
1

 CHAPTER 1

Introduction to UML

UML is an acronym for Unified Modeling
Language. As its name indicates, it is a
graphical language, used to create visual
models of software intensive systems. The
UML is an industry standard for object
oriented design notation, supported by the
Object Management Group (OMG). The
UML represents a collection of best
engineering practices for modeling large and
complex systems. The UML uses graphical
notations to design software projects. It is a
visual language with graphical symbols used
for visualizing, specifying, constructing and
documenting various artifacts of a software
system.

Visualizing
The UML is the language used by every
stakeholder involved in the software
intensive system, to better understand the
conceptual models of the system. UML can
build models of the complex systems which
are difficult to comprehend mentally. The
UML models the software systems for better
communication among all parties involved
for good team work resulting into successful
software projects. UML helps the project
teams to communicate, explore potential
designs and validate architectural design of
the software systems.

Specifying
The UML builds models which are precise,
simple, complete and unambiguous. The

After studying the chapter the
students familiarize themselves
with the following concepts:

♦ History of UML
♦ Principles and Importance

of Modeling
♦ Understanding UML with

its Rules and Building
Blocks

LEARNING OBJECTIVES

2 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

UML addresses the tasks of design, analysis and implementation to develop
and deploy software intensive systems. By using UML we can model
application’s structure, behavior, architecture and data.

Constructing
The UML is used for forward and reverse engineering. UML models can be
mapped to any object-oriented programming languages such as Java, C++ and
Visual basic. We can carry forward engineering, where source code can be
generated by using system models. UML can also be applied for reverse
engineering, where system models are generated from the source code.

Documenting
The UML can be used for documenting various features and characteristics of
any software-intensive system. UML can document system’s requirements,
system’s architecture, test cases, project plan and release specifications of any
software development project.

1.1 History of UML

In the late 1980s and early 1990s, people used a variety of object-oriented
design techniques and notations. Different software development companies
were using different notations to analyze, design and document their object-
oriented systems. These diverse notations used, lead to confusion and
ambiguity.

UML was developed to standardize the large number of object-oriented
modeling notations that existed and used extensively in the early 1990s. The
major ones used were, Object Management Technology notations developed by
Rumbaugh in 1991, Booch’s methodology notations developed by Grady Booch
in 1991, Object-Oriented Software Engineering notations developed by
Jacobson in 1992, Odell’s methodology notations developed by Odell in 1992,
and Shaler and Mellor methodology notations developed by Shaler in 1992. The
UML adopted many concepts from all these techniques and notations. Later,
UML was adopted by Object Management Group (OMG) as a de facto standard
in 1997.

1.2 Importance of Modeling

What is a Model ?

A model is a simplification of reality. A model can be considered as a blue print.
A blueprint describes an idea, a feature and a process involved. A blueprint can
be defined as a paper based technical drawing, an architecture of a system or

 CHAPTER 1 I N T R O D U C T I O N T O UML 3

an engineering design. More generally, the term blueprint refers any detailed
plan.

A potter, who makes a pot, has a model of the pot he is making, in his mind.
The model could be conceptual and visual image of the pot, describing its size,
shape and appearance. A pot model is simple, so the potter can easily
comprehend it in his mind. The same potter, can make different varieties of pots
based on different visual models of them, he has in his mind.

The following diagrams specify making of different pots based on the model
the potter has in his mind.

Fig. 1.1(a) Pot Model 1 Fig. 1.1(b) Pot Model 2 Fig. 1.1(c) Pot Model 3

Some of the models could be little complex to have them in mind. In such
cases we have paper representation describing the model. The model can be a
descriptive text or a collection of graphical figures. A tailor who is stitching a
dress has the model of the dress in the form of specifications, requirements and
measures given by the client.

The following diagrams indicate the model for stitching a suit.

Fig. 1.2(a) Taking the
Model

 Fig. 1.2(b) Construction Fig. 1.2(c) Deployment

The above models are quite easy to comprehend mentally. In cases of
handling complex situations visual models can play a major role in
understanding the system. Imagine how difficult it would be to understand the
layout of a building without a set of visual plans or models.

4 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

Fig. 1.3(a) Model of a Construct Fig.1.3(b) The actual Construct

A model is the simplified conceptual picture of the thing that is getting
developed into a physical reality. A model is a complete description of the
system specified textually or graphically, representing different aspects of it.
Suppose, any aeronautical industry, developing a new fighter aircraft, the
process starts with the design containing visual models representing different
aspects of the new fighter aircraft. We cannot build a running prototype of the
physical aircraft without having a model of it on a paper or on a computer,
specifying all the features and details of it. The following gives the model of it
representing different aspects and its physical reality when it is built.

Models representing Different aspects of Aircraft

Fig. 1.4(a) Side View The Physical reality

 Fig. 1.4(b) Top View Fig. 1.4(c) The Real Aircraft when developed

Hope you have understood what a model is. The same visual models are
applicable even in the software engineering domain. Any software project must
start with analysis and design using visual models of the system. Hence a

 CHAPTER 1 I N T R O D U C T I O N T O UML 5

model is the simplification of reality to start with. The following section answers
why we need models.

Why we need Models ?
Modeling plays a significant role in large projects belonging to the various
engineering desciplines. Models are essential parts of any software engineering
projects. A model plays a major roll in software development as blueprints and
other plans such as site maps, elevation photos,and physical models play in the
building of a skycraper construct. Modeling achieves the following objectives:

 Helps us to visualize a system as we want it to be.
 Permits us to specify the structure or behavior of a system.
 Gives us a template that guides us in constructing a system.
 Documents the decisions we have made.

We build models of complex systems because we cannot comprehend such a
system in its entirety. We build models to better understand the system we are
developing. Any software application is built without building models of it, is
bound to fail. Software Modeling is an important aspect as it ensures software
quality. Software source code and models are mutually related. We can
generate source code from models, and models could be automatically created
using source code. Models enhance communication among team members
belonging to a project. Models ensure better planning, risk reduction, and
reduced costs etc. There are many elements that contribute to a successful
software organization; one common basis is the use of modeling. Modeling is
a proven and well-accepted engineering technique.

The model would provide a way to understand the business, a basis for the
physical structure needed to support the business. The model also helps us to
understand the project, and to comprehend the business in general. The model
not only reflects the modeler's interpretation of the project scope and business
needs, but it also provides a means to communicate with the client’s business
community. Another important aspect is that the model helps us understand our
project within the context of the overall enterprise.

You can develop visual, system analysis models for any software systems
using UML. UML helps in building a data model, using class and object
diagrams. It helps in building visual models, depicting the system’s functionality,
using use case and activity diagrams. Visual models can be created, for
specifying the entire system’s behavior, using state chart diagram and
interaction diagrams. UML will be discussed extensively in later chapters.

1.3 Principles of Modeling

A model is a descriptive, functional, or physical representation of a system.
Modeling is a way of thinking and reasoning about systems. The goal of

6 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

modeling is to come up with a representation that is easy to use in describing
systems in a mathematically consistent manner.

The four basic principles of modeling are as follows:

 Principle one: The choice of what models to create has a profound
influence on how a problem is attacked and how a solution is shaped.

 Principle two: Every model may be expressed at different levels of
precision.

 Principle three: The best models are connected to reality.
 Principle four: No single model is sufficient. Every nontrivial system is
best approached through a small set of nearly independent models.

Principle One
The Choice of Model Is Important. In software, the models you choose greatly
affect your world view. Each world view leads to a different kind of system, with
different costs and benefits. If you build a system through the eyes of a
database developer, you will likely end up with entity-relationship models that
push behavior into stored procedures and triggers. If you build a system through
the eyes of an object-oriented developer, you will end up with a system that has
its architecture centered around many classes and patterns of interaction that
direct how those classes work together.

Principle Two
While you are building models, the levels of precision may differ based on what
context you are in. While you are building a big apartments complex, sometimes
the buyer is interested to see the front elevation, and yet other times he is
interested in the internal architecture of an apartment. The best kinds of models
are those that let you choose your degree of detail, depending on who is doing
the viewing and why they need to view it. For example, when you are
developing a GUI system, a quick executable model of the user interface
without bothering about other details or quality constraints could be your
intention. Other times, when you are dealing with cross-system interfaces of
network bottlenecks, you need to model down to the bit level.

Principle Three
Suppose, you have a mathematical model of the house that exists only in ideal
environment, that is it cannot withstand, sun light and rains. Such model is the
one which is away from the physical reality. When you have a model of the car,
the model has to be connected to reality. The car when physically manufactured
it should with stand all natural conditions such as it should run in sun light, rains
and it should withstand snow fall etc. Even in case of software development, the
models of it have to be build in a way, when software is ready, it should work in
a realistic environment. It can happen, only when you develop models

 CHAPTER 1 I N T R O D U C T I O N T O UML 7

connected to reality. We know that, there can be several independent views of a
system represented by different models. All these models are assembled into
one semantic whole model of the system.

Principle Four
Suppose you are constructing a shopping complex, there may not be single set
of blueprints that reveal all its details. You have separate models for floor plans,
elevations, electrical plans, and plumbing plans. Although these models are
nearly independent, still they are interrelated. The model representing electrical
plans can be studied in isolation, but you understand their mapping to the
models of the floor plan and the plumbing plan. This is also applicable for
object-oriented software systems. To understand the architecture of such a
system, you need nearly independent but interrelated views such as use case
view, a design view, a process view, an implementation view, and a deployment
view. These views, together represent the system, which is under development.
The following diagram indicates how all these views which are nearly
independent but are interrelated.

Fig.1.5 Views of an Object Oriented system

1.4 Object-Oriented Modeling

Architects build many kinds of models. These models could be structural
models that make people visualize and specify parts of systems and how they
relate to one another. They may also build dynamic models to understand the
behavior of the structure during cyclones and earthquakes.

In software, there are two most common ways to approach a model. You can
build a model from an algorithmic approach and an object-oriented approach. In
algorithmic approach, the basic building blocks of software are procedures or
functions. A procedure or a function contains a set of instructions to accomplish
a task or a purpose. In this approach, larger algorithms are decomposed into

Design View Process View

Implementation
View Deployment View

Use case
View

8 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

smaller ones and developed independently and later integrated. The systems
built with this approach have problems in maintaining the software as
requirements change or when the system grows.

In object-oriented approach, the major building blocks are objects or classes.
A class is a category for a set of common objects. Every object has its own
name to distinguish it from others. An object has state, in the form of attributes
or data associated with it. It has behavior specified in the form of operations.
The whole behavior of an object-oriented system can be expressed in the form
of interactions among objects that constitute the system. The major advantage
of an object-oriented approach is reusability. We can build a new system based
on already available and fully tested objects by assembling them as we build a
vehicle by assembling the various parts of it which are independently
manufactured by independent vendors. New object-oriented systems can be
built by assembling already existing components in the software market, such
as Java beans or COM, DCOM.

Visualizing, specifying, constructing, and documenting systems which are built
based on object-oriented approach is the primary purpose of UML.

1.5 Understanding UML

UML is a modeling language whose vocabulary and rules focus on the
conceptual and physical representation of a system. Some things are best
modeled textually; other are best modeled graphically. UML is a visual modeling
language having graphical symbols as its vocabulary. A modeling language
such as UML, is thus a standard language for software blueprints. The UML
addresses the specification of all the important analysis, design and
implementation decisions relating to any software systems. UML is not only a
visual programming language, but its models can be directly connected to a
variety of programs, in fact, source code can be generated directly from UML
models. UML models can be used for analyzing the problem-domain which
includes simplifying the reality, capturing requirements, visualizing the system in
its entirety, and specifying the structure and/or behavior of the system. UML
models can be applied for designing the solution which includes documenting
the solution in terms of its structure and/or behavior. UML provides the
notations for documenting some of the artifacts such as requirements, system
design and test cases and test procedures.

The UML is largely process independent. However, to get the most benefit
from the UML, you should consider a process that is:

 Use-case driven.
 Architecture-centric.
 Iterative and incremental.

The UML is not limited to only modeling softwares. You can also model non
software systems such as:

 CHAPTER 1 I N T R O D U C T I O N T O UML 9

 Work Flow in the legal system.
 The Patient Healthcare system.
 The Design of hardware.

1.6 Building Blocks of the UML

The vocabulary of UML include three kinds of building blocks:
 Things.
 Relationships.
 Diagrams.

The Things are:
 Structural Things.
 Classes, Interfaces, Collaborations, Use cases, Active classes,

Components, Nodes.
 Behavioral Things.
 Interactions, State Machines.

 Grouping Things.
 Packages.

 Annotational Things.
 Notes

The Relationships are:
 Dependency.
 Association.
 Realization.
 Generalization.

The Diagrams are:
 Class Diagram.
 Object Diagram.
 Use case Diagram.
 Sequence Diagram.
 Collaboration Diagram.
 State chart Diagram.
 Activity Diagram.
 Component Diagram.
 Deployment Diagram.

Structural Things
Structural things are nouns of the UML models. These are mostly static parts of
the model, representing elements which are conceptual or physical. There are
seven structural things supported by UML.

 Class
 Interface

10 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

 Collaboration
 Use case
 Active Class
 Component
 Node

Class
A class is a category of set of objects that share common attributes, operations,
relationships and semantics. Attributes are the named properties of a class
depicting its state, whereas operations are the services offered by a class
depicting its behavior. A class is graphically represented as a rectangle
containing three components, indicating name, attributes and operations.

Example:

Fig. 1.6 (a) Class Definition (Door) Fig. 1.6(b) Class Definition (Student)

Interface
It is a collection of operations, which specify a service of a class or a
component. Interface contains operations, but not their implementations. A TV
Remote is an interface for the service of a class named TV Set. An interface is
attached to the class or component that realizes an interface. An interface
shares the same features as a class; in other words, it contains attributes and
methods. The only difference is that the methods are only declared in the
interface and will be implemented by the class implementing the interface. An
interface is graphically represented as a circle with its name in UML.

Example:

Fig. 1.7(a) Defining Interface Fig. 1.7(b) Another way of defining Interface

<<interface>>
TVRemote

tvOn()
tvOff()
changeChannel()
volumeControl()

TV Remote

Door
height
width
movingDirection
open()
close()
lock()
unlock()

Student
rollNumber
name
branch
yearOfStudy

admitStudent()
removeStudent()
appearforExam()

Operations/Services

Class Name

Properties/Attributes

 CHAPTER 1 I N T R O D U C T I O N T O UML 11

Collaboration
It defines an interaction among different elements of UML to provide some
cooperative behavior. Collaborations specify structure as well as behavior.
These are implementations of patterns that make up the system. A collaboration
is graphically represented as a dashed ellipse.

Example:

 Fig 1.8(a) Collaboration Fig 1.8(b) Collaboration

Use case
It specifies the behavior of a system as a whole or a part of it in the form of set
of functions. It is realized by a collaboration. A use case is graphically
represented as a full ellipse.

Example:

 Fig 1.9(a) Use case Definition Fig 1.9(b) Use case Definition

Active Class
It is a class whose instance is an active object. An active object is an object that
owns a process or thread. It can initiate control activity. An active class is
graphically represented as an ordinary class but with thick boundary.

Example:

 Fig. 1.10 Defining Active Class

Accounts System Billing System

Process Order Make a
Reservation

Event Manager

Task Manager

task
status

endTask()
swtchTo()
newtask()

12 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

Component
It is a physical and replaceable part of the sytem. A component typically
manifests itself as a piece of software. Graphically, a component is represented
as a rectangle with tabs, usually including only its name.

Example:

 Fig. 1.11 Component Definition

Node
It is a physical element that exists at run-time and represents a computational
resource. It is typically, a hardware resource of the system. It has at least some
memory and processing capability. A node can be a personal computer, a
workstation, mini or main frame computer or an electronic device with some
memory and computing power. A node is graphically represented as a cube
containing its name.

Example:

 Fig. 1.12 Defining Nodes

Behavioral Things
These are the the verbs of UML models; usually the dynamic parts of the
system in question. They represent the behavior of the system over time and
space. There are two kinds of behavioral things:

 Interaction: some behavior constituted by messages exchanged among
objects; the exchange of messages is with a view to achieving some
purpose. An interaction specifies the behavior of a society of objects or of
an individual operation of a class. A message is graphically represented
as a directed line including the name of its operation.

Example:

 State Machine: A behavior that specifies the sequence of “states” an
object goes through, during its lifetime. A “state” is a condition or situation
during the lifetime of an object during which it exhibits certain
characteristics and/or performs some function. A state machine can be

issue Book

Server

Client

Print
Server

 Order System

 Inventory System

 CHAPTER 1 I N T R O D U C T I O N T O UML 13

used to indicate the behavior of a class or a collaboration of classes. A
state machine involves state (the current status), transition (flow from one
state to the other state), event (that causes transition), and activities
(response to a transition). A state machine is graphically represented as
a rounded rectangle indicating the name of its current status and its sub
states, if any.

Example:

 Fig. 1.13 Defining State

Grouping Things
These are the organizational parts of the UML models. They provide higher
level of abstraction. These are the containers into which a model can be placed.
There is only one kind of grouping thing, named package.

Package
It is a general-purpose element that comprises UML elements - structural,
behavioral or even grouping things. Packages are conceptual groupings of the
system and need not necessarily be implemented as cohesive software
modules. A package is graphically represented as a tabbed folder including its
name.

Example:

 Fig.1.14 Defining Packages

Annotational Things
These are the explanatory part of the UML model; adds information/meaning to
the model elements. There is only one kind of annotational thing, named Note.

Note
It is a graphical notation for attaching constraints and/or comments to elements
of the model. Using notes you can attach explanatory comments to an element

Accounts
Department

Sales
Transactions

Waiting Executing

14 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

or a collection of elements. It is graphically represented as a rectangle with a
dog-eared corner containing a textual or graphical comment.

Example:

 Fig.1.15 Defining Note

Relationships
There are four relationships supported by UML models.

Dependency
A dependency is a using relationship that states that a change in specification
of one thing may affect another thing that uses it, but not necessarily the
reverse. Usually a class may depend on another class or on interface. Typically,
dependency relationships do not have names. As the following figure illustrates, a
dependency is displayed in the diagram editor as a dashed line with an open arrow
that points from the client to the supplier.

Example:

 Fig 1.16 Defining Dependency

Association
An association represents a structural relationship that connects two classifiers,
such as classes or use cases, that describes the reasons for the relationship and

Client Supplier

Note: Client class depends on the Supplier class.

 (arrow-head points to the independent thing)

Parses user-query
and builds expression stack
(or invokes Error Handler)

Notation:

 CHAPTER 1 I N T R O D U C T I O N T O UML 15

the rules that govern the relationship. Like attributes, associations record the
properties of classifiers. An association appears as a solid line between two
classifiers, and association ends indicate the roles played by them including
properties such as multiplicity and constraints.

Notation
Example:

 Fig.1.17 Defining Association

Note: Worker works for a Company. Worker and Company play roles in
association. More than one worker can work in a single Company indicating
multiplicity at association ends.

Generalization
It is a relationship in which one model element (the child) is based on another
model element (the parent). The parent element is the generalized one and the
child element is considered as the specialized one. This relationship is
applicable to class, component, deployment, and use-case diagrams to indicate
that the child receives all of the attributes, operations, and relationships that are
defined in the parent. The model elements in a generalization relationship must
be the same type. For example, a generalization relationship can be used
between actors or between use cases; however, it cannot be used between an
actor and a use case. The child model elements in generalizations inherit the
attributes, operations, and relationships of the parent, you must only define for
the child the attributes, operations, or relationships that are distinct from the
parent. Graphically, a generalization relationship is displayed in the diagram
editor as a solid line with a hollow arrowhead that points from the child model
element to the parent model element.

Notation

Child Parent

Worker Company

Works For

16 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

Example:

Fig 1.18 Defining Inheritance

Realization

In UML modeling, a realization relationship is a relationship between two model
elements, in which one model element, implements or executes the behavior
that the other model element, specifies. This relationship is available between
interfaces and the classes or the components that realize them and also
between use cases and the collaborations that realize them. A realization is
indicated by a dashed line with an unfilled arrowhead towards the supplier.
Realizations can only be shown on class or component diagrams.
Notation

Example:

 1. This relationship between a class and an interface indicates that the
interface specifies the behavior to be carried out in the form of its
operations, and the class implements that behavior.

 CHAPTER 1 I N T R O D U C T I O N T O UML 17

Fig.1.19 Defining Realization

 2. This relationship between a use case and the collaboration indicates that
the use case specifies the behavior to be carried out and the
collaboration implements it.

Fig.1.20 Defining Realization among use cases

Diagrams in the UML

A UML diagram is a graphical presentation of the UML model. It is represented
as a connected graph containing vertices (things) connected by arcs
(relationships). The UML diagrams help us to visualize a system from different
perspectives. UML diagrams let developers and customers view a software
system from different perspectives and in varying degrees of abstraction. UML
includes nine diagrams - each capturing a different dimension of a software
system architecture.

Class Diagram

Class diagrams are widely used to describe the types of objects in a system
and their relationships. It includes elements of a model, such as classes,
interfaces and collaborations and how they are interrelated. Class diagrams
indicate the structural or static part of the system. Class diagrams address static
design view of the system. Class diagrams may also include design elements
such as classes, packages and objects. Class diagrams describe three different
perspectives when designing a system, conceptual, specification, and

Process Issue
Book

Issue a Book

Student
rollNumber
name
branch
yearofStudy

admitStudent()
removeStudent()
modifyStudent()
transferStudent()

<<interface>>
Student Details

admitStudent()
removeStudent()
modifyStudent()
transferStudent()

18 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

implementation. These perspectives become evident as the diagram is created
and help improve the design.

Object Diagram

Class diagrams are conceptual ones, but object diagrams are physical. An
object diagram contains set of objects and how they are connected or linked
together. It indicates the snapshot of an instance of a class diagram at a
particular instance of time. Object diagrams address the real and prototypical
perspectives of any software intensive system. Objects are nothing but
instances of classes.

Use Case Diagram

It is a graphical representation consisting of use cases and actors and how they
are related. Use case diagrams address the dynamic part of the system. They
are helpful in modeling the behavior of the system. A use case is a set of
scenarios that describe an interaction between a user and a system. The two
main components of a use case diagram are use cases and actors. An actor
represents a user or another system that will interact with the system you are
modeling. A use case is an external view of the system that represents some
action the user might perform in order to accomplish a task.

Interaction Diagrams

Interaction diagrams model the behavior of a use case by depicting the way a
set of objects interact in order to complete a task. There are two kinds of
interaction diagrams, namely sequence and collaboration diagrams. Both of
these diagrams are isomorphic, i.e., they are semantically equivalent and one
can be generated from the other without the loss of any information. Interaction
diagrams address the dynamic view of the system.

Sequence diagrams demonstrate the behavior of objects in a use case by
describing the objects and the messages they pass among themselves.
Sequence diagrams emphasize the time ordering of messages. Sequence
diagrams contain objects with their life lines coming from top to bottom. The
interactions among objects is specified with the messages passed among them.

Collaboration diagrams demonstrate the structural organization of the
objects that interact, it shows how objects are statically connected. If you have a
sequence diagram, you can transform it into a collaboration diagram and vice
versa. They show the relationship between objects and the order of messages
passed between them. The objects are listed as icons and arrows indicate the
messages being passed between them. The numbers next to the messages are

 CHAPTER 1 I N T R O D U C T I O N T O UML 19

called sequence numbers. As the name suggests, they show the sequence of
the messages as they are passed between the objects.

State chart Diagram

It is a graphical representation consisting of sates, transitions, events and
activities. A state machine displays the sequences of states that an object goes
through during its life time in response to received external or internal events,
together with its responses and actions. State diagrams are used to describe
the behavior of a system. State diagrams, describe all of the possible states of
an object goes through as events occur. Each diagram usually represents
objects of a single class and track the different states of its objects through the
system.

Activity Diagram

It is a special kind of state chart diagram where most of the states are action
states and most of the transitions are triggered by completion of the actions in
the source states. This diagram focuses on flows driven by internal processing.

Activity diagrams describe the workflow behavior of a system. Activity diagrams
can show activities that are conditional or parallel. Activity diagrams emphasize
the flow of control among objects as activities are carried out by the system.

Component Diagram

A component diagram shows how the various components that constitute a
system are organized and physically related to each other. It displays the high
level packaged structure of the code itself. Component diagrams show the
software components of a system and how they are related to each
other. Dependencies among components are shown, including source code
components, binary code components, and executable components. Some
components exist at compile time, at link time, at run time as well as at more
than one time. Component diagram addresses the static implementation view of
the system.

Deployment Diagram

A deployment diagram shows the configuration of nodes (processing elements)
and the components that live on them. It gives the static deployment view of the
system’s architecture. This diagram displays the configuration of run-time
processing elements and the software components, processes, and objects that
live on them. Software component instances represent run-time manifestations
of code units.

20 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

Fig.1.21 Classification of UML Diagrams

1.7 Rules of the UML

UML being a visual modeling language, has number of rules indicating how
UML’s building blocks can be combined together to build various system
models. These UML rules specify what a well-formed model should look like.
Well-formed means that a model or model fragment adheres to all semantic and
syntactic rules that apply to it.

Example of a semantic rule: If the class is concrete, there should be methods
to realize all its operations.

Example of a syntactic rule: A class is drawn as a solid-outline rectangle with
three compartments separated by horizontal lines. The first compartment
contain the name of the class. The second and third compartments contain
attributes and operations belonging to the class.UML has semantic rules for:

 Names
 Scope
 Visibility
 Integrity
 Execution

UML Diagram

Behavioral Diagrams Structural Diagrams

Class Diagram Object Diagram

Component Diagram Deployment
Diagram

State Machine
Diagram

Use case Diagram

Activity Diagram Interaction Diagram

Sequence Diagram Collaboration Diagram

 CHAPTER 1 I N T R O D U C T I O N T O UML 21

Name: The names you can call for things, relationships, and diagrams. There
should be identifiable and distinguished names, to identify elements such as
class, object, association, state, process, inheritance, and final state etc.

Scope: It is the context that gives specific meaning to the element named. For
example, the scope could be instance scope meaning the named element
appears in every instance of the class with different values. If the scope is
classifier scope, the element will have only one value across the class, i.e., for
all instances.

Visibility: This specify how an element can be seen and used by others. For
example, the visibility could be public, meaning the element is accessible by
everyone, private, meaning no outsider can access this element, protected, only
the class and inherited classes can access.

Integrity: This identify how the things are properly defined and how they are
related to each other. Here the relationships among the things has to be
consistent. The data they contain should be relevant and accurate.

Execution: What it means if the model is built and run. What it will convey if the
dynamic model of the system is executed or simulated.

However, during iterative, incremental development it is expected that models
will be incomplete and inconsistent. Because, models build during the
development of any software intensive system, tend to evolve as requirements
are gathered and understood. These models are understood by different
participants (stake holders) in different ways at different times.

1.8 Common Mechanisms in the UML

Building an apartment complex is made simpler if it confirms to certain patterns
of common features. For example, the model of front room, the kitchen room
pattern, and the bathroom pattern or its look and feel are some common
patterns with their features are to be considered when building a flat. Similarly,
building models of software systems becomes simpler in UML by using some
common mechanisms that apply consistently throughout the UML, a visual
modeling language.

There are four types of common mechanisms supported by UML. They are as
follows:

 Specifications.
 Adornments.
 Common Divisions.
 Extensibility Mechanisms.

22 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

Specifications
As we know that UML is a graphical language used to model software intensive
systems. UML not only have the facility of creating the building blocks
graphically, it also has provision for textual statements describing the syntax
and semantics of those visual building blocks. UML graphical notation helps us
in visualizing the system, whereas the specification state the system’s details.

By using a specification, we are basically specifying something in detail so
that the role and meaning of the thing being specified is more clear and concise.
For example, we can give a class a detailed specification by defining a full set of
attributes, operations, full signatures of operations, and behaviors. Then we will
have a clear picture of the capabilities, responsibilities and limitations of that
class. Specifications can be included in the class, or specified separately.

Example:

 Fig.1.22 Specifying a Class

Adornments
Adornments are textual or graphical items, which can be added to the basic
notation of a UML building block in order to visualize some details from its
specification. For example, let us consider association, which in its most simple
notation consists of one single line. Now, this can be adorned with some
additional details, such as the role and the multiplicity of each end.

Student

name
rollNumber
branch
phoneNumber
address

admitStudent(S:Student)
trasferStudent(S:Student)
removeStudent(S:Student)

Responsibilities:

-A new student can be admitted.
-An admitted student can be
transferred.
-A completed student can be
removed.

Class Name

Attributes/Properties

Operations/Services

Responsibilities

 CHAPTER 1 I N T R O D U C T I O N T O UML 23

Example:

 Fig 1.23 Specifying Adornments

Note: In the above association, there are two roles, one Employee and another
Employer. An Employer can have more than one Employee working for him. An
Employee either can work for an Employer or cannot work.

A class’s specification may include details other than general information,
such as whether it is abstract (A class cannot have instances) or the visibility of
its attributes and operations. These details can be specified as graphical or
textual adornments. The following example specify a class adorned to indicate
that it is an abstract class with two public, one protected, and one private
attributes.

Example:

Fig. 1.24 Specifying Adornments in a Class

The most important kind of adornments is a Note. A Note is a graphical
symbol used for adding constraints or comments to an element/group of
elements. By using Notes, we can attach additional information to a model such
as observations, requirements, and explanations. The contents specified in
Notes do not change the meaning of the model to which it is attached.

Employee

+name
+address
#salary
-bankAccountNumber

.

The attributes ‘name’ and ‘address’ are public, means
known to everyone.

The attribute ‘salary’ is protected, means known to only him
and his children.

The ‘bankAccountNumber’ attribute is private, means only
known to him.

Multiplicity
0..1

EmployerEmployee
Roles

24 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

Example:

Fig.1.25 Adornments in the form of Notes

Common Divisions
These are used to distinguish between two things that might appear to be quite
similar, or closely related to one another. There exist two main common
divisions:

 Abstraction verses Manifestation.
 Interface verses Implementation.

In the former case, we mainly distinguish a class and an object. A class is an
abstraction; and the object is the concrete manifestation of that class. Most
UML building blocks have this kind of class/object distinction. For example, we
have use cases and use case instances, components and component
instances, and nodes and node instances.

Example:

Fig.1.26(a) Supplier Class. Fig.1.26(b) Objects of Supplier.

Note: The top most object represents a supplier named John. In our subject
terminology, John is an instance of the class, named Supplier. The second
object represents a Supplier without knowing him. Such an object is called
anonymous object. We use it only when we refer just an instance of the class
without bothering about the details of that instance.

In the later case, we distinguish Interface and Implementation and how they
are related. In this case, we address that an Interface declares some kind of
contract or agreement, where as an implementation is a concrete realization of
that contract. The Implementation is responsible for carrying out the interface.

Supplier
name
address
phone

.

John : Supplier

: Supplier

GUI for entering
Student Details to admit
In a College.

A process for issuing
a Book from the Library.

 CHAPTER 1 I N T R O D U C T I O N T O UML 25

Example:

 Fig.1.27 Implementing Interface

Extensibility Mechanisms
UML provides a standard graphical language for creating software blue prints,
but not sufficient to express all possible things that happen across all models
across all domains. Because of this constraint, UML is made open-ended,
making you to extend the language capabilities. Extensibility mechanisms allow
you to extend the UML by adding new building blocks, creating new properties
and specifying new semantics in order to make the language suitable for
modeling your specific problem domain. The UML’s extensibility mechanisms
include the following:

 Stereotypes
 Tagged Values
 Constraints

Stereotypes
They extend the vocabulary of the UML by creating new model elements
derived from existing ones but that have specific properties suitable for your
domain/problem. Each stereotype defines a set of properties that are received
by elements of that stereotype. For Example:

 1. If you are modeling a network oriented system, you definitely need
symbols for routers and hubs. The standard UML is not having model
elements to represent them. You can use stereotypes to model hubs and
routers. We can make use of stereotyped nodes to model them so that
they appear as primitive building blocks. The hub and router can be

Student
 Instructor Course

<<interface>>
Student Registration

26 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

graphically represented as follows. Graphically, a stereotype is rendered
as a name enclosed by guillemets (« » or, if guillemets proper are
unavailable, << >>) and placed above the name of another element.

Fig. 1.28(a) Stereotype for Hub Fig.1.28(b) Stereotype for Router

2. Another example, in java or in C++, you sometimes have to model
exceptions as classes. You only want them to be thrown and caught. You
can model them like basic building blocks, by marking them with a
suitable stereotype.

Example:

 Fig. 1.29(a) Stereotype for exception Fig. 1.29(b) Stereotypes for Component
and Servlet

Tagged values
Tagged values are properties for specifying keyword-value pairs of model
elements, where the keywords are attributes. They allow you to extend the
properties of a UML building block so that you create new information in the
specification of that element. Tagged values can be defined for existing model
elements, or for individual stereotypes, so that everything with that stereotype
has that tagged value. It is important to mention that a tagged value is not equal
to a class attribute. Instead, you can regard a tagged value as being a
metadata, since its value applies to the element itself and not to its instances.
For example:

<<exception>>
Overflow

throw()
catch()

<<metaclass>
Component

<<servlet>>
Search Servlet

<<Hub>>
Client Hub

<<Router>>
Server Router

 CHAPTER 1 I N T R O D U C T I O N T O UML 27

 1. One of the most common uses of a tagged value is to specify properties

that are relevant to code generation or configuration management. So, for
example, you can make use of a tagged value in order to specify the
programming language to which you map a particular class, or you can
use it to denote the author and the version of a component. Graphically, a
tagged value is rendered as a string enclosed by brackets and placed
below the name of another element. The string consists of a name (the
tag), a separator (the symbol =), and a value (of the tag).

Example:

Fig.1.30 Using Tagged Values

 2. As another example, where tagged values can be useful, consider the
release team of a project, which is responsible for assembling, testing,
and deploying releases. In such a case it might be feasible to keep track
of the version number and test results for each main subsystem, and so
one way of adding this information to the models is to use tagged values.

Example:

 Fig.1.31 Using Tagged Values

Constraints
Constraints are properties for specifying semantics and/or conditions that must
be held true at all times for the elements of a model. They allow you to extend
the semantics of a UML building block by adding new rules, or modifying

Payroll Processing
{ Processors = 3
Version = 4.5
Test Results = payrollTest.doc}

Patient Registration
{ Language = Java
Version = 3.2
Author = John Dick }

add()
remove()
cancel()

28 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

existing ones. For example, when modeling hard real time systems it could be
useful to adorn the models with some additional information, such as time
budgets and deadlines. By making use of constraints these timing requirements
can easily be captured. Graphically, a constraint is rendered as a string
enclosed by brackets, which is placed near the associated element(s), or
connected to the element(s) by dotted lines. This notation can also be used to
adorn a model element’s basic notation, in order to visualize parts of an
element’s specification that have no graphical cue.

Example:

 Fig.1.32 Specifying Constraints for Sensor

Note: In the above diagram specifies the details of a sensor class. Whenever
sensor detects smoke, it immediately raises the fire alarm. If the sensor senses
the temperature above 40 celcius, it raises the fire alarm.

In the following example, an engineering college takes admissions based on
the ranks in the engineering entrance test.

Example:

Fig.1.33 Student Admissions are in the order of the rank obtained

Student Registration
name
branch
address

admitStudent()
transferStudent()
removeStudent()

{ordered by rank}

Sensor

detectSmoke()

senseTemp()

{ Fire Alarm Immediately}

{ Fire Alarm if temp >=40 celcius}

 CHAPTER 1 I N T R O D U C T I O N T O UML 29

1.9 System Architecture

Any system models developed by UML demands that the system be viewed
from different perspectives based on different stakeholders. The different
stakeholders are end users, system analysts, developers, testers, system
integrators, technical writers, project leaders and project managers and others
who are directly or indirectly connected with the system. Each of these
stakeholders look at the system in different ways at different situations.

Here, the system’s architecture is the main way of realizing these different
views and to control system development life cycle. The software architecture of
a system is the set of static structures of the system needed to reason about the
system, which comprise software elements, relations among them, and
properties of both. The term system architecture also refers to documentation of
a system's software architecture. Documenting software architecture facilitates
understanding and communication between various stake holders of the
software intensive system. An architecture documents early decisions about
high-level design, and allows reuse of design components and design patterns
between different software projects.

 Technically, system architecture can be defined as understanding the
components that make the system, how they work together and how they
interact with each other, and the world around them. The exact definition of
system architecture according to SEI (Software Engineering Institute) can be as
follows:

“The architecture of a software-intensive system is the structure or structures
of the system, which comprise software elements, the externally visible
properties of those elements, and the relationships among them.“

Architecture specification includes the decisions about the following:

 The organization of the system.
 The structural elements and their interfaces that the system is composed
off.

 The behavior specified by behavioral elements.
 The composition of these structural and behavioral elements.

Software architecture is not only concerned with structure and behavior, but
also with usage, functionality, performance, and economic and technology
constraints. The architecture of a software intensive system, can be best
depicted by five related views as follows:

30 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

Fig.1.34 Five State View of a System

1.10 The Problem of Architectural Description

When you start the task of designing the architecture of a system, you will find
that you have some questions to answer about the architecture. These could be
as follows:

 What are the main functional elements of your system architecture?
 How will these elements interact with one another and with the outside
world?

 What information will be managed, stored, and presented?
 What physical hardware and software elements will be required to
support these functional and information elements?

 What operational features and capabilities will be provided?
 What development, test, support, and training environments will be
provided?

A major role of an architect is to provide answers to these questions in a form
that is understandable to the people who are concerned with the system. Most
probably this can be achieved by creating an architectural description.

Definition: An architectural description (AD) is a set of artifacts that documents
an architecture in a way its stakeholders can understand and demonstrates that
the architecture has met their concerns.

Use case View
The purpose of this view is to see the system as a set of activities or
transactions. It is a technique to capture business processes from end user’s
perspective. It expresses the system’s behavior as seen by users, system
analysts and testers. It gives the elements and various other sources that shape
the architecture of the system. Use case diagrams are the ways and means of

 CHAPTER 1 I N T R O D U C T I O N T O UML 31

expressing system requirements according to the client’s perspective, and
system functionalities according to the developers and testers perspective. The
static aspect of this use case view is indicated by Use case Diagrams. The
dynamic or the behavioral aspect of the system is expressed by interaction
diagrams (state chart and activity diagrams).

Design View
This is the structural view of the system which gives an idea of what a given
system is made of. This view encompasses classes, interfaces, and
collaborations that define the vocabulary of a system. This view expresses
functional requirements of the system. The static aspect of this view is captured
in class and object diagrams. The dynamic aspect of this view is captured
through interaction diagrams. This view extensively expresses the problem
definition and the way the solution is built for the problem.

Process View

Through this view you can understand the behavior of a system. This view
encompasses the threads and processes defining concurrency and
synchronization mechanisms involved in the system. It not only addresses the
processes that constitute your system, it also gives information about
performance, scalability, and throughput of the system under consideration.
This view includes various diagrams such as, the state diagram, activity
diagram, sequence diagram, and collaboration diagram.

Implementation View

This view includes various components and files used to assemble and release
the system for customer base. This view is the procedure depicting how the
system is assembled from its components and files that establish a running
system. It addresses the configuration management of the system’s release. It
gives the picture of grouped modules that constitute your system. The static
aspects of this view are captured in component diagrams, and the dynamic
aspects of it are captured through interaction diagrams, state chart diagrams
and activity diagrams.

Deployment View
This is used to identify the deployment modules for a given system. This view
encompasses the nodes that form the hardware topology on which the system
executes. This view addresses the distribution, delivery, and installation of the
parts that make up the physical system. You find the static aspects of this view ,
in deployment diagrams and dynamic aspects in interaction diagrams, state
chart diagrams, and activity diagrams.

32 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

1.11 Software Development Life Cycle

The models developed by UML are process-independent, means that they do
not depend on any particular software development methodology. To utilize
UML for a greater extent, it is better to have processes that are use case driven,
architecture centric, and iterative and incremental.

Use Case Driven
The desired behavior of the system is established by use cases. Use cases are
used as primary source for verifying, and validating the system’s architecture.
Use cases are used as the major resources for establishing testing, and
communication among various stakeholders of the system.

Architecture-Centric
The system’s architecture is considered as the primary artifact. The system’s
architecture is taken as the basis for conceptualizing, managing, constructing
and evolving the system under consideration.

Iterative and Incremental
Here, the iterative process refers to the management of the stream of
executable releases. Incremental process refers to the continuous integration of
system’s architecture for the releases. Each new release will be the
improvement of the previous release in terms of end user’s perspective of the
system in its functionality.

Any process with the above mentioned characteristics can be broken into
phases. A phase is the span of time between two major milestones of the
process. There are four phases in the software development life cycle, and they
are Inception, Elaboration, Construction, and Transition.

Inception
This is the first phase in the software development process. It involves the basic
idea of what to implement. The end of this phase begins the next phase, that is
Elaboration.

Elaboration
It is the second phase of the software development process, which include the
definition of the product vision and its architecture. In this phase, system’s
requirements are considered and formulated. This phase also specify functional
or non functional behavior of the system. This phase also forms the basis for
testing the system.

 CHAPTER 1 I N T R O D U C T I O N T O UML 33

Construction
In this phase the system is made ready to be transferred to the user community.
In this phase, the system’s requirements, and its evaluation criteria are
constantly examined against the business needs of the system.

Transition
In this phase, the system is fully tested and it is delivered to the end user. But
this phase is not the end of the development process. In this phase still
requirements are gathered, bugs are fixed, and new enhancements are taken
from the user and they are implemented in the new incremental release of the
system.

Essay Questions

 1. What is UML? Explain it briefly.
 2. Give importance of modeling.
 3. Explain principles of modeling.
 4. What is object oriented modeling?
 5. Briefly explain the following
 (a) Things (b) Relationships
 6. Briefly explain the following
 (a) Relationships (b) Diagrams
 7. Explain common mechanisms in UML
 8. Explain extensibility mechanisms in UML.

Objective Type Questions

1. What is a model?
 (a) Simplification of reality (b) It is a blue print
 (c) Both a & b (d) None

2. A model is needed for
(a) Visualizing the system
(b) Specifying structure & behavior of a system
(c) Documenting the decisions we make
(d) All the above.

3. UML builds data model by using
 (a) Class diagrams (b) Object diagrams

 (c) Both a & b (d) None

34 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

4. The system’s functionality can be specified by using
 (a) Use case diagrams (b) Activity diagrams

 (c) Both a & b (d) component diagrams

5. The best models are connected to reality is what principle of modeling
 (a) Principle One (b) Principle Two

 (c) Principle Three (d) Principle Four

6. The building blocks of UML are
 (a) Things (b) Relationships

 (c) Diagrams (d) All the above

7. Classes and interfaces come under the category of
 (a) Behavioral things (b) Structural things

 (c) Annotational things (d) Grouping things

8. Packages come under the category of
 (a) Structural things (b) Behavioral things

 (c) Annotational things (d) Grouping things

9. The set of objects that share common attributes, operations, relationships
and semantics is called

 (a) Interface (b) Class
 (c) Component (d) Node

10. A collection of operations, which specify a service of a class or a
component is

 (a) Interface (b) Class
 (c) Node (d) Component

11. A collaboration is graphically rendered as
 (a) Solid ellipse (b) Dotted ellipse

 (c) Rectangle (d) A tagged rectangle.

12. A physical and replaceable part of the system is called
 (a) Class (b) Object

 (c) Component (d) Use case

13. ------------------ represents a computational resource of a system
 (a) class (b) Object

 (c) Component (d) Node

14. The behavioural things are
 (a) Interactions (b) State machine

 (c) Both (d) None

 CHAPTER 1 I N T R O D U C T I O N T O UML 35

15. A Note comes under the category of

(a) Grouping Things (b) Structural Things
 (c) Behavioral things (d) Annotational Things

16. Is a graphical symbol for

 (a) Realization Relationship
 (b) Generalization Relationship
 (c) Dependency Relationship
 (d) Association Relationship

17. is a graphical symbol for ----------
relationship

 (a) Association (b) Dependency
 (c) Composition (d) Realization

18. --------------------------------- diagrams represent static design view of the
system

 (a) Class Diagrams (b) Object Diagrams
 (c) Both a and b (d) None

19. The diagram which emphasizes the time ordering of messages is
 (a) Collaboration diagram (b) State chart

 (c) Activity diagram (d) Sequence diagram

20. State chart diagram contain
 (a) States (b) Transitions

 (c) Events and activities (d) All the above

21. The diagram which indicate static implementation view of the system is
 (a) Activity diagram (b) Deployment Diagram

 (c) Component diagram (d) Object diagram

22. These are the common mechanisms supported by UML
 (a) Specifications (b) Adornments

 (c) Common divisions (d) All the above

23. The Extensibility mechanisms supported by UML are
 (a) Stereotypes (b) tagged values

 (c) constraints (d) All the above

24. The view which encompasses the threads and processes is
 (a) design view (b) process view

 (c) use case view (d) implementation view

36 O B J E C T -OR I E N T E D A N A L Y S I S A N D D E S I G N U S I N G UML

25. It is the phase in which the system is fully tested
 (a) inception (b) construction

 (c) transition (d) elaboration

Answers

 1. (c) 2. (d) 3. (c) 4. (c) 5. (c) 6. (d)
 7. (b) 8. (d) 9. (b) 10. (a) 11. (b) 12. (c)
 13. (d) 14. (c) 15. (d) 16. (b) 17. (d) 18. (c)
 19. (d) 20. (d) 21. (c) 22. (d) 23. (d) 24. (b)
 25. (c)

