the total charge within the sphere r = 3 

(c) the total electric flux leaving the sphere r = 4 

Solution 

 (a)  Given 20 3 rD . r a nC/m2 

      
2

12
0

0.3

8.854 10
rr aD

E  
 
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      
  11 9

o o 122  25 90

0 3 4
1 355 10 10 135 5

8 854 10


    
 r r r, ,

.
E a . a . a

.
 V/m 

(b)  we know v D     

    
   2

2

sin1 1 1

sin sin

rr D DD

r r rr


   

 
  

  
 =   3

2

1
0 3 4. r

r
n = 1.2r n 

     Also known v
v

Q dv   where dv = r sin d r d dr 

           =  r2 sin d d dr 

                
3 2

2

0 0 0
1.2 sin

r
Q r n r d d dr

 

 
  

  
     

                   
3

3

0 0

1.2 sin 2
r

n r d dr




  
 

    

                  
3

3
0

0

2.4 cos
r

n r dr
 



   

                  
34

0

2.4 2 305.4  nC
4

r
n

 
  

 
 

(c) 
4 2

3

0 0 0

1 2 sin
r

Q . nr d d dr
 

 

  
  

     

   Upon simplifying, we get 

   Q = 965.09 nC 

1.8.4 Applications of Gauss’s Law - Infinite Sheet of Charge 

Consider an infinite sheet with surface charge density s C/m2 is lying on XY plane as 
shown in the Fig.1.26. Since Electric flux density D  is always normal to the surface, we 
need to find Electric flux density at any point on either side of the sheet. Since the charge 
distribution depends on X and Y axeses, rectangular coordinate system can be used to 
find D  at any point on either side of the sheet. 

 Hence Consider a rectangular box that is cut symmetrically by the sheet as shown in 
the Fig.1.26. As D  is perpendicular to the sheet it will have components only in the               
Z-direction i.e., components on X and Y-directions are zero. Let us find out D  as 
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Fig.1.26 Gaussian surface about an infinite sheet of charge 

 Flux flowing through the rectangular box is  

    
s

D ds    

 Here &z z zD D a ds dsa   

 The flux due to bottom and top surfaces of rectangular box exists, but the flux due to 
the other surfaces of box is zero. 

  above equation becomes  

    z z z
s

D a dsa    

    

 
  

  
 z

top bottom

D ds ds
 

 Assume that the area of the elemental surface as A, then 

     zD A A    

    2 zAD  

 Charge enclosed by the rectangular box is  

    
 enc sQ ds

 

    
 enc sQ ds

 

    enc sQ A  
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 According to Gauss’s law 

     encQ  
    2s ZA AD   

    2
 s

zD


 

    
2

s
zD a


   

 and 
0 02

s
z

D
E a


 
 

 …..(1.8.6) 

 which is similar to the formula derived by using Coulomb’s law. 

1.8.5 Applications of Gauss’s Law - Uniformly Charged Sphere 

Case I: (r < a) 

Consider a sphere of radius ‘a’, which has uniform charge distribution with volume 
charge density v C/m3 as shown in Fig.1.27.  Since it is sphere, to find D  at any point in 
side the sphere, consider a sphere of radius ‘r’ where r < a and is assumed as Gaussian 
surface. Hence spherical co-ordinate system can be used to find D . 

The charge enclosed by the sphere of radius ‘r’ is  

   enc v
v

Q dv   

    enc v
v

Q dv   

    

2
2

0 0 0

sin
  

   
r

v
r

r d d dr
 

 

   
 

           = 34

3v r   

 The flux flowing through the spherical surface  

    
s

D.ds     

 As the flux density is normal to the surface it will have components only in ‘r’ 
direction. 

Fig. 1.27 Gaussian surface for 
uniformly charged sphere 
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        = 
2

2

0 0

sin
 
 rD r d d
 

 

    

        = Dr 4 r2  

 According to Gauss’s law charge enclosed = flux flowing through the surface                   
i.e., Qenc =  

     v 
4

3
 r3  = Dr 4 r2  

    3
 v

rD r


 

    
3

v
rD r a


     

  and  
0 03

v
r

D
E r a


 
 

                         …..(1.8.7) 

Case II  (r > a) 

To find the electric flux density out side the sphere of radius ‘a’, consider a sphere of 
radius ‘r’, which is treated as Gaussian surface as shown in Fig.1.28. 

Charge enclosed by the sphere of radius ‘r’ is  

      
 enc v

v

Q dv
 

     
 enc v

v

Q dv
 

       

2
2

0 0 0

sin
  

   
a

v
r

r d d dr
 

 

   
 

      = 34

3v a   

 Flux flowing through the surface  

     
2

2

0 0

sinrD r d d
 

 

   
 

     

       = Dr 4 r2 

   Qenc =   according to Gauss’s law 

      v 
4

3
 a3  = Dr 4 r2  

Fig. 1.28 Gaussian surface 
for uniformly charged sphere 
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3
23

 v
rD a

r



 

     
3

23
v

r

a
D a

r


   

              and   
3

2
03

v
r

a
E a

r





  

     

3

2
0

4

3 4



v

r

a
E a

r

 
   

     
2

04


 r
Q

E a
r  …..(1.8.8) 

which is similar to the formula derived by using Coulomb’s law. 

Problem 1.20 
A charge distribution with spherical symmetry has density  

     

0 , 0

0,

   
 

v

r
r R

R
r R




 

Determine E everywhere 

Solution: 
Replace ‘a’ with ‘R’ in Fig.1.27, Then 

Case I: Inside the sphere of radius ‘R’ 

The charge enclosed by the sphere of radius ‘r’ is enc v
v

Q dv   

     
0 enc

v

r
Q dv

R


 

      

2 3

0
0 0 0

sin
  

   
r

r

r
d d dr

R

 

 

   
 

   

2
30

0 0 0

sin
  

   
r

r

d d r dr
R

 

 


  
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4
04

4


r

R

 

 

      

40encQ r
R




 

 The flux flowing through the spherical surface  

     
 

s

D.ds
  

 As the flux density is normal to the surface it will have components only in ‘r’ 
direction. 

      = 
2

2

0 0
rD r sin d d

 

 

  
 
   

      = Dr 4 r2  

 According to Gauss’s law charge enclosed = flux flowing through the surface i.e.,   
Qenc =  

      

4 20 4 rr D r
R


 

  

     

20

4
rD r

R



 

     20

4 rD r a
R


    

   and  20

0 04
 
  r
D

E r a
R


       

Case II: Outside the sphere of radius ‘R’ 

Charge enclosed by the sphere of radius ‘r’ is  

      
 enc v

v

Q dv
 

     
0 enc

v

r
Q dv

R


 

            

2
30

0 0 0

sin
  

   
R

r

r d d dr
R

 

 


  

 

            = 3
0 R   

 Flux flowing through the surface  
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2

2

0 0
rD r sin d d

 

 

   
 

     

             = Dr 4 r2 

 Qenc =   according to Gauss’s law 

     0  R3 = Dr 4 r2  

     

3
0

24
r

R
D

r



 

     
3

0
24

r

R
D a

r


   

    and 
3

0
2

04
r

R
E a

r





  

 

Problem 1.21 
 A sphere of radius ‘a’ is filled with a uniform charge density of v  C/m3. Determine the 
electric field inside and outside the sphere. 

Solution 
The answer is as derived in section 1.8.5 case-I(inside the sphere) and case-II(outside the 
sphere). 

Problem 1.22 
A charge distribution in free space has v = 2r nC/m3 for 0 < r < 10 m and ‘0’ otherwise.  
Determine E  at r = 2 m and r = 12 m 

Solution 
Replace ‘a’ with ’10 m’ in Fig.1.27, Then 

At  r = 2 m 

The charge enclosed by the sphere of radius ‘2m’ is enc v
v

Q dv   

    2enc
v

Q rndv   

     

2 2
3

0 0 0

2 sin
  

   
r

n r d d dr
 

 

  
 

     = 32  nC  
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 The flux flowing through the spherical surface  

    
 

s

D.ds
  

 As the flux density is normal to the surface it will have components only in ‘r’ 
direction. 

     = 
2

2

0 0
rD r sin d d

 

 

  
 
   

     = Dr 16  

 According to Gauss’s law charge enclosed = flux flowing through the surface i.e.,   
Qenc =  

      32 n = Dr 16  

   2rD n  

   2 rD n a  and 

    
0

226 V m 
 r
D

E a   

At r = 12 m 

 Charge enclosed by the sphere of radius ’12 m’ is  

    
 enc v

v

Q dv
 

    
2 enc

v

Q rndv
 

     

2 10
3

0 0 0

2 sin
  

   
r

n r d d dr
 

 

  
 

     = 20 C   

 Flux flowing through the surface  

    
2

2

0 0
rD r sin d d

 

 

   
 

     

       = Dr 4 122 

 Qenc =   according to Gauss’s law 



 STATIC ELECTRIC FIELDS 55

    20  = Dr 4 122  

   0.0347rD   

   0.0347 rD a  and 

   3.92 k V m rE a   

1.9 Electric Potential 

To find electric field intensity E , so far we have used Coulomb’s law if the charge 
distribution is of any type and Gauss’s law if the charge distribution has symmetry.  
Another method to find electric field intensity is by using electric potential which is a 
scalar.  So obviously this method is easier when compared with the other two methods. 

 If we move a point charge from A to B in an electric field having electric field 
intensity E  as shown in Fig.1.29.  

 

Fig. 1.29 Displacement of point charge in an electrostatic field 

 The elemental work done to move a point charge by an elemental distance dL is  

     dW F dL      

 The total work done in moving a point charge from A to B is   

    
B

A

W F dL    

 -ve sign indicates work is being done by an external agent 

 We have F QE   

 then  
B

A

W QE dL    
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  

B

A

W Q E dL
 

    
B

A

W
E dL

Q
    

 which is work done per unit charge and it is also called potential difference VAB. 

We know that electric field intensity E due to a point charge is 
2

04
r

Q
a

r 
  

and elemental length rdL dra  

 then   
2

04

rB

AB r r
rA

Q
V a dr a

r
 

  

Where rA and rB are position vectors of point A and point B from origin 

    0

1 1

4

 
    

AB
B A

Q
V

r r
 

           
0 04 4 B A

B A

Q Q
V V

r r 
   

 
 …..(1.9.1) 

 Where VB and VA are absolute potentials at point B and A respectively.  From the 
above equation VAB is the potential at B with reference to the potential at A.   

 If A is at  then VA = 0.  

 The above equation can be generalized for a potential (V) at any point having distance 
‘r’  as 

    
04

Q
V

r



   (Here Q is located at origin)  …..(1.9.2) 

 If the point charge is placed at a distance r , then the electric potential at point ‘r’ can 
be written as  

    
04

Q
V

r r


 
 …..(1.9.3) 

 If we have ‘n’ number of point charges Q1, Q2, …,Qn with position vectors r1, r2, …., 
rn respectively, then the potential at ‘r’ is  

    1 2

0 1 0 2 0

....
4 4 4

n

n

QQ Q
V

r r r r r r  
   

     
    …..(1.9.4) 
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 For line charge distribution with charge density L, in the above equation Q can be 
replaced by LdL .   

 For surface charge distribution with charge density s, in equation (1.9.4), Q can be 
replaced by dss .   

 Similarly Q can be replaced by vdv , For volume charge distribution with charge 

density v . 

Problem 1.23 

Two point charges – 4 C and 5 C are located at (2, –1, 3) and (0, 4, –2) respectively.  
Find the potential at (1, 0, 1).  Assuming ‘0’ potential at infinity. 

Solution 

    

1 2

0 1 0 24 4

Q Q
V

r r r r 
 

   
    

    

6 6

0 0

4 10 5 10

4 (1,0,1) (2, 1,3) 4 (1,0,1) (0,4, 2)
V

 

   
 

     
 

 Simplifying, we get 

    V = –5.872 kV 

Problem: 1.24 

A point charge 3 C is located at the origin in addition to the two charges of previous 
problem.  Find the potential at (–1, 5, 2).  Assuming V() = 0. 

Solution: 

    r – r1 = 1 25 4   = 5.478 

    r – r2 = 9 36 1   = 6.782 

    r – r3 = 16 1 1   = 4.243 

    

3 3 33 10 4 10 5 10
9

5 478 6 782 4 243
V

. . .

    
    
   

         = 10.23 kV 

Problem 1.25 

A point charge of 5 nC is located at the origin if V = 2 V at (0, 6, –8) find   
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(a) the potential at A (–3, 2, 6) 

(b) the potential at B (1, 5, 7) 

(c) the potential difference VAB  

Solution 

 (a)   
0

1 1

4A
A

Q
V V

r r
 

     
 

    rA = (–3, 2, 6) – (0, 0, 0) = 2 2 23 2 6 7     

    r = (0, 6, –8) – (0, 0, 0) = 2 20 6 8 10     

    

9

9

5 10 1 1
2

7 1010
4

36

AV








     
 

 

    VA = 3.929 V 

 (b) 
0

1 1

4B
B

Q
V V

r r
 

     
 

    rB = (1, 5, 7) – (0, 0, 0) = 2 21 5 7   = 75  

    
9

9

5 10 1 1
2

1010 75
4

36

BV








  
   

 
 

     VB = 2.696 V. 

(c) VAB = VB – VA = –1.233 V 

*Problem 1.26 
A point of 5 nC is located at (–3, 4, 0), while line y = 1, z = 1 carries uniform charge                
2 nC/m. 

(a) If V = 0 V at O(0, 0, 0), find V at A(5, 0, 1). 

(b) If V= 100 V at B(1, 2, 1), find V at C(–2, 5, 3). 

(c) If V = – 5 V at O, find VBC. 

Solution: 
Let the potential at any point be  
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    V = VQ +VL 

 Where VQ is potential due to point charge 

 i.e.,  
04


Q

Q
V

r
 

 by neglecting constant of integration 

 and VL  is potential due to line charge distribution, 

 for infinite line, we have 

    02
LE a


 


  

   
0

. .
2

L
LV E dl a d a 

 
 

   
   

   
0

ln
2

L
LV

 


 


 

 by neglecting constant of integration. 

 Here ρ is the perpendicular distance from the line y = 1, z = 1(which is parallel to the 
x-axis) to the field point. 

Let the field point be (x, y, z), then 

     2 2( , , ) ( , 1, 1) ( 1) ( 1)x y z x y z        

   
0 0

ln
2 4

L Q
V

r

 
 

  
 

 

 by neglecting constant of integration. 

(a)    (0, 0, 0) (0,1,1) 2O     

  (5,0,1) (5,1,1) 1A     

  (0,0,0) ( 3,4,0) 5Or      

  (5,0,1) ( 3,4,0) 9Ar      

   
0 0 0 0

ln ln
2 2 4 4

L L
O A O A

O A

Q Q
V V

r r
     

   
  
   

 

    
0 0

1 1
ln

2 4
OL

O A
A O A

Q
V V

r r


  

 
        
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9 9

9 9

2 10 2 5 10 1 1
0 ln

1 5 910 10
2 4

36 36

AV

 
 

 

 

          
 

    
1 1

36ln 2 45
5 9AV
       

 

    36ln 2 4 8.477 AV V    

(b)  (1,2,1) (1,1,1) 1B     

   ( 2,5,3) ( 2,1,1) 20C       

   (1,2,1) ( 3,4,0) 21Br      

   ( 2,5,3) ( 3,4,0) 11Cr       

   
0 0

1 1
ln

2 4
CL

C B
B C B

Q
V V

r r


  

 
        

 

    
21 1 1

100 36ln 45
1 11 21

CV
       

 

   100 51.052CV      

   48.94 VCV   

(c)  48.94 100 51.052  VBC C BV V V       

1.10 Conservative and Non-Conservative Fields  

1.10.1 Conservative Field 

If the field is parallel to a straight line as shown in Fig. 1.30. Let A be a vector field.  
Choose a path P to Q as shown in Fig.1.30. .A dL in moving from P to Q will be ‘M’ 
(scalar) and .A dL in moving from Q to P is (–M).   

  The . 0.A dL M M    Chosen path may be of any 

shape, the contour line integral of .A dL  becomes ‘0’. The field 

whose contour line integral gives ‘zero’ is called conservative 
(or) irrotational field. 

 Fig. 1.30  Evaluation of 
conservative field 
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1.10.2 Non Conservative Field 
In the conservative field, the filed vector is parallel to a 
straight line.  Let us consider a field in circular fashion as 
shown in Fig.1.31(a). In this case .A dL  in moving from P 
to P along the field will not be ‘zero’ because A is always in 
the direction of dL .  These types of fields whose contour 
line integral of . 0A dL   are called non conservative or 
rotational fields. The shape of the field need not be circular 
but it can be of any shape as shown in Fig. 1.31(b). 

1.10.3 Concept of Curl 
We know that in non-conservative fields as shown in Fig. 1.30 the contour line integral of 

.A dL  gives some finite value.  This finite value is called circulation. 

  circulation = . A dL . This circulation depends upon the area chosen in the non 

conservative field.  Let the area be S.  Then the ratio of . A dL  to S can be considered 

as one unit.  As the field is normal to this unit we can write the above expression as 

.




n

A dL
a

S
. 

 In general  will be from point to point.  This can be denoted by taking Limit S0 

which gives curl of vector A  i.e., 

    
0 


 




n
S

A dL
A lim a

S
 …..(1.10.1)   

 The curl of vector A gives circulation that exists on the chosen closed surface. 

 As A or curl of a vector A is a vector.  It can be 
represented with three components in a rectangular                   
co-ordinate system i.e., [curl A ]1, [curl A ]2, [curl A ]3 along 
X, Y & Z axises with , &x y za a a  as unit vectors respectively. 

     A  = [curl A ]1 + [curl A ]2 + [curl A ]3 

 To find [curl A ]1 consider the elemental surface y and 
z which is normal to x-axis as shown in Fig. 1.32. 

 

Fig. 1.31 Evaluation of non-
conservative field 

Fig. 1.32  Evaluation of curl 
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  [curl A ] = 
0

x
y z

A dL
lim a

y z  



 
   

 Let the components of vector A  at P be (Ax, Ay, Az) 

  The line integral from P to Q is 
Q

P

A dL . 

   PQ is parallel to Y-axis, A  can be taken as the Y component of A  and the 

elemental length dl  can be taken as y . 

  The above integral becomes Ayy.  At Q we have moved a distance by y . To find 
line integral from Q to R consider the Z component at Q (because QR is parallel to Z-
axis) 

   The ‘Z’ component at Q is z
z

A
A y

y


 


 

  The line integral i.e., 
R

z
z

Q

A
A dL A y z

y

 
      

  

 At ‘R’ we have moved by a distance z. As RS line is parallel to Y-axis, consider the 

Y-component at ‘R’ as y
y

A
A z

z


 


 

     
S

y
y

R

A
A dL A z y

z

 
      

  

 At ‘S’ to find 
P

S

A dL consider the ‘z’ component at ‘S’ which is zA  

     
P

z
S

A dL A z    

    
Q R S P

P Q R S
A dL A dL A dL A dL A dL             

                  = 


            
 

yz
y z z y z y y z

AA
A y A A z y A z

y z
 

       = yz
AA

z y
y z

 
     

 

 Substitute the above equation in [Curl A ]1 equation  
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     [Curl A ]1 =  

 
 
 
 

    
 

yz

x

AA z y
y z

az y = yz
x

AA
a

y z

 
   

 

 Similarly we can also construct equations for [Curl A ]2 by considering the elemental 
surface on ZX plane which is perpendicular to Y-axis 

    [Curl A ]2 =  x z
y

A A
a

z x

     
 

 and for [Curl A ]3 we have to consider the elemental surface on XY plane which is 
perpendicular to Z-axis 

    [Curl A ]3 =  y x
z

A A
a

x y

 
   

 

 Curl A  = [Curl A ]1+ [Curl A ]2+ [Curl A ]3 

    y yx xz z
x y z

A AA AA A
A a a a

y z z x x y

                          
 

 Which can be written in matrix form as 

 Cartesian co-ordinate system: 

    

x y z

x y z

a a a

A
x y z

A A A

  
 

  
        

 Cylindrical co-ordinate system: 

    
1

z

z

a a a

A
z

A A A

 

 



  


  
 

  
 

 Spherical co-ordinate system: 

    
2

sin

1

sin

sin

r

r

a ra r a

A
rr

A rA r A

 

 



 


  
 

  
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Stoke’s Theorem 

Stoke’s theorem gives the relation between the line integral and surface integral as  

     
S L

A ds A dL       …..(1.10.2) 

 where A is the field vector. According to above equation finding curl of a vector at 
every point in a chosen surface and adding all those values will be equal to the contour 
line integral of the boundary of the chosen surface.  

Proof: 

Let us consider a rotational field and choose a surface on it as shown in Fig.1.33. 

 

Fig. 1.33  Rotational field to explain Stoke’s Theorem 

 We know that  

     
0

n
s

A dL
A lim a

S 


 


  

 The above equation can be written as  

     
S L

A ds A dL      

 Which can be proved as 

 Choose a sub-surface s1 (ABCDA).  Then above equation becomes  

     1

B C D A

S A B C D

A ds A dL A dL A dL A dL               

 choose one more sub-surface s2 adjacent to s1 which is (ADEFA) 
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   2

D E F A

S A D E F

A ds A dL A dL A dL A dL               

 Let s = s1 +s2 

   1 2

S S S

A ds A ds A ds           

    = 
B C D A A E F A

A B C D D D E F

A dL A dL A dL A dL A dL A dL A dL A dL                       

    = 
B C D E F A

A B C D E F

A dL A dL A dL A dL A dL A dL                 

 From the above equation by finding curl of a vector A at all the points in a chosen 
surface and adding up all the values will be equal to the contour line integral of the 
chosen boundary surface. Adding up all the curls is nothing but integrating the curl of a 
vector w.r.t. chosen surface. 

   
S L

A ds A dL      

1.11 Relation Between E  and V 

We know that the potential difference between points A and B is VAB = 
B

A

E dL  . 

Similarly the potential difference from B to A is VBA = 
B

A

E dL  

  The total potential from moving A to B and back to A is  

   VAB + VBA = 
B

A

E dL   + 0
B

A L

E dL E dL      …..(1.11.1) 

 The total work done in moving a point charge from A to B and back to A is ‘0’. 

 From equation (1.11.1) we can say that the electrostatic fields are conservative fields 
or irrotational fields. 

 According to Stoke’s theorem 
S L

E ds E dL      
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    0 or 0
S

E ds E      …..(1.11.2) 

 Equation (1.11.1) is a Maxwell’s second equation which is in integral form. Equation 
(1.11.2) is also a Maxwell’s second equation which is in differential form 

 We know the potential difference   V E dL    

    dv E dL    

 As E and dL  are vectors they can be represented in rectangular co-ordinate system as 

    x x y y z zE E a E a E a    

    x y zdL dxa dya dza     

     x y zdv E dx E dy E dz     …..(1.11.3) 

 In calculus dv can be represented as 

     
v v v

dv dx dy dz
x y z

  
  
  

 …..(1.11.4) 

 from (1.11.3) & (1.11.4)  

     x
v

E
x





,  y

v
E

y





 and z

v
E

z





  

     x y z
v v v

E a a a
x y z

  
  

  
 

     x y z
v v v

E a a a
x y z

  
  

  
 

    E V   

 Which is the relation between E  and V. 

Problem 1.27 

 Given the potential 
2

10
V

r
 sin cos 

(a) Find the electric flux density at (2 2 0)D , / ,  

(b) Calculate the work done in moving a 10 mC charge from point A(1, 30o, 120o) to 
B(4, 90o, 60o) 
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Solution 
(a)  We have 

    E V   

 Since V is given in spherical co-ordinate system, consider V  in spherical co-
ordinate system 

  
1 1

sinr
v v v

E a a a
r r r   
  

   
  

 

            =    3
2 2

10sin sin1 10cos cos 1
10 2 sin cos

sinrr a a a
r rr r

  
    
 

 
   


 

     =    3
2 2

10sin sin1 10cos cos 1
10 2 sin cos

sinrr a a a
r rr r

  
    
 

 
   


 

     = 
3 3 3

20sin cos 10cos cos 10sin
ra a a

r r r
 

       
 

 

     =  3

10
2sin cos cos cos sinra a a

r
        

     0D E   

    = 
11

3

8.825 10
2sin cos cos cos sin

    ra a a
r

       

    =  
11

3

8 825 10
2 1 1 0 0


 r

.
. . a

r
 

  (2, , 0)
2

D   = 22 1 r. a  pC/m2 

(b) Work done =  
B

AB
A

Q E dL Q V      

     = Q (VB – VA) 

  
10 1

1. 0.3125 
16 2

 BV V  

   10 1
0.5 5 0.5 2.5  V

1 2
      AV  

  VB – VA = 2.8125 V 

  W = 10–3 × 10 × (VB  – VA) = 28.125 mJ 
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Problem 1.28 

Given that  23  k V m  x yE x y a xa . Find the work done in moving a –2 C charge 

from (0, 5, 0) to (2, –1, 0) by taking the path 

(a) (0, 5, 0) (2, 5, 0)  (2, –1, 0) 

(b) y = 5 – 3x 

Solution 
(a)  Line equation for (0, 5, 0) to (2, 5, 0) is 

     1 1 1

1 2 1 2 1 2

x x y y z z

x x y y z z

  
 

  
 

     
0 5 0

0 2 5 5 0 0

x y z  
 

  
 

    y = 5 z = 0 

    dy = 0 dz = 0 

        
 

 2 5 0
2

1
0  5  0

3
, ,

x y x y z
, ,

W QK x y a xa dx a dya dza       

             
 

 2  5  0
2

0  5  0

3
, ,

, ,

QK x y dx xdy     

             
 

 2
3 2

0

2 10 3 5 0x dx     

            
23

3

0

2 10 3 5 2
3

x
         

 

           = 36 mJ 

 Line equation for (2, 5, 0) to (2, –1, 0) 

   Z = 0        dz = 0   

     
2 5 0

2 2 5 1 0 0

x y z  
 

  
 

   x = 2         dx = 0 
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      
 

 2  1  0
2

2
2  5  0

3
, ,

, ,

W QK x y dx xdy


     

      
1

2
5

2 2 1 5 24  mJ


       W QK dy QK  

  W = W1 + W2 = 12 mJ 

  (b) Line equation for (0, 5, 0) to (2, 5, 0) is y = 5 – 3x 

    dy = –3dx 

      
 

 2  1  0
2

0  5  0

3
, ,

, ,

W QK x y dx xdy


     

      
2

3 2

0

2 10 3 5 3 3W x x dx x dx     =12 mJ 

1.12 Electric Dipole and Flux Lines 

Electric dipole is formed by separating two point charges of equal magnitude but opposite 
in sign by a small distance. 

 Consider an electric dipole along Z-axis separated by a small distance ‘d’ as shown in 
Fig. 1.34.   

 

Fig. 1.34  Electric dipole to find potential 
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 Let us find potential at ( , , )P r    due to electric dipole.  We know the potential at ‘P’ 

due to a point charge +Q is 
0 14Q

Q
V

r



and potential at ‘P’ due to –Q is 

0 24Q
Q

V
r





 

Potential at ‘P’ due to electric dipole is  

     
0 1 0 24 4

Q Q
V

r r 
 

 
 

        
0 1 2

1 1

4

Q

r r
 

    
 

 from Fig.1.34     cos cos
2 2

x d
x

d
     

    1  r r x  

   1 cos
2

  
d

r r  

     cos cos/2 2

dy
yd      

    2r r y   

 2 cos
2

d
r r    

    
0

1 1

4 cos cos
2 2

Q
V

d d
r r  

 
 

  
   

 

 

       
2

0 2

cos

4
cos

2

Q d

d
r






 
 
           

 

 if   r >>d 

     
2

0

cos

4

Q d
V

r




     
         …..(1.12.1) 
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2

1
V

r
 due to dipole 

rd .a = d cos and here define electric dipole moment p Q d  whose unit is C-m. 

     
   

2 2 2
0 0 0

1
.

4 4 4

r r
Q d a p a r

V p
rr r r  

 
  

  
   …..(1.12.2) 

 If the electric dipole center is other than origin, let it be at r  then the above equation 

can be generalized as  

     
2 3

0 0

1 ' .( ')
.

'4 ' 4 '

r r p r r
V p

r rr r r r 
 

 
   

 …..(1.12.3) 

 The electric field due to dipole with center at the origin can be obtained as 

E V   

 Since V in equation (1.12.1) is in terms of r and  consider V in spherical co-ordinate 
system, then 

      
1

r
v v

E a a
r r 

 
  

 
 

        3
2

0

1 1
2

4r
Qd

E r cos a sin a
r r

 


        
  

        3
3

0

2
4 r
Qd sin

r cos a a
r





     

 

            3
0

2
4

r
Qd

cos a sin a
r

 


 


 

            3
0

2cos sin
4

r
p

a a
r

 


 


   …..(1.12.4) 

Problem 1.29 
An electric dipole located at the origin in free space has a moment 

3 2  n Cm  x y zp a a a  

(a) Find V at PA (2, 3, 4) 

(b) Find V at r = 2.5,   = 30o,  = 40o 
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Solution 
 (a) We have 

     
2

0

1 '
.

'4 '

r r
V p

r rr r



 

 

   'r = (0, 0, 0) 

     4 9 16 29r r'       

     9 9(3 2 ) (2 3 4 )
9 10 10

29 29

x y z x y za a a a a a
V     
    

         =
 

 3 2

9 4
0 235 V

29
/ .


  

(b)  r = 2.5  = 30o  = 40o 

    x = r sin  cos  = 0.958 

    y = r sin  sin  = 0.8035 

    z = r cos  = 2.165 

  upon simplifying we get 

         V = 1.97 V 

Electric Flux Line 

Electric flux line is an imaginary path or line drawn such that it’s direction at any point is 
the direction of electric field intensity. 

Equipotential Surface 

Any surface which has same potential at all points is called as an equipotential surface. 

Equipotential Line 

The intersection line of equipotential surface with the plane is called as equipotential line.  
The work done to move a point charge from one point to other point along equipotential 
line is ‘0’. 

The example for equipotential surface for a point charge is shown in Fig.1.35 
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Fig. 1.35  Equipotential surface 

 

Energy Density of Electrostatic Field 

To find energy in the assembly of charges. Let us find the work required to assemble the 
charges. Consider a free surface and three point charges Q1, Q2 and Q3 which are at 
infinity.  The work required to move Q4 from infinity to P1 is W1= 0. 

( initially the surface has no charge i.e., 0E W1 = 1 0Q E QL   ) 

 The work required to move Q2 from  to P2 
which is shown in Fig.1.36 is W2 = Q2 V21 where 
V21 is potential at P2 due to Q1.  The work required 
to move Q3 from  to P3 is W3 = Q3(V32 + V31).  
Where V32 is potential at P3 due to Q2, V31 is 
potential at P3 due to Q1. 

 WE = W1 + W2 + W3    

        = Q2V21 +Q3 (V32+ V31) …..(1.12.5) 

 Suppose if we move initially Q3 from  to a free surface at P3. The work required is      
W3 = 0.  Then work required to move Q2 from  to P2 is W2 = Q2 V23. Work required to 
move Q1 from  to P1 is W1 = Q1(V12 +V13) 

   Total work done WE = W1 + W2 + W3 

                = 0 + Q2V23 + Q1(V12+V13)  …..(1.12.6) 

 Add (1.12.5) and (1.12.6) 

    2WE = Q1 (V12 + V13 ) + Q2 (V21 + V23) + Q3 (V32 + V31 )  

      = Q1V1 + Q2V2 + Q3V3 

    WE = 
1

2
 (Q1V1 + Q2 V2 + Q3 V3) …..(1.12.7) 

Fig. 1.36 Assembling of charges 
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 Where V1 is potential at P1 due to Q2 & Q3, V2 is potential at P2 due to Q1 & Q3 and V3 
is potential at P3 due to Q1 & Q2. 

 If we have ‘n’ number of charges the work required to bring them from  to a surface 
which has initially zero charge is  

     
1

1

2

n

E k k
k

W Q V


   …..(1.12.8) 

If the surface is having continuous charge distribution then the above equation becomes 

     
1

2E L
L

W V dL  for line charge distribution  …..(1.12.9) 

     
1

2E s
S

W V dS  for surface charge distribution        …..(1.12.10) 

     
1

2E V
v

W V dv  for volume charge distribution …..(1.12.11) 

 According to Maxwell’s first equation v D     

      1

2E
v

W D V dv   …..(1.12.12) 

 We know  AV A V V A        where A a general vector and V is a scalar 

      A V AV A V        

 i.e.,    D V DV D V        

 from (1.12.12)   1

2E
v

W DV D V dv     

     
1 1

2 2E
v v

W DV dv D V dv      

 According to divergence theorem, first  integral can be written as 

     
1 1

.
2 2E

S v

W DV dS D V dv     

 For point charges the potential 
2

1 1
V , E

r r
   
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 For dipoles the potential 
2 3

1 1
V , E

r r
   

 Surface ds  r2 

 If we consider the point charges the product of 
3

1
andV E

r
  and product of 

1
andDV dS

r
 .  For very large surface the first integral will become zero. 

     
1

2E
v

W D V dv    

                
1

.( )
2

v

D E dv  
1

.
2

v

D E dv   

       0D E  

    Energy = 0
1

2E
v

W E E dv    Joules    …..(1.12.13) 

 The energy density J/m3 is 2 3
0

1
J/m

2
E

E
dW

E w
dv

    …..(1.12.14) 

Problem 1.30 

Three point charges –1 nC, 4 nC and 3 nC are located at (0, 0, 0), (0, 0, 1) and (1, 0, 0) 

respectively.  Find the energy in the system. 

Solution 

      WE = W1 + W2 + W3 

    = 0 + Q2V21+ Q3(V31+V32) 

     31 1 2
2

0 2 1 0 3 1 3 2

.
4 4

QQ Q Q
Q

r r r r r r 
 

   
      

 

     2 3
1 2 1 3

0

1

4 2

Q Q
Q Q Q Q


      

 

     18
9

1 12
4 3 .10

10 2
4 .

36






     
 
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12

9 7  nJ 13.37nJ
2

    
 

 

Problem 1.31 
Point charges Q1 = 1 nC, Q2 = – 2 nC, Q3 = 3 nC and Q4 = – 4 nC are positioned one at a 
time and in that order at (0, 0, 0), (1, 0, 0), (0, 0, –1) and (0, 0, 1) respectively.  Calculate 
the energy in the system after each charge is positioned. 

Solution 
Energy after Q1 is positioned is W1 = 0 

    W2 = Q2V21
1

2
0 2 1

.
4

Q
Q

r r


 

18

9

2 1 10

10
4 . (1,0,0) (0,0,0)

36








  



= –18 nJ 

 Energy after Q2 is positioned 2W   = W1+ W2 = –18 nJ 

 Energy after Q3 is positioned 

    3W   = 2W   +Q3(V32+V31) 

     
9 9 9

9

3 10 2 10 1 10
18

(0,0, 1) (1,0,0) (0,0, 1) (0,0,0)10
4 .

36

nJ




  



    
    

     
  

     = – 29.18 nJ 

 Energy after Q4 is positioned 

    4W = 3W   + Q4(V43+V42+V41) = –68.27 nJ. 

1.13 Convection and Conduction Currents 
We know that materials are classified into conductors and non conductors based on 
conductivity  (siemens/m or S/m). If  > 1, the materials are called conductors and if            
 < 1, the materials are called non conductors. The materials whose conductivity lies 
between these two materials are called semiconductors. Technically conductors and non 
conductors are called metals and insulators respectively. The basic difference between 
conductors and dielectrics (insulators) is: Conductors posses more number of free 
electrons to flow current through it, Where as dielectrics contain less number of free 
electrons to flow current through it. 

If >>1, the conductors are called super conductors. 

Current ‘i’ can be defined as charge flowing through a surface per unit time  
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   
dQ

i
dt

  

Current Density 

The current i flowing through a surface s is denoted as Jn = i/S A/m2. 

    i = Jn S 

 If current density Jn is perpendicular to the surface S  

    i = Jn S 

 If Jn is not perpendicular to S, then i J S    

 The total current flowing through surface is 
S

I J ds  . 

 Based on how the current I is produced, the current densities are classified in to         
(i) convection current density (ii) conduction current density and (iii) displacement 
current density. 

Convection Current Density 

Conductors are not involved for flowing current in case of convection current.  Hence it 
will not satisfy ohm’s law. The current flowing through an insulating material like liquid 
or vacuum is convection current. A beam of electrons through a vacuum tube is an 
example of convection current. 

 Consider a filament which is having volume charge density v as shown in Fig.1.37 

Consider an elemental volume V = SL and 
assume that the current is flowing in y-direction with 
velocity Uy.   

 We know that  

   Q = v V = v s l 

 Dividing with t  

     v
Q l

S
t t

 
 

 
 

                v y y
Q l

I SU I and U
t t

  
     

 
  

 the current density  v y
I

J U
S


 


 

Fig.1.37 Current in a filament 
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 In general current density vJ U      …..(1.13.1) 

 which is convection current density and I is  convection current. 

Conduction Current Density 

Conductors are involved in case of conduction current density.  If we apply on electric 
field E to a conductor the force applied on electron which is having charge ‘– e’ is  

    F eE             …..(1.13.2)  

 If an electron having mass ‘m’ is moving with a drift velocity ,U  according to 
Newton’s law the average change in the momentum of electron is equal to the force 
applied on it. 

 Average change in momentum is =
mU


 …..(1.13.3) 

 Equations (1.13.2) = (1.13.3)  

    i.e.,   
mU

eE


   

     
eE

U
m


  

 Where  = average time interval 

         m = mass of electron  

 If we have ‘n’ number of electrons in the considered conductor the volume charge 
density 

   v ne    

 We know that current density  

   vJ U  

 Conduction current density 
eE

J ne
m


   

     2J ne E
m


    …..(1.13.4a) 

     J E  

 where 

   = conductivity of the conductor = 2ne
m


   …..(1.13.4b) 
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Problem 1.32 

If  3

1
2cos sinrJ a a

r
   A/m2. Calculate the current passing through 

(a) Hemispherical shell of radius 20 cm. 

(b) A spherical shell of radius 20 cm. 

Solution 

     I J .ds     

 Since it is sphere 2 sin rds r d d a     

(a)  = 0 to 2,  = 0 to /2 and r = 0.2 m for hemispherical shell 

      I =  
2 /2

2
3

0 0

1
2cos sin sinr ra a r d d a a

r

 


 

    
 

    

               =  
2 /2

0 0

1
2cos sin d d

r

 

 

   
 
   

          =  
22

0 0

1
sin 2 d d

r  
 



 

    

         = 
/22

00

1 cos2

2
d

r





 


 
    

                         =   1 2
1 1 2 10 31.4

2 0.2
A

r

        

    (b)   = 0 to 2,  = 0 to  and r = 0.2 m for spherical shell 

     
2

0 0

1
2I sin d d

r

 

 

  
 

    

         
2

00

1 2

2

cos
d

r





 


      

           
2

0

1
1 1 0

2
d A

r








     
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Problem 1.33 

For the current density 210 sinJ z a  A/m2.  Find the current through the cylindrical 

surface  = 2, 1< z < 5 m. 

Solution 
Since it is cylinder ds d dz a    

 We have 

     I J ds     

       
5 2

2

1 0

10 sin
z

z d dz




 
 

    

      
5

1

10 (1 cos )
z

z 


   

       = 754 A 

*Problem 1.34  
In a cylindrical conductor of radius 2 mm, the current density varies with distance from 

the axis according to 3 400 210 A/m . rJ e  Find the total current I. 

Solution 
Since it is cylinder ds d dz a   

Here r = ρ = 0.02 m,     

    3 400 210   J e a A m
  

We know the total current .
s

I J ds   

     
2

3 400

0 0

10
z

z

I e d dz






 

 

    

     3 4002 10I z e    

     0.84 5.65 A I ze z  
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Problem 1.35 

If the current density 2
2

1
(cos sin )A m , rJ a a

r
   find the current passing through a 

sphere of radius 1.0 m. 

Solution 

We know the total current .
s

I J ds   

Since it is spherical symmetry 2 sin  rds r d d a    

     
2

2
. cos sin

r
J dS d d

r
     

     
2

0 0

cos sinI d d
 

 

   
 

    

     
0

sin 2I d


     

        
0

cos 2
0 A

2

   
 

   

1.14 Polarization in Dielectrics 
The basic difference between dielectrics and conductors is that dielectrics have less 
number of free electrons compared with the conducting material. 

 Consider a dielectric molecule with +Ve charge +Q (Nucleolus) and –Ve charge –Q 
(electron cloud) as shown in Fig. 1.38 

 To see the effect of electric field on dielectric materials consider 
the dielectric molecule as shown in Fig. 1.38.  If we apply electric 
field E on to dielectric material, the force on positive charge is 
F QE  which is along the direction of electric field E and the 

force on negitive charges is E = –Q E  which is in opposite direction 
to E . 

 After applying electric field E,  charge is displaced as shown in 
Fig.1.39. The charge displacement is equal to sum of the original charge distribution and 

a dipole with dipole moment  p Qd as shown in Fig.1.39. 

Fig. 1.38 Electron 
cloud 
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After applying electric field, basically we get dipoles 
and hence the dielectric element is said to be polarized 
such dielectric material is said to be nonpolar. Examples 
are hydrogen, oxygen, nitrogen and the rare gases. 
Other types of molecules such as water, sulfur dioxide 
and hydrochloric acid have built-in permanent dipoles 
that are randomly oriented. 

Polarization 

Creation of dipoles by applying electric field to the dielectric material is called 
polarization.  Suppose ‘N’ numbers of dipoles are formed within ‘V’ volume then the 
total number of dipole moments can be written as  

     = 1 1 2 2
1

N

n n k k
k

Q d Q d ... Q d Q d


     

 Polarization is defined as dipole moment/unit volume of the dielectric whose unit is 
(C/m2) 

   Polarization 1

0
lim 

 






N

k k
k

V

Q d
P

V
 C/m2      …..(1.14.1) 

 Polarized(bounded) surface charge density ps nP a    and polarized (bounded) 

volume charge density pv P     

 Consider a volume which has dielectric material with volume charge density v. Then 
the total volume charge density T v pv D        

      0v pv E     

     0v pvE     

     0v E P       pv P     

      0v E P          

     v D     

 where   0 D E P  …..(1.14.2) 

 The electric flux density D  in free space is 0 E  i.e., P = 0 in free space.  

 From the above equation we can say that D  is getting increased by P  in dielectric 
materials. 

 Fig. 1.39 Charge displacement 
after applying E  
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 From the discussion on polarization P  is directly related with electric field E  

      0 EP X E  …..(1.14.3) 

 Where XE is the electric susceptibility. The value of parameter XE gives how 
susceptible the given dielectric material to the applied electric field. 

Dielectric constant and strength: 

Substitute equation (1.14.2) in equation (1.14.1)  

     0 0ED E X E    

          0 1 EX E   

         0 r E   

         E  

 where   = 0.r 
0

1r EX


   


 

 Where  is the permittivity of dielectric material and 0 is the permittivity of free 

space and r  is the dielectric constant or relative permittivity. The dielectric constant 

r can be defined as the ratio of  to 0 . 

 If electric field strength is more such that it pulls the electrons from the outer shells of 
dielectric molecules, then the dielectric material becomes conducting material and we can 
say dielectric material has been broken. 

 Dielectric strength can be defined as the maximum electric field with which dielectric 
material can tolerate or withstand. 

1.15 Linear, Isotropic and Homogeneous Dielectrics 
Dielectric materials can be classified into  

(i) linear dielectrics  

(ii) homogeneous dielectrics  

(iii) isotropic dielectrics. 

Linear Dielectrics: If  does not change with electric field then we can say the dielectric 
as linear dielectric. 

Homogeneous Dielectrics: If  does not change from point to point then we can say the 
dielectric as homogeneous dielectric. 
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Isotropic dielectrics: If  does not change with the direction then we can say the 
dielectric as isotropic dielectric. 

 Similarly conducting materials are classified as 

 If  ‘’ is independent of E then the conducting material is linear conducting material.  

  If  ‘’ is independent of direction then the conducting material is isotropic conductor.  

 If ‘’ does not change from point to point then the conducting material is 
homogeneous conductor. 

1.16 Continuity Equation and Relaxation Time 

1.16.1 Continuity Equation 
According to conservation of energy the rate of decrease of charge within a volume is 
equal to the net outward current flowing through a closed surface  

    out
S

dQ
I J ds

dt
     

 According to divergence theorem 
S v

J ds J dv      …..(1.16.1a) 

 
dQ

dt
 can be written as v

dQ d
dv

dt dt
       

                  = v
V

dv
t
      …..(1.16.1b) 

 equations(1.16.1a) = (1.16.1b) 

     v
v v

Jdv dv
t
          

        vJ
t


   




  …..(1.16.1c) 

 which is the continuity current equation. 

 The left side of the equation is the divergence of the Electric Current Density  J . 

This is a measure of whether current is flowing into a volume (i.e., the divergence of J  is 
positive if more current leaves the volume than enters).  

 Recall that current is the flow of electric charge. So if the divergence of J  is positive, 
then more charge is exiting than entering the specified volume. If charge is exiting, then 
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the amount of charge within the volume must be decreasing. This is exactly what the right 
side is a measure of how much electric charge is accumulating or leaving in a volume. 
Hence, the continuity equation is about continuity - if there is a net electric current is 
flowing out of a region, then the charge in that region must be decreasing. If there is more 
electric current flowing into a given volume than exiting, then the amount of electric 
charge must be increasing.  

1.16.2 Relaxation Time 
To derive the equation for relaxation time,  

 consider Maxwell’s first equation i.e., 

      vD     

     vE    

     vE


  


 …..(1.16.2) 

 Consider the conduction current equation (point form of ohm’s law)    

     J E  …..(1.16.3) 

 From (1.16.2) vE


   


 

     vJ


  


     from (1.16.3) 

     v v

t

 





 
       from continuity equation 

     v

v

t
 



  


      

  on integrating 

     
0

ln lnv vt
   


 

      / /

0

t tv

v

e e






    …..(1.16.4) 

    
0v  = initial volume change density 

      rT


   



 BASICS OF ELECTROMAGNETICS AND TRANSMISSION LINES 86 

 Which is relaxation time or rearrangement time. 

 Let us consider the effect of inserting the charge in the interior point of the material 
(Material can be conductor or dielectric). 

 Due to the insertion of charge in the interior point of the material, the volume charge 
density decreases exponentially. 

 Relaxation time can be defined as the time it takes a charge placed within an interior 
point of material to drop to e–1 = 36.8% of its initial value. 

 Relaxation time is very short for good conductors and high for good dielectrics.  When 
we place a charge within a conductor within a short period charge disappears and it 
appears on the surface of conductor.  Similarly when we place a charge within a dielectric 
material the charge remains there for a longer time. 

1.17 Poisson’s and Laplace’s Equations 
We can find orE D by using Coloumb’s law or Gauss’s law, (if the distribution is 

symmetry) if the charge distribution is known.  We can also find out orE D , if the 
potential difference is known.  But in practical situation charge distribution and potential 
difference may not be given, in such cases either charge or potential is known only at 
boundary. Such type of situations or problems can be tackled either by using Poisson’s 
equation or Laplace’s equation.  

 We know Maxwell’s first equation D v     

 Substitute D E  in the above equation 

     E v     

 we know  E V   

      V v       …..(1.17.1a) 

 which is the Poisson’s equation for in-homogeneous medium. 

 For charge free medium v = 0 

       0V         …..(1.17.1b) 

 which is the Laplace’s equation for in-homogeneous charge free medium. 

 For homogeneous medium since  is constant 

     2 vV


 


 …..(1.17.2) 

 which is the Poisson’s equation for homogeneous medium. 
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 For charge free region 0v   

   2 0V        …..(1.17.3) 

 which is the Laplace’s equation for homogeneous charge free medium. 

 We know 

   x y z

V V V
V a a a

x y z

  
   

  
 

   
2 2 2

2
2 2 2

0
V V V

V V
x y z

  
       

  
  …..(1.17.4) 

 Which is Laplace’s equation in rectangular co-ordinate system. 

 where 2  is Laplacian operator  

 In cylindrical co-ordinate system is 

   
2 2

2
2 2 2

1 1
0

V V V
V

z


    
    

         
  …..(1.17.5) 

 In spherical co-ordinate system 

   
2

2 2
2 2 2 2 2

1 1 1
sin 0

sin sin

V V V
V r

r rr r r


   
                     

  …..(1.17.6) 

Problem 1.36 
Write Laplace’s equation in rectangular co-ordinates for two parallel planes of infinite 
extent in the X and Y directions and separated by a distance ‘d’ in the Z-direction.  
Determine the potential distribution and electric field strength in the region between the 
planes.  

Solution 
 2V = 0 

    
2 2 2

2 2 2
0

V V V

x y z

  
  

  
   

since the potential is constant in X and Y directions 
2 2

2 2
0

V V V V

x y x y

   
   

   
 

    
2

2
0

V

z





 Fig. 1.40 
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V

A
z





 

  V = Az + B 

 At Z = 0  V = V1 

   V1 = 0 +B 

 At Z = d  V = V2 

   V2 = Ad +B 

   V2 = Ad+V1   

    2 1V V
A

d


  

 The Potential distribution is 2 1
1

V V
V z V

d


   

 The Electric field strength is  

    E V  = 2 1 1 2
z z z

V V V VV
a a a

z d d

 
   


 

1.18 Parallel Plate Capacitor, Coaxial Capacitor,          
  Spherical Capacitor 

Capacitor may be obtained by separarting two conductors in some medium, which are 
having charges equal in magnitude but opposite in sign, such that the flux leaving from 
one surface of the conductor, terminates at the other conductor. Medium can be either 
free space or dielectric .  Generally these conductors are called plates. 

 Let us consider two conductors with + Q and – Q 
charges and are connected to a voltage or potential 
difference ‘V’ as shown in the Fig.1.41. 

 The potential difference ‘V’ can be written in terms of 

E  as potential difference V = V1 – V2 =  
2

1

E dL   

 The parameter of the capacitor i.e., ‘capacitance’ is 
defined as the ratio of charge on one of the conductors to 
the potential difference between two conductors.  

Fig. 1.41 Two conductors 
connected to V 
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     S S

D ds E ds
Q

C
V E dL E dL

  
  

 

 

 

 
 …..(1.18.1) 

1.18.1 Parallel Plate Capacitor 
Consider two conductors whose area as ‘A’ and are separated by a distance ‘d’ as shown 
in Fig.1.42. 

 We know the electric field intensity E between 

parallel plate capacitors in free space as 
0

s
nE a





 

 But from the Fig. 1.41  ( )s
xE a


 


 

 E will be in opposite direction of  x-axis 

      Q = s. A s
Q

A
   

 Where A = area of conductor. 

     
 x

Q
E a

A
 

 We know the potential difference between two conductors which are separated by a 
distance ‘d’ as  

     
0

d

V E .dL   

 where   xdL dx a  

     
0

.
d

x x
Q

V a dx a
A


 

  

     
0

d Q Qd
V dx

A A
 

   

     
Q A

C
V d


       …..(1.18.2) 

 Energy stored in the parallel plate capacitor is  

Fig. 1.42 Parallel plate 
capacitor 
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1

2E
v

W E E dv    

    
1

2
s s

E x x
v

W a a dv
 

  
   

    
2

2

1

2
s

E

v

W dv


 
  

     
2 2 21 1

2 2 2
s s s

E
V

Ad
W dv A d

  
   

    

 Replace s
Q

by
A

  

    
2 2

2

1 1 1

2 2 2E
Q Ad Q

W VQ
CA

  


 …..(1.18.3) 

*Problem 1.37  
Calculate the capacitance of a parallel plate capacitor with a dielectric, mica filled 
between plates. r  of mica is 6. The plates of the capacitor are square in shape with                     
0.254 cm side. Separation between the two plates is 0.254 cm. 

Solution 

We have  
A

C
d


  

 Here  12
0 8.854 10 6    r  

    
12 4

2

8.854 10 6 0.254 0.254 10
0.1349  pF

0.254 10

 



    
 


C  

*Problem 1.38  
A parallel plate capacitance has 500 mm side plates of square shape separated by 10 mm 
distance. A sulphur slab of 6 mm thickness with 4r   is kept on the lower plate find the 
capacitance of the set-up. If a voltage of 100 volts is applied across the capacitor, 
calculate the voltages at both the regions of the capacitor between the plates. 

Solution 
Given 

 Area of parallel plates, A = 500 mm × 500 mm = 500 × 500 × 10–6 m2. 
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 Distance of separation d = 10 mm = 10 × 10–3 m. 

 Thickness of sulphur slab d2 = 6 mm = 6 × 10–3 m. 

 Relative permittivity of sulphur slab 4r  . 

 Voltage applied across the capacitor V = 100 V. 

 Here the capacitor has two dielectric media,  

 One medium is the sulphur slab of thickness (d2)6 mm, 

 since the distance between the plates(d) is 10 mm 

 The remaining distance is air 1 2d d d  = 4 mm. 

  The other dielectric medium is air with thickness  1d  4 mm. 

 The capacitance of the parallel plate capacitor with two dielectric media is   

     0

1 2

1 2

F



 

    r r

A
C

d d
 

 Here  
1r

  (air) = 1, 
2r

 = 4r   

     
12 6

3 3

8.854 10 500 500 10
0.402  nF

4 10 6 10

1 4

C
 

 

   
 

  
 

 

 

 The charge Q = CV = 0.402 × 10–9 × 100 = 4.02 × 10–8 C 

 The value of capacitance (C1) in delectric-1 i.e., air is  

     
12 6

0
1 3

1

8.854 10 500 500 10
0.55 nF

4 10

 



    
  


A

C
d

 

 Similarly, The value of capacitance (C2) in delectric-2 i.e., sulphur is 

     
12 6

2 3
2

4 8.854 10 500 500 10
1.48  nF

6 10

 



     
  


A

C
d

 

 We have V = V1 + V2 

 Where V1 is the voltage at the region of the capacitor plate near dielectric-1 i.e., air. 

 and V2 is the voltage at the region of the capacitor plate near dielectric-2 i.e., sulphur. 

     
8

1
1 9

1 1

4.02 10
V 73.1 V

0.55 10






   


Q Q

C C
 

   V2 = 100 – 73.1 = 26.9 V 
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1.18.2 Co-axial Capacitor  
Consider two co-axial cables or co-axial cylinders of length ‘L’ where inner cylinder 
radius is ‘a’ and outer cylinder radius is ‘b’ as shown in Fig.1.43.  The space between two 
cylinders is filled up with a homogeneous dielectric material with permittivity . Assume 
the charge on inner cylinder as Q and on the outer cylinder as –Q. 

we have charge enclosed by the cylinder as  

   Q D ds    where D D a   and ds d dz a   

  
2

0 0
2 2


  
     

 
    

L

z
Q D d dz D L E L  

i.e.,  
2 2    

  
 

Q Q
E E a

L L
 

 To find the capacitance of co-axial capacitor.  We need to find  the potential difference 
between the two cylinders.  

     
a

b

V E.dl  where  dl d a  

     .
a

b

V E d a   

         
2

a

b

Q
d

L


 
 

  

     ln
2

Q b
V

L a
     

 

     
 

2

ln

Q L
C

bV
a

 
      …..(1.18.4) 

 Which is the expression for Coaxial capacitance. 

1.18.3 Spherical Capacitor 
Consider two spheres i.e., inner sphere of radius ‘a’ and outer sphere of radius ‘b’ which 
are separated by a dielectric medium with permittivity  as shown in Fig.1.44. The 
charge on the inner sphere is +Q and on the outer sphere is –Q. 

 

Fig. 1.43 Co-axial capacitor
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 We have charge enclosed by the sphere as 

     .
S

Q D d s     

   where r rD D a ;   

     2 sin rds r d d a     

     
2

2

0 0

sin rQ d r D d
 

 

  
 

    

     
24

r

Q
D

r
  

     
24

r
Q

E
r




 

     
24

r
Q

E a
r




 

 To find the capacitance of spherical capacitor. We need to find the potential difference 
between the two spheres.  

      
a

b

V E dl   

 where   rdl dr a  

     
2

1

4

a

b

Q
V dr

r



  

        
1 1

4

Q

a b
    

 

     
4
1 1

Q
C

V
a b

 
 

  
 

     …..(1.18.5) 

 Which is the expression for Spherical capacitance. 

 

 

 

Fig. 1.44 Spherical capacitor
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Review Questions and Answers 
 1. State stokes theorem. 

Ans. The line integral of a vector around a closed path is equal to the surface integral of 
the normal component of its curl over any surface bounded by the path. 

    
S L

A ds A dL      

 2. State coulombs law. 

Ans.  Coulombs law states that the force between any two point charges is directly 
proportional to the product of their magnitudes and inversely proportional to the 
square of the distance between them. It is directed along the line joining the two 
charges. 

    1 2
12 2 12

04
R

Q Q
F a

R



 

 3. State Gauss law for eelectric fields. 

 Ans. The total electric flux passing through any closed surface is equal to the total 
charge enclosed by that surface. 

 4. Define electric flux. 

Ans.  The lines of electric force is electric flux. 

 5. Define electric flux density. 

Ans.  Electric flux density is defined as electric flux per unit area. 

 6. Define electric field intensity. 

 Ans. Electric field intensity is defined as the electric force per unit positive charge.  

 7. Name few applications of Gauss law in electrostatics. 

Ans.  Gauss law is applied to find the electric field intensity from a closed surface, i.e., 
Electric field can be determined for shell, two concentric shell or cylinders etc. 

 8. What is a point charge? 

Ans.  Point charge is one whose maximum dimension is very small in comparison with 
any other length. 

 9. Define linear charge density. 

Ans.  It is the charge per unit length. 
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 10. Write poisson’s and laplace’s equations. 

Ans.  Poisson’s eqn: 

    2 vV


 



 

  Laplace’s eqn: 

    2 0V   

 11. Define potential difference. 

Ans.  Potential difference is defined as the work done in moving a unit positive charge 

  from one point to another point in an electric field. 

 12. Define potential. 

Ans.  Potential at any point is defined as the work done in moving a unit positive charge 
from infinity to that point in an electric field. 

 13. Give the relation between electric field intensity and electric flux density. 

 Ans.   D E  C/m2 

 14. Give the relationship between potential gradiant and electric field. 

Ans.     E V   

 15. What is the physical significance of div D ? 

Ans.    . vD      

  The divergence of a vector flux density is electric flux per unit volume leaving a 
small volume. This is equal to the volume charge density. 

 16. Define current density 

Ans.  Current density is defined as the current per unit area. 

    J = 
I

A
Amp/m2 

 17. Write the point form of continuity equation and explain its significance. 

Ans.      vJ
t


   




              

  which is the continuity current equation and it’s significance is: 
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  The left side of the equation is the divergence of the Electric Current Density  J . 

This is a measure of whether current is flowing into a volume (i.e., the divergence 
of J  is positive if more current leaves the volume than enters).  

  Recall that current is the flow of electric charge. So if the divergence of J  is 
positive, then more charge is exiting than entering the specified volume. If charge 
is exiting, then the amount of charge within the volume must be decreasing. This is 
exactly what the right side is a measure of - how much electric charge is 
accumulating or leaving in a volume. Hence, the continuity equation is about 
continuity - if there is a net electric current is flowing out of a region, then the 
charge in that region must be decreasing. If there is more electric current flowing 
into a given volume than exiting, then the amount of electric charge must be 
increasing.  

 18. Write the expression for energy density in electrostatic field. 

Ans.    21

2Ew E    

 19. Write down the expression for capacitance between two parallel plates. 

Ans.    
A

C
d


  

 20. What is meant by displacement current? 

Ans.  Displacement current is the current flowing through the capacitor.    

Multiple Choice Questions 
1. Q1 and Q2 are two point charges, which are at a distance 8 cm apart. The force 

acting on Q2 is given by 12
21 9 10 N. yF a  Now we replace Q2 with a charge of 

the same magnitude but opposite polarity, Q3 = – Q2, and we place Q3 at a distance 
24 cm away from Q1. What is the vector F31 of the force acting on Q3?    

 (a) 12
31 3 10 N  yF a  (b) 12

31 3 10 N   yF a  

 (c) 12
31 1 10 N   yF a  (d) 12

31 1 10 N  yF a           

2. The intensity of the field due to a point charge Q1 at a distance R1 = 1 cm away 
from it is E1 = 1 V/m. What is the intensity E2 of the field of a charge Q2 = 4Q1 at a 
distance R2 = 2 cm from it?   

 (a) E2 = 1 V/m (b) E2 = 4 V/m    

 (c) E2 = 2 V/m  (d) E2 = ½ V/m 
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3. The intensity of the field due to a line charge pL1 at a distance r1 = 1 cm away from 
it is E1 = 1 V/m. What is the intensity E2 of the field of the line charge pL2 = 4 at a 
distance r2 = 2 cm from it?   

 (a) E2 = 1 V/m (b)  E2 = 4 V/m   

 (c)  E2 = 2 V/m  (d)  E2 = ½ V/m 

4. Charge Q is uniformly distributed in a sphere of radius a1. How is the charge 
density going to change if this same charge is now occupying a sphere of radius              
a2 = a1/4 ?      

 (a) It will increase 4 times (b)  It will increase 64 times 

 (c) It will increase 16 times (d)  It will increase 2 times 

5. A line charge pL = 5 × 10–3 C/m is located at (x, y) = (0, 0), and is along the z-axis. 
Calculate the surface charge density ps (ps > 0) and the location xp (xp > 0) of an 
infinite planar charge distributed on the plane at x = xp, so that the total field at the 
point P (0. 5 × 10–3, 0) m, is zero.  

 (a) 2 31/(2 ) C /m , 5 10 m  s px    (b) 21/(2 ) C /m , s px    

 (c) 2 31/ C /m , 10 10 m  s px    (d)  21/ C /m , s px   

6. The volume charge density associated with the electric displacement vector in 

spherical coordinates  sin sin cos sin cos   ra a a        is   

 (a) 0  (b) 1  
 (c)  Not compatible  (d)  sin 

7.  The divergence theorem     

 (a)  Relates a line integral to a surface integral 

 (b)  Holds for specific vector fields only  

 (c)  Works only for open surfaces 

 (d)  Relates a surface integral to a volume integral 

8.  The flux of a vector quantity crossing a closed surface  

 (a)  is always zero  
 (b)  is related to the quantity’s component normal to the surface 
 (c)  is related to the quantity’s component tangential to the surface 
 (d)  is not related in any way to the divergence of that vector quantity 
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9.  The flux produced by a given set of fixed charges enclosed in a given closed region 
is   

 (a) Dependent on the surface shape of the region, but not the volume 

 (b) Dependent on the total volume of the region, but not the surface shape 

 (c) Dependent on the ratio of volume to surface area of the region 

 (d)  Not dependent on any of these as long as the charges are inside the region 

10. Consider charges placed inside a closed hemisphere. Consider the flux due to these 
charges through the curved regions (Flux A) and through the flat region (Flux B)     

 (a)  Flux A = Flux B   

 (b)  Flux A > Flux B        

 (c)  Flux A < Flux B    

 (d)  Not enough information to decide the relation between Flux A and Flux B  

11. An electron (qe = 1.602 × 10–19 C) leaves the cathode of a cathode ray tube (CRT) 
and travels in a uniform electrostatic field toward the anode, which is at a potential 
Va = 500 V with respect to the cathode. What is the work W done by the 
electrostatic field involved in moving the electron from the cathode to the anode?      

 (a) 5kJW   (b)  198 10 J W  

 (c) 178 10 J W     (d) 5JW   

12.  In the previous question, what is the electric field strength E E  if the distance 

between the cathode and the anode is 10 cm?  

 (a)  5 V/mE  (b) 500 V/mE   

 (c)  50 V/mE  (d)  5 kV/mE  

13.  The electrostatic potential due to a point charge Q1 at a distance r1 = 1 cm away 
from it is V1 = 1 V. What is the potential V2 of a charge Q2 = 4Q1 at a distance                  
r2 = 2 cm from it?  

 (a) 2 0.5 VV  (b) 2 1 VV     

 (c)  2 4  VV  (d) 2 2  VV   

14. The electrostatic potential due to a dipole p1 = p1a2 at a distance r1 = 1 cm away 
from it along the z-axis, is V1 = 1 V. What is the potential V2 of a dipole                              
p2 = 4p1aZ at a distance r2 = 2 cm from it along the z-axis?  

 (a)  2 0.5  VV  (b) 2 1 VV    

 (c)  2 4  VV  (d) 2 2  VV   
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15. The electrostatic potential 
3

0

2 10
V x





V. Where x is measured in meters and 

0  is the permittivity of vacuum, exists in a region of space (vacuum) in the shape 
of a parallelogram of size 10 × 10 × 1 cm. What is the electrostatic energy 
WE stored in this region?   

 (a) 102 10 J EW  (b) 91 10 J EW   

 (c) 104 10 J EW  (d) 93 10 J EW   

16. Which statement is not true?   

 (a)  The static electric field in a conductor is zero 

 (b)  The conductor surface is equipotential 

 (c)  Zero tangential electric field on the surface of a conductor leads to zero 
  potential difference between points on the surface 

 (d)  The normally directed electrical field on the surface of a conductor is zero 

17. The “skin” effect results in   

 (a) Current flowing in the entire volume as frequency increases 

 (b)  Current flowing only near the surface as frequency increases 

 (c)  Current flowing only near the surface as frequency decreases 

 (d)  Current flowing near the surface at any frequency 

18.  As frequency increases, skin effect results in    

 (a) Decreased resistance 

 (b)  Increased resistance 

 (c)  No change in resistance 

 (d)  Increase or decrease depending on material properties. 

19. In a parallel-plate capacitor, the charge on the plates is C. What is the electric flux 
density magnitude D, if the area of each plate is A = 10–4 m2. Assume uniform field 
distribution.      

 (a) 5 210 C/mD   (b) 5 2
010 / C/mD    

 (c) 5 2
010 C/mD    (d) 13 210 C/mD    

20. For the capacitor in Previous question, find the voltage between its plates, provided 
its capacitance is C = 10 pF.   

 (a) 885VV  (b)  0VV   

 (c) 100VV   (d)  510 VV  
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21. The capacitor in above Q no. 19 and 20 uses dielectric of permittivity 0 . The 

maximum allowable field intensity (dielectric strength) of this dielectric is                             
Eds = 3 MV/m. (If E > Eds, the material breaks down.) What is the maximum 
voltage Vmax, up to which the capacitor can operate safely (its breakdown voltage)?   

 (a) max 885VV  (b) max 1000VV   

 (c) 6
max 3 10 V V  (d) max 265VV   

22. A coaxial capacitor whose cross-section is shown in the figure below has a central 
conductor of radius r1 and an outer conductor of radius r3. The region between the 
two conductors consists of two regions: (i) the region r1 < p < r2 has a relative 
permittivity of  1 2r   and (ii) the region r2 < p < r3 has a relative permittivity of 

2 1r  . The radius 2r  is such that 2
2 1r r e  and 3 2r r e  where 2 71e . . 

 

 What is the capacitance per unit length?   
 (a) 1 04C    (b) 1 0C        

 (c) 1 02C    (d)  1 0/2C    

23. Poisson’s and Laplace’s equations are different in terms of  

 (a) Definition of potential (b)  Presence of non-zero charge 

 (c)  Boundary conditions on potential  (d)  No difference 

Answers 

1. (c) 9. (d) 17. (b) 

2. (a) 10. (a) 18. (b) 

3. (c) 11. (c) 19. (a) 

4. (b) 12. (d) 20. (c) 

5. (d) 13. (d) 21. (d) 

6. (a) 14. (b) 22. (b) 

7. (d) 15. (a) 23. (b) 

8. (b) 16. (d)   
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Exercise Questions 
1. State the Coulomb’s law in SI units and indicate the parameters used in the equations 

with the aid of a diagram. 

2. State Gauss’s law. Using divergence theorem and Gauss’s law, relate the density D 
to the volume charge density v . 

3. Explain the following terms: 

(a) Homogeneous and isotropic medium and  

(b) Line, surface and volume charge distributions. 

4. State and Prove Gauss’s law. List the limitations of Gauss’s law. 

5. Express Gauss’s law in both integral and differential forms. Discuss the salient 
features of Gauss’s law. 

6. Derive Poisson’s and Laplace’s equations starting from Gauss’s law. 

7. Using Gauss’s law derive expressions for electric field intensity and electric flux 
density due to an infinite sheet of conductor of charge density  C/m. 

8. Find the force on a charge of –100 mC located at P(2, 0, 5) in free space due to 
another charge 300 C located at Q(1, 2, 3). 

9. Find the force on a 100 C charge at(0, 0, 3) m, if four like charges of 20 C are 
located on X and Y axes at  4 m. 

10. Derive an expression for the electric field intensity due to a finite length line charge 
along the Z-axis at an arbitrary point Q(x, y, z). 

11. A point charge of 15 nC is situated at the origin and another point charge of –12 nC 
is located at the point (3, 3, 3) m. Find E  and V at the point(0, –3, –3). 

12. Obtain the expressions for the field and the potential due to a small Electric dipole 
oriented along Z-axis.  

13. Define conductivity of a material. Explain the equation of continuity for time 
varying fields. 

14. As an example of the solution of Laplace’s equation, derive an expression for 
capacitance of a parallel plate capacitors. 

15. In a certain region 2 23 cos sin A m rJ r a r a  , find the current crossing the 

surface defined by 30 ,0 2 ,0 2m    o r   . 




