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C H A P T E R  1 
INTRODUCTION 

1.1  DESIGN AND ANALYSIS OF A COMPONENT  

Mechanical design is the design of a component for optimum size, shape, etc., 
against failure under the application of operational loads. A good design should 
also minimise the cost of material and cost of production. Failures that are 
commonly associated with mechanical components are broadly classified as: 

(a) Failure by breaking of brittle materials and fatigue failure (when 
subjected to repetitive loads) of ductile materials.  

(b) Failure by yielding of ductile materials, subjected to non-repetitive 
loads. 

(c) Failure by elastic deformation. 

The last two modes cause change of shape or size of the component 
rendering it useless and, therefore, refer to functional or operational failure. 
Most of the design problems refer to one of these two types of failures. 
Designing, thus, involves estimation of stresses and deformations of the 
components at different critical points of a component for the specified loads 
and boundary conditions, so as to satisfy operational constraints. 

Design is associated with the calculation of dimensions of a component to 
withstand the applied loads and perform the desired function. Analysis is 
associated with the estimation of displacements or stresses in a component of 
assumed dimensions so that adequacy of assumed dimensions is validated. 
Optimum design is obtained by many iterations of modifying dimensions of the 
component based on the calculated values of displacements and/or stresses           
vis-à-vis permitted values and re-analysis. 

An analytic method is applied to a model problem rather than to an actual 
physical problem. Even many laboratory experiments use models. A geometric 
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model for analysis can be devised after the physical nature of the problem has 
been understood. A model excludes superfluous details such as bolts, nuts, 
rivets, but includes all essential features, so that analysis of the model is not 
unnecessarily complicated and yet provides results that describe the actual 
problem with sufficient accuracy.  

A geometric model becomes a mathematical model when its behaviour is 
described or approximated by incorporating restrictions such as homogeneity, 
isotropy, constancy of material properties and mathematical simplifications 
applicable for small magnitudes of strains and rotations.  

For example, a plane truss (shown in Fig 1.1(a)) with different members 
joined by plates and multiple rivets is simplified by excluding less important 
joint details, assuming hinged conditions and homogeneous, isotropic material 
properties (as shown in Fig 1.1 (b)). In addition, self weight of members, which 
produce bending, is neglected in comparison with the large external loads. In 
some trusses, members overlapping on each other at the joints may be assumed 
co-planar.  

 

FIGURE 1.1(a)    Physical structure of a plane truss 

 

FIGURE 1.1(b)   Geometric model of a plane truss 
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Several methods, such as method of joints for trusses, simple theory of 
bending, simple theory of torsion, analyses of cylinders and spheres for axi-
symmetric pressure load etc., are available for designing/analysing simple 
components of a structure. These methods try to obtain exact solutions of 
second order partial differential equations and are based on several assumptions 
on sizes of the components, loads, end conditions, material properties, likely 
deformation pattern etc. Also, these methods are not amenable for 
generalisation and effective utilisation of the computer for repetitive jobs. 

Strength of materials approach deals with a single beam member for 
different loads and end conditions (free, simply supported and fixed). In a space 
frame involving many such beam members, each member is analysed 
independently by an assumed distribution of loads and end conditions.  

For example, in a 3-member structure (portal frame) shown in Fig. 1.2, the 
(horizontal) beam is analysed for deflection and bending stress by strength of 
materials approach considering its both ends simply supported. The load and 
moment reactions obtained at the ends are then used to calculate the deflections 
and stresses in the two columns separately.  

 

FIGURE 1.2  Analysis of a simple frame by strength of materials approach 

Simple supports for the beam imply that the columns do not influence slope 
of the beam at its free ends (valid when bending stiffness of columns = 0 or the 
column is highly flexible). Fixed supports for the beam imply that the slope of 
the beam at its ends is zero (valid when bending stiffness of columns = ∞ or the 
column is extremely rigid). But, the ends of the horizontal beam are neither 
simply supported nor fixed. The degree of fixity or influence of columns on the 
slope of the beam at its free ends is based on a finite, non-zero stiffness value. 
Thus, the maximum deflection of the beam depends upon the relative stiffness 
of the beam and the columns at the two ends of the beam.  

For example, in a beam of length ‘L’, modulus of elasticity ‘E’, moment of 
inertia ‘I’ subjected to a uniformly distributed load of ‘p’ (Refer Fig. 1.3). 
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Deflection, 
EI 384

pL 5  
4

=δ  with simple supports at its two ends (case (a)) 

               
EI 384

pL4

=  with fixed supports at its two ends  (case (b)) 

 

FIGURE 1.3  Deflection of a beam with different end conditions 

If, in a particular case,    
L = 6 m, E = 2 × 1011 N/m2, Moment of inertia for beam IB = 0.48 × 10–4 m4    

 Moment of inertia for columns IC = 0.48 × 10–4 m4 and distributed load            
p = 2 kN/m, 
   δmax = 3.515 mm  with simple supports at its two ends    
    and δmax = 0.703 mm  with fixed supports at its two ends  

whereas, deflection of the same beam, when analysed along with columns by 
FEM, 
         δmax = 1.8520 mm, when  IB = IC (Moments of inertia for beam & columns) 
                = 1.0584 mm, when 5 IB = IC  

and     = 2.8906 mm, when  IB = 5 IC  

 All the three deflection values clearly indicate presence of columns with 
finite and non-zero stiffness and, hence, the deflection values are in between 
those of beam with free ends and beam with fixed ends.   

 Thus, designing a single beam member of a frame leads to under-designing 
if fixed end conditions are assumed while it leads to over-designing if simple 
supports are assumed at its ends. Simply supported end conditions are, 
therefore, normally used for a conservative design in the conventional approach. 
Use of strength of materials approach for designing a component is, therefore, 
associated with higher factor of safety. The individual member method was 
acceptable for civil structures, where weight of the designed component is not a 
serious constraint. A more accurate analysis of discrete structures with few 
members is carried out by the potential energy approach. Optimum beam design 
is achieved by analysing the entire structure which naturally considers finite 
stiffness of the columns, based on their dimensions and material, at its ends. 
This approach is followed in the Finite Element Method (FEM). 
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1.2 APPROXIMATE METHOD VS. EXACT METHOD 

An analytical solution is a mathematical expression that gives the values of the 
desired unknown quantity at any location of a body and hence is valid for an 
infinite number of points in the component. However, it is not possible to obtain 
analytical mathematical solutions for many engineering problems. 
 For problems involving complex material properties and boundary 
conditions, numerical methods provide approximate but acceptable solutions 
(with reasonable accuracy) for the unknown quantities – only at discrete or 
finite number of points in the component. Approximation is carried out in two 
stages : 

(a) In the formulation of the mathematical model, w.r.t. the physical 
behaviour of the component. Example : Approximation of joint with 
multiple rivets at the junction of any two members of a truss as a pin 
joint, assumption that the joint between a column and a beam behaves 
like a simple support for the beam,.... The results are reasonably 
accurate far away from the joint. (Refer Fig. 1.1(a)) 

(b) In obtaining numerical solution to the simplified mathematical model. 
The methods usually involve approximation of a functional (such as 
Potential energy) in terms of unknown functions (such as 
displacements) at finite number of points. There are three broad 
categories:  

 (i) Weighted residual methods such as Galerkin method, 
Collocation method, Least squares method, etc. 

 (ii) Variational method (Rayleigh-Ritz method, FEM). FEM is an 
improvement of Rayleigh–Ritz method by choosing a 
variational function valid over a small element and not on the 
entire component, which will be discussed in detail later. These 
methods also use the principle of minimum potential energy. 

 (iii) Principle of minimum potential energy : Among all possible 
kinematically admissible displacement fields (satisfying 
compatibility and boundary conditions) of a conservative system, 
the one corresponding to stable equilibrium state has minimum 
potential energy. For a component in static equilibrium, this 
principle helps in the evaluation of unknown displacements of 
deformable solids (continuum structures).  

Some of these methods are explained here briefly to understand the historical 
development of analysis techniques. 
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   1.3 WEIGHTED RESIDUAL METHODS 

Most structural problems end up with differential equations. Closed form 
solutions are not feasible in many of these problems. Different approaches are 
suggested to obtain approximate solutions. One such category is the weighted 
residual technique. Here, an approximate solution, in the form ii C.N y Σ=  for    
i = 1 to n where Ci are the unknown coefficients or weights (constants) and Ni 
are functions of the independent variable satisfying the given kinematic 
boundary conditions, is used in the differential equation. Difference between the 
two sides of the equation with known terms, on one side (usually functions of 
the applied loads), and unknown terms, on the other side (functions of constants 
Ci), is called the residual, R. This residual value may vary from point to point in 
the component, depending on the particular approximate solution. Different 
methods are proposed based on how the residual is used in obtaining the best 
(approximate) solution. Three such popular methods are presented here. 

(a) Galerkin Method 
It is one of the weighted residual techniques. In this method, solution is 
obtained by equating the integral of the product of function Ni and 
residual R over the entire component to zero, for each Ni. Thus, the ‘n’ 
constants in the approximate solution are evaluated from the ‘n’ 
conditions ∫ = 0  dx.R.Ni  for i = 1 to n. The resulting solution may 

match with the exact solution at some points of the component and may 
differ at other points. The number of terms Ni used for approximating 
the solution is arbitrary and depends on the accuracy desired. This 
method is illustrated through the following examples of beams in 
bending. 

Example 1.1 

Calculate the maximum deflection in a simply supported beam, subjected to 
concentrated load ‘P’ at the center of the beam. (Refer Fig. 1.4)   

 

FIGURE 1.4  
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Solution 

y = 0 at x = 0 and x = L are the kinematic boundary conditions of the beam. So, 
the functions Ni are chosen from (x – a)p.(x – b)q, with different positive integer 
values for p and q; and a = 0 and b = L. 

(i) Model-1 (1-term approximation) : The deflection is assumed as  

                    y(x) = N.c  

        with the function,  N = x(x – L),  

        which satisfies the end conditions y = 0 at x = 0 and y = 0 at x = L.  
The load-deflection relation for the beam is given by        

M  
dx

yd EI 2

2

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
 

where   M = (P/2).x                              for   0 ≤ x ≤ L/2 
     and     M = (P/2).x – P.[x – (L/2)] = (P/2).(L – x)  for   L/2 ≤ x ≤ L 
  Thus, taking  y = x.(x – L).c,     

           2c  
dx

yd
2

2

=  

and the residual of the equation, M–
dx

yd EIR 2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= = EI . 2c - M 

Then, the unknown constant ‘c’ in the function ‘N’ is obtained from 

     ∫ ∫ =+
2
L

0

L

2
L

0  dx.R.N dx.R.N   

(two integrals needed, since expression for M changes at x = 
2
L ) 
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⎟
⎠
⎞
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⎝
⎛+⎥

⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
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L

0

L

2
L

0  dx– x L . 
2
P–  2c . EI . L–x . x  dxx . 

2
P–c2.EI . L–x.x

     
EI64

PL 5  c =⇒  

Therefore,  y = x(x – L). 
EI64

PL 5  
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At   x = 
2
L ,     y = ymax =  

EI256
PL 5–

3

 or 
EI2.51

PL – 3

 

This approximate solution is close to the exact solution of 
EI 48

PL– 3

 

obtained by double integration of EI ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

dx
yd  = M = ⎟

⎠
⎞

⎜
⎝
⎛

2
P .x, with 

appropriate end conditions.   

(ii) Model-2 (2-term approximation): The deflection is assumed as               

y(x) = N1.c1 + N2.c2  

    with the functions  N1 = x(x – L) and N2 = x.(x – L)2 

     which satisfy the given end conditions. 

  Thus, taking   y = x.(x – L).c1 + x.(x – L)2.c2,     

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

dx
yd  = 2c1 + 2.(3x – 2L).c2 

and the residual of the equation,  

R = EI. ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

dx
yd  – M = EI.[2c1 + 2.(3x – 2L).c2] – M 

where  M = (P/2).x                                 for   0 ≤ x ≤ L/2 

and      M = (P/2).x – P.[x – (L/2)] = (P/2).(L – x) for   L/2 ≤ x ≤ L 
 
Then, the unknown constants ‘c1’ and ‘c2’ in the functions ‘Ni’ are 
obtained from 

( )[ ] ( )[ ]∫ ∫ ⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+=

L

0
21

2
L

0
1 dx  x.

2
P–c.2L–3x2.  2cEI..L–x.x  dx.R.N  

( )[ ] ( )[ ] ( ) 0dxx–L.
2
P–c.L2–x3.2c2.EI.L–x.x 21

L

2
L

=
⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛++ ∫  
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and  ( )[ ] ( )[ ] dxx.
2
P–c.L2–x3.2c2.EI. L–x.x  dx.R.N 21

L

0

2
L

0

2
2

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+=∫ ∫  

    + ( )[ ] ( )[ ] ( ) 0dxx–L.
2
P–c.L2–x3.2c2.EI.L–x.x 21

L

2
L

2 =
⎭
⎬
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⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛+∫  

Simplifying these equations, we get      

2c1 – c2.L = 
EI16

PL5   and  5c1 – 4c2.L = 
EI192

PL75                

 Solving these two simultaneous equations, we get           

 c1 = 
EI192

PL55    and       c2 = 
EI96
P25  

 Thus, we get 

 y = x(x – L). 
EI192

PL55  + x(x – L)2. 
EI96
P25    

 and  at  x = L/2,   y = ymax = 
EI1924

)2555(PL3

×
+−  or 

EI6.25
PL–

3

   

Note : The bending moment M is a function of x. The exact solution of y 

should be a minimum of 3rd order function so that 2

2

dx
yd  = 

EI
M  is a function 

of x.  
(b)  Collocation Method 

 In this method, also called as the point collocation method, the residual is  
equated to zero at ‘n’ select points of the component other than those at 
which the displacement value is specified, where ‘n’ is the number of 
unknown coefficients in the assumed displacement field, i.e., R({c},xi) = 0 
for i = 1, ..n. It is also possible to apply collocation method on some select 
surfaces or volumes. In that case, the method is called sub-domain 
collocation method.  

i.e.,   ∫R({c},xj).dSj = 0     for  j = 1, ..n  

or    ∫R({c},xk). dVk = 0    for  k = 1, ..n 

These methods also result in ‘n’ algebraic simultaneous equation in ‘n’ 
unknown coefficients, which can be easily evaluated.  

The simpler of the two for manual calculation, point collocation method, 
is explained better through the following example. 
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    Example 1.2  

Calculate the maximum deflection in a simply supported beam, subjected to 
concentrated load ‘P’ at the center of the beam. (Refer Fig. 1.5)   

 

FIGURE 1.5  

Solution  

y = 0 at x = 0 and x = L are the kinematic boundary conditions of the beam. So, 
the functions Ni are chosen from (x – a)p.(x – b)q, with different positive integer 
values for p and q; and a = 0 and b = L.               

(i) Model-1 (1-term approximation): The deflection is assumed as               
      y(x) = N.c  

     with the function   N = x(x – L), 

      which satisfies the end conditions y = 0 at x = 0 and y = 0 at x = L  

The load-deflection relation for the beam is given by         

EI ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

dx
yd  = M 

where   M = (P/2).x                                 for 0 ≤ x ≤ L/2 

  and       M = (P/2).x – P.[x – (L/2)] = (P/2).(L – x) for L/2 ≤ x ≤ L 

Thus,  taking  y = x.(x – L).c ,   2

2

dx
yd  = 2c 

and the residual of the equation, x.
2
P–

dx
yd EI  M–  

dx
yd EIR 2

2

2

2

⎟
⎠
⎞

⎜
⎝
⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
=  

Then, the unknown constant ‘c’ in the function ‘N’ is obtained by 
choosing the value of residual at some point, say x = L/2, as zero. 

   i.e.,       ( ) 0  x.
2
P–  EI.2c  x,cR =⎟
⎠
⎞

⎜
⎝
⎛=  at 

2
Lx =   ⇒   

EI8
PLc =  



 CH AP T E R  1     I N T R O D U C T I O N  11 
 

  
 

Therefore,  y = x(x – L).
EI8

PL  

At     
2
Lx = ,   

EI32
PL–  yy

3

max ==  

   (ii) Model-2 (2-term approximation) : The deflection is assumed as  
y(x) = N1.c1 + N2.c2  

with the functions  N1 = x(x – L) and N2 = x. (x – L)2, 
which satisfy the given end conditions.  

     Thus, taking y = x. (x – L ).c1 + x. (x – L)2.c2 ,                  

 ( ) 212

2

c.L2–x3.22c  
dx

yd
+=  

and the residual of the equation,  

           M–
dx

yd.EIR 2

2

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=  =  EI.[2c1 + 2.(3x – 2L).c2] – M 

where  M = (P/2).x                              for   0 ≤ x ≤ L/2 
and      M = (P/2).x – P.[x – (L/2)] = (P/2).(L – x) for   L/2 ≤ x ≤ L 
Then, the unknown constants ‘c1’ and ‘c2’ in the functions ‘Ni’ are 
obtained from 

             R({c},x) = EI.[2c1 + 2.(3x – 2L).c2] – (P/2).x = 0        at x = L/4  
and     R({c},x) = EI.[2c1 + 2.(3x – 2L).c2] – (P/2).(L – x)} = 0 at x = 3L/4    

or  
EI4

PL c.L5–c4 21 =     and   
EI4

PLc.Lc4 21 =+  

      ⇒  
EI16

PLc1 =   and   c2 = 0  

⇒
EI64

PL–  y
3

max =  at 
2
Lx =  

Choosing some other collocation points, say 
3
Lx =  and 

3
L2x = , 

    
EI12

PLc.L–c 21 =    and   
EI12

PL0c1 =+   

⇒  
EI12

PLc1 =   and   c2 = 0   
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At 
2
Lx = , 

EI48
PL–y

3

max = , which matches exactly with closed form 

solution 

   (c) Least  Squares  Method 

In this method, integral of the residual over the entire component is 

minimized. i.e.,  
ic

I
∂
∂  = 0   for  i = 1, ..n,  

 where  { }( )[ ]∫= dx.x,aR  I 2  

 This method also results in ‘n’ algebraic simultaneous equations in ‘n’ 
unknown coefficients, which can be easily evaluated.  

Example 1.3  

Calculate the maximum deflection in a simply supported beam, subjected to 
concentrated load ‘P’ at the center of the beam. (Refer Fig. 1.6) 

Solution  

Again, y = 0 at x = 0 and y = 0 at x = L are the kinematic boundary conditions 
of the beam. So, the functions Ni are chosen from (x – a)p.(x – b)q, with different 
positive integer values for p and q. 

 

FIGURE 1.6  

1-term approximation: The deflection is again assumed as   y(x) = N.C,  

with the function  N = x(x – L), 

which satisfies the end conditions   y = 0 at x = 0   and   y = 0 at x = L  

The load-deflection relation for the beam is given by        

EI ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

dx
yd  = M  

where   M = (P/2).x                                 for   0 ≤ x ≤ L/2 
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and       M = (P/2).x – P.[x – (L/2)] = (P/2).(L – x) for   L/2 ≤ x ≤ L 

Thus, taking   y = x.(x – L).c,     2

2

dx
yd  = 2c 

and the residual of the equation, R = EI ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
2

2

dx
yd  – M = EI . 2c – M  

Then, { }( )[ ] dx.x,cR  I 2∫= and the constant ‘c’ in the function y(x) is obtained from 

{ }( ) PR c , x – .x dx
2 2

0 2
⎡ ⎤∂ ∂ ⎛ ⎞⎡ ⎤= +⎜ ⎟⎢ ⎥⎣ ⎦∂ ∂ ⎝ ⎠⎣ ⎦
∫

L

i i

I
a c

 

{ }( ) ( )PR c ,x – . L – x dx
2

2

0
2

⎡ ⎤∂ ⎛ ⎞⎡ ⎤ =⎜ ⎟⎢ ⎥⎣ ⎦∂ ⎝ ⎠⎣ ⎦
∫
L

i Lc
 

         ⇒  
EI8

PLc =  and 
EI32

PL– y
3

max =  at 
2
Lx =     

1.4 VARIATIONAL  METHOD  OR RAYLEIGH - RITZ  METHOD 

This method involves choosing a displacement field over the entire component, 
usually in the form of a polynomial function, and evaluating unknown 
coefficients of the polynomial for minimum potential energy. It gives an 
approximate solution. Practical application of this method is explained here 
through three different examples, involving 

(a) uniform bar with concentrated load, 
(b) bar of varying cross section with concentrated load,          and 
(c) uniform bar with distributed load (self-weight). 

Example 1.4  

Calculate the displacement at node 2 of a fixed beam shown in Fig. 1.7, 
subjected to an axial load ‘P’ at node 2. 

 

FIGURE 1.7  
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Solution  

Method -  1  
The total potential energy for the linear elastic one-dimensional rod with built-
in ends, when body forces are neglected, is     

2
1 du  EA dx –  P u
2 dx

2
⎛ ⎞π = ⎜ ⎟
⎝ ⎠∫                                                       

Let us assume u = a1 + a2x + a3x2 as the polynomial function for the 
displacement field.  

Kinematically admissible displacement field must satisfy the natural 
boundary conditions  
   u = 0 at x = 0   which implies   a1 = 0            

and     u = 0  at  x = L   which implies   a2 = – a3 L            

At   
2
Lx = ,  

2 2

2 2 3 3
L L Lu = a + a = –a
2 2 4

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

 

Therefore,  

 
2L

2
0

1 duπ = EA dx – Pu
2 dx

⎛ ⎞
⎜ ⎟
⎝ ⎠∫  

( ) ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∫ 4

La–P–dxxa2aEA
2
1 

2

3
2

32

L

0

                     

( )∫ +=
L

0

2

3
22

3 4
La PdxL–x2EAa 

2
1  

4
La P

6
L EAa

2

3

3
2
3 +=                                    

For stable equilibrium,       0
a3

=
∂
π∂    gives  

EAL4
P3– a3 =               

         

Displacement at node 2,    
16AE
3PL  

4
L a–  u

2
3

2 ==  

     ⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛=

AE4
PL.

4
3   

It differs from the exact solution by a factor of 
4
3 . Exact solution is obtained 

when a piece-wise polynomial interpolation is used in the assumption of 
displacement field, u. 



 CH AP T E R  1     IN T R O D UC T I O N 15 
 

  
 

Stress in the bar,     332 aL–xE  xaaE  
dx

du
E  






  

            = 
   

AL 4

x–LP 3
  

EAL 4

L–xPE 3–
          

                        = 















A

P
 

4

3
  at x = 0   and  















A

P
 

4

3
–  at x = L         

or                















A2

P
 

2

3
   

Due to the assumption of a quadratic displacement field over the system, 

stress is found to vary along the length of the bar. However, stress is expected 

to be constant (tensile from 1 to 2 and compressive from 2 to 3). Hence, the 

solution is not exact. 

Method -  2  

In order to compare the accuracy of the solution obtained by Rayleigh-Ritz 

method, the beam is analysed considering it to be a system of two springs in 

series as shown in Fig. 1.8 and using the stiffness of the axially loaded bar in 

the potential energy function.  

 

FIGURE 1.8  

The stiffness of each spring is obtained from       

                
 .AP AE

k k K     
u LL

.
1 2

2

2


    

       

 

Total potential energy of the system is given by 

  2
2
22

2
22

2
21 Pu–K.u  Pu–  uk

2

1
uk

2

1
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For equilibrium of this 1-DOF system,         

                       0  P–  2K.u  
u 2

2
==

∂
π∂                 

or      
AE4
PL  

K2
P  u2 ==  

Stress in the beam is given by,   

             
2A
P  

L
2Eu  

2
L
u

E.   E  22 ==

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎟
⎠
⎞

⎜
⎝
⎛

=ε=σ  

The displacement at 2 by Rayleigh-Ritz method differs from the exact 

solution by a factor of 
4
3 , while the maximum stress in the beam differs by a 

factor of  
2
3 . The stresses obtained by this approximate method are thus on the 

conservative side. Exact solution is obtained when a piece-wise polynomial 
interpolation is used in the assumption of displacement field, u. The results are 
plotted in Fig. 1.9.  

  

FIGURE 1.9  
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Method -  3  
If the assumed displacement field is confined to a single element or segment of 
the component, it is possible to choose a more accurate and convenient 
polynomial. This is done in finite element method (FEM). Since total potential 
energy of each element is positive, minimum potential energy theory for the 
entire component implies minimum potential energy for each element. Stiffness 
matrix for each element is obtained by using this principle and these matrices 
for all the elements are assembled together and solved for the unknown 
displacements after applying boundary conditions. A more detailed presentation 
of FEM is provided in chapter 4. 

 Applying this procedure in the present example, let the displacement field in 
each element of the 2-element component be represented by u = a0 + a1.x. With 
this assumed displacement field, stiffness matrix of each axial loaded element of 
length (L/2) is obtained as 

[ ] ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛=

11–
1–1

 
L
AE2  K   and  {P} = [K] {u}            

The assembled stiffness matrix for the component with two elements is then 
obtained by placing the coefficients of the stiffness matrix in the appropriate 
locations as 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+⎟

⎠
⎞

⎜
⎝
⎛

3

2

1

3

2

1

P
P
P

  
u
u
u

 
11–0
1–111–

01–1
 

L
AE2  

Applying boundary conditions u1 = 0 and u3 = 0,   we get   

     
4AE
PL  u     P  P  u 2 

L
AE2

222 =⇒==⎟
⎠
⎞

⎜
⎝
⎛  which is the exact  solution. 

 The potential energy approach and Rayleigh-Ritz method are now of only 
academic interest. FEM is a better generalisation of these methods and extends 
beyond discrete structures. 

Examples of Rayleigh-Ritz method, with variable stress in the members 

These examples are referred again in higher order 1-D truss elements, since they 
involve stress or strain varying along the length of the bar. 
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Example 1.5  

Calculate displacement at node 2 of a tapered bar, shown in Fig 1.10, with area 
of cross-section A1 at node 1 and A2 at node 2 subjected to an axial tensile                
load ‘P’.  

 

FIGURE 1.10  
Solution   

Different approximations are made for the displacement field and comparison 
made, in order to understand the significance of the most reasonable 
assumption.    

(a) Since the bar is identified by 2 points, let us choose a first order 
polynomial (with 2 unknown coefficients) to represent the displacement 
field. Variation of A along the length of the bar adds additional 
computation. Let A(x) = A1 + (A2 – A1).x/L 

   Let   u = a1 + a2.x       At x = 0, u = a1 = 0 

Then,  u = a2.x    ;   2a  
dx
du

=   and   u2 = a2.L     

  Therefore,                  

     ( )∫ ⎟
⎠
⎞

⎜
⎝
⎛=π

L

0
2

2

u P–dx
dx
du.xEA

2
1   

          = ( ) L.a.P–dx a 
L
x.A–AAE 

2
1

2
2
2

L

0
121∫ ⎥⎦

⎤
⎢⎣
⎡ +                                                                     

        ( )  L.P.a– a
2
L.A–ALAE

2
1

2
2
2121 ⎥⎦

⎤
⎢⎣
⎡ +=  

       ( ) L.P.a–  a
2
L.AAE 

2
1 2

2
221 ⎥⎦

⎤
⎢⎣
⎡ +=  

For stable equilibrium,    ( ) 0  P.L–a
2
L.AAE  

a
π

221
2

=⎥⎦
⎤

⎢⎣
⎡ +=

∂
∂  
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       from which a2 can be evaluated as,    




 



2

AAE
P

  a
21

2  

Then,       




 



2
AA.E

L.P
  L.a  u

21
22  

      and       




 









2

AA
P

  a E  
dx

du
E    

21
221  

For the specific data of A1 = 40 mm2, A2 = 20 mm2 and L = 200 mm, we 
obtain, 

           
E

P 6.667
  u2      and     σ1 = σ2 = 0.0333 P 

(b) Choosing displacement field by a first order polynomial gave constant 
strain (first derivative) and hence constant stress. Since a tapered bar is 
expected to have a variable stress, it is implied that the displacement field 
should be expressed by a polynomial of minimum 2nd order. Therefore, 
the solution is repeated with 

    u = a1 + a2.x + a3.x
2        At    x = 0, u = a1 = 0 

Then,     u = a2.x + a3.x
2;   x.a2a  

dx

du
32      and   u2 = a2.L + a3.L

2    

Therefore,   2

2L

0

u P– dx 
dx

du
 .xEA

2

1
  π 






        

       =      2
32

2
32

L

0

121 L.aL.a P–  dxxa2a
L

x
.A–AAE

2

1




    

For stable equilibrium,  

2

π
  0

a





     3 a2 (3A1 – A2) + 2a3 L (5A1 – 2A2) = 

E

P6
 

 and      
3

π
  0

a





      a2 (5A1 – 2A2) + a3 L (7A1 – 3A2) = 

E

P3
 

For the specific data of A1 = 40 mm2, A2 = 20 mm2 and L = 200 mm, we 
obtain, 

  
E

P
 6.652  L.a  L.a  u 2

322   
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 σ1 = a2E       = 0.0339 P  

and   σ2 = E(a2 + 2a3L) = 0.03518 P 

(c) This problem can also be solved by assuming a 2nd order displacement 
function, satisfying a linearly varying stress along the length but with 2 
unknown coefficients as     

          u = a1 + a2.x2   At x = 0, u = a1 = 0 

Then,   u = a2.x2; x.2a  
dx
du

2=  and u2 = a2.L2    

Therefore,                                            

 2

2L

0

Pu– dx 
dx
du EA

2
1  π ⎟

⎠
⎞

⎜
⎝
⎛= ∫  

      ( ) ( ) ( )∫ ⎥⎦
⎤

⎢⎣
⎡ +=

L

0

2
2

2
2121 L.a P– dx   xa2

L
x.A–AAE

2
1  

           [ ] ( ) ( ) ( )2
2

2
2

3
12

3
1 L.a P–  a4

4
L.A–A  

3
LAE 

2
1 ⎥

⎦

⎤
⎢
⎣

⎡
+=   

                    = ( ) 2
2

212
2 L.a P–

6
A3A E L a +  

For stable equilibrium, ( ) 0  
L P–3

3A  A E L  2
212 =

+
=

∂
∂ a
a
π

2
 which gives an 

expression for a2 as 

 

⎥⎦
⎤

⎢⎣
⎡ +

=

3
)A3(A E

L Pa
21

2  

For the same set of data for A1, A2 and L, we get 

            
E
P 6  L.a  u 2

22 ==      

 
0x

11 dx
du . E.E

=
⎟
⎠
⎞

⎜
⎝
⎛=∈=σ  

         ( ) 0xa2 . E 0x2 == =  
 ( ) LEa2xa2.E 2Lx22 ==σ = = 0.06 P 
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Sr.No. 
Displacement 
polynomial 

Displacement, 
u2 

Stress at 1,  
σ1 

Stress at 2, 
σ2 

1 u = a1 + a2.x 6.667 P/E 0.0333 P 0.0333 P 
2 u = a1 + a2.x + a3.x2 6.652 P/E 0.0339 P 0.03518 P 
3 u = a1 + a2.x2 6.0 P/E 0.0 0.06 P 
4 σi = P/Ai (Exact solution)  0.025 P 0.05 P 

 These three assumed displacement fields gave different approximate 
solutions. These are plotted graphically here, for a better understanding of the 
differences. Exact solution depends on how closely the assumed displacement 
field matches with the actual displacement field. 

 

 The most appropriate displacement field should necessarily include 
constant term, linear term and then other higher order terms. 

Example 1.6  

Calculate the displacement at node 2 of a vertical bar, shown in Fig. 1.11, due to 
its self-weight. Let the weight be w N/m of length.  

 

FIGURE 1.11 

Solution  

Since the load is distributed, varying linearly from zero at the free end to a 
maximum at the fixed end, it implies that the stress also varies linearly from the 



22 F I N I T E  E L E M E N T  A N A L Y S I S   

free end to fixed end. As shown in the last example, therefore, a quadratic 
displacement is the most appropriate. However, work potential needs to be 
calculated through integration of product of varying load and corresponding 
displacement, along the length.    

    (a) Let  u = a1 + a2.x + a3.x2      At x = 0,  u1 = a1 = 0 

               x.a2a  
dx
du

32 +=  

Since applied load is zero at the free end,   

           Strain at x = L, 0  L.a2a 
dx
du

32
2

=+=⎟
⎠
⎞

⎜
⎝
⎛  ⇒    La2– a 32 =  

Then,   u =  a3.(x2 – 2Lx) ;  and   ( )L–x.2a  
dx
du

3=  

Let   P = – w(L – x) acting along –ve x-direction 
Therefore,         

∫ ∫⎟
⎠
⎞

⎜
⎝
⎛=

L

0

L

0

2

du P– dx 
dx
duEA 

2
1  π  

             ( )[ ] ( )[ ] ( )∫ ∫=
L

0

L

0
3

2
3 dx L–x.a2.x–Lw––dxL–x.a2.EA

2
1  

                         = 
3

L.2w.a –
3

L.a.AE2 3
3

32
3  

For stable equilibrium, 0  
a
π

3
=

∂
∂  ⇒  

2EA
w  a3 =  

       At x = L,  
2EA
w.L–  L.a–  u

2
2

32 ==  

       Stress,    ( )[ ] ( )L–x.
A
w  L–x.2aE.  

dx
duE.  3 ⎟

⎠
⎞

⎜
⎝
⎛===σ  

   At x = 0,  ⎟
⎠
⎞

⎜
⎝
⎛=σ

A
w.L–  1  compressive   

  And at x = L, σ2 = 0 

Example 1.7  

Calculate the displacement at node 2 of a vertical bar supported at both ends, 
shown in Fig. 1.12, due to its self-weight. Let the weight be w N/m of length.  
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Solution  

As explained in the last example, a quadratic displacement is the most 
appropriate to represent linearly varying stress along the bar.  
    (a) Let     u = a1 + a2.x + a3.x2             At  x = 0, u1 = a1 = 0 

At   x = L,  u2 = a2.L + a3.L2 = 0     ⇒  a2 = –a3L 
Then,    u =  a3.(x2 – Lx)    

and      ( )L–x2.a
dx
du

3=     

  Let  P = – w(L – x) acting along –ve x-direction 

 

FIGURE 1.12 

  Therefore,         

∫ ∫⎟
⎠
⎞

⎜
⎝
⎛=

L

0

L

0

2

du P– dx  
dx
duEA 

2
1  π   

             ( )[ ] ( ) ( )∫∫ +=
L

0
3

L

0

2
3 dxL–x2.a.x–LwdxL–x2.a.EA

2
1     

              
3
L.a.w2–

3
L.a.EA

2
1 

3

3

3
2
3=  

For stable equilibrium,    

0  
a
π

3
=

∂
∂  ⇒  

EA
2w  a3 =  
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At    
2
L  x = ,      

2EA
Lw.–  

4
L.a–   u

22

3 ==                

Stress,   ( )[ ] ( )L–x2.
A

2w.  L–x2.aE.  
dx
duE.  3 ⎟

⎠
⎞

⎜
⎝
⎛===σ  

At    x = 0,     σ1 = –(2w.L/A)     compressive  

and at  x = L,     σ2 =  (2w.L/A)        tensile 

1.5 PRINCIPLE OF MINIMUM POTENTIAL ENERGY 

The total potential energy of an elastic body (π) is defined as the sum of total 
strain energy (U) and work potential (W). 

i.e.,   π = U + W, 

where   ∫ εσ⎟
⎠
⎞

⎜
⎝
⎛=

V

dV  
2
1U  

and        P u–  dS T u–  dV Fu– W ii
S

T

V

T ∑∫∫=  

Here, ‘F’ is the distributed body force, ‘T’ is the distributed surface traction 
force and ‘Pi’ are the concentrated loads applied at points i = 1, ..n. One or more 
of them may be acting on the component at any instant. 

 For a bar with axial load, if stress σ and strain ε are assumed uniform 
throughout the bar, 

 ( ) ( )1 1 1 1U   v     A L   A   L    P   k 
2 2 2 2

21
2

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= σ ε = σ ε = σ ε = δ = δ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

  

 ..…(1.1) 
The work potential, T T T

i iW – q  F dV – q  T ds – u  P= ∑∫ ∫     .….(1.2) 

for the body force, surface traction and concentrated loads, respectively.  

Application of this method is demonstrated through the following simple 
examples.  

Example 1.8  

Calculate the nodal displacements in a system of four springs shown in              
Fig. 1.13. 
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FIGURE 1.13   Example of a 5-noded spring system 

Solution  

The total potential energy is given by  

( )3311
2
44

2
33

2
22

2
11 qF–qF–  δk

2
1  δk 

2
1  δk

2
1  δk

2
1 π +⎟

⎠
⎞

⎜
⎝
⎛ +++=   

where, q1, q2, q3 are the three unknown nodal displacements.  
At the fixed points   

q4 = q5 = 0                       
  Extensions of the four springs are given by 
       δ1 = q1 – q2  ;   δ2 = q2  

δ3 = q3 – q2  ;  δ4 = –q3                    
For equilibrium of this 3-DOF system,    

 
iq
π

∂
∂  = 0  for i = 1, 2, 3                  

or 

 ( ) 0  F–q–qk  
q
π

1211
1

==
∂
∂                   

( ) ( ) 0 q–q k–qkq–qk–  
q
π

23322211
2

=+=
∂
∂             

( ) 0F–qkq–qk  
q
π

334233
3

=+=
∂
∂                

These three equilibrium equations can be rewritten and expressed in matrix 
form as 

   
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+
++

−

2

1

3

2

1

433

33211

11

F
0
F

  
q
q
q

 
kkk–0

k–kkkk–
0kk
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 Considering free body diagrams of each node separately, represented by the 
following figures, 

 

the equilibrium equations are k1δ1  =  F1      
        k2δ2 – k1δ1 –k3δ3 = 0  
        k3δ3 – k4δ4 = F3              

These equations, expressed in terms of nodal displacements q, are similar to 
the equations obtained earlier by the potential energy approach. 

Example 1.9  

Determine the displacements of nodes of the spring system (Fig. 1.14). 

 

FIGURE 1.14  Example of a 4-noded spring system 

Solution  

Total potential energy of the system is given by 

( )4433
2
44

2
33

2
22

2
11 qF–qF–  δk

2
1  δk 

2
1  δk

2
1  δk

2
1 π +⎟

⎠
⎞

⎜
⎝
⎛ +++=  

where  q2, q3 , q4 are the three unknown nodal displacements. 

At the fixed points        

q1 = q5 = 0                        

Extensions of the four springs are given by, 

      δ1 = q2 – q1  ;  δ2 = q3 – q2  ;  δ3 = q4  – q3  ;  δ4 = q3 – q5        
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 For equilibrium of this 3-DOF system,          

0  
q
π

i
=

∂
∂   for i = 2,3,4 

  or ( ) 0  q–qk–qk  
q
π

23221
2

==
∂
∂                ..…(a) 

( ) ( ) 0F–qk q–qk–q–qk  
q
π

334343232
3

=+=
∂
∂            …..(b) 

( ) 0  F–q–qk  
q
π

4343
4

==
∂
∂                 …..(c) 

These equilibrium equations can be expressed in matrix form as 

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++

+

4

3

4

3

2

33

34322

221

F
F
0

  
q
q
q

 
kk–0
k–kkkk–
0k–kk

 

or 
⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧
=

⎪
⎭

⎪
⎬

⎫

⎪
⎩

⎪
⎨

⎧

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
++

+

60
100

0
  

q
q
q

 
5050–0
50–60503030–
030–3040

4

3

2

                

Substituting  

   q  1.2  q 
50
60  q

k
F  q 333

3

4
4 +=+⎟

⎠
⎞

⎜
⎝
⎛=+=            from eq. (c) 

and  ( )  
7

3q  
4030

30q  
kk

qk  q 33

21

32
2 =

+
=

+
=               from eq. (a)  

in eq. (b), we get      

 [ ] 0F–q.kq1.2 k–  
7
q3–q k 33433

3
32 =++⎥⎦

⎤
⎢⎣
⎡  

which gives,  q3 = 2.0741 mm      
and  then,      q2 = 0.8889 mm  ;   q4 = 3.2741 mm  

WHY FEM ?  

The Rayleigh-Ritz method and potential energy approach are now of only 
academic interest. For a big problem, it is difficult to deal with a polynomial 
having as many coefficients as the number of DOF. FEM is a better 
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generalization of these methods and extends beyond the discrete structures. 
Rayleigh-Ritz method of choosing a polynomial for displacement field and 
evaluating the coefficients for minimum potential energy is used in FEM, at the 
individual element level to obtain element stiffness matrix (representing load-
displacement relations) and assembled to analyse the structure. 

1.6 ORIGIN OF FEM 

The subject was developed during 2nd half of 20th century by the contribution of 
many researchers. It is not possible to give chronological summary of their 
contributions here. Starting with application of force matrix method for swept 
wings by S. Levy in 1947, significant contributions by J.H.Argyris, 
H.L.Langhaar, R.Courant, M.J.Turner, R.W.Clough, R.J.Melosh, 
J.S.Przemieniecki, O.C.Zienkiewicz, J.L.Tocher, H.C.Martin, T.H.H.Pian, 
R.H.Gallaghar, J.T.Oden, C.A.Felippa, E.L.Wilson, K.J.Bathe, R.D.Cook etc... 
lead to the development of the method, various elements, numerical solution 
techniques, software development and new application areas. 
 Individual member method of analysis, being over-conservative, provides a 
design with bigger and heavier members than actually necessary. This method 
was followed in civil structures where weight is not a major constraint. Analysis 
of the complete structure was necessitated by the need for a better estimation of 
stresses in the design of airplanes with minimum factor of safety (and, hence, 
minimum weight), during World War-II. Finite element method, popular as 
FEM, was developed initially as Matrix method of structural analysis for 
discrete structures like trusses and frames.  

FEM is also extended later for continuum structures to get better estimation 
of stresses and deflections even in components of variable cross-section as well 
as with non-homogeneous and non-isotropic materials, allowing for optimum 
design of complicated components. While matrix method was limited to a few 
discrete structures whose load-displacement relationships are derived from basic 
strength of materials approach, FEM was a generalisation of the method on the 
basis of variational principles and energy theorems and is applicable to all types 
of structures – discrete as well as continuum. It is based on conventional theory 
of elasticity (equilibrium of forces and Compatibility of displacements) and 
variational principles. 
 In FEM, the entire structure is analysed without using assumptions about the 
degree of fixity at the joints of members and hence better estimation of stresses 
in the members was possible. This method generates a large set of simultaneous 
equations, representing load-displacement relationships. Matrix notation is 
ideally suited for computerising various relations in this method. Development 
of numerical methods and availability of computers, therefore, helped growth of 
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matrix method. Sound knowledge of strength of materials, theory of elasticity 
and matrix algebra are essential pre-requisites for understanding this subject.  

1.7 PRINCIPLE OF FEM 

In FEM, actual component is replaced by a simplified model, identified by a 
finite number of elements connected at common points called nodes, with an 
assumed behaviour or response of each element to the set of applied loads, and 
evaluating the unknown field variable (displacement, temperature) at these 
finite number of points.  

Example 1.10  

The first use of this physical concept of representing a given domain as a 
collection of discrete parts is recorded in the evaluation of π from superscribed 
and inscribed polygons (Refer Fig. 1.15) for measuring circumference of a 
circle, thus approaching correct value from a higher value or a lower value 
(Upper bounds/Lower bounds) and improving accuracy as the number of sides 
of polygon increased (convergence).  Value of π was obtained as 3.16 or 101/2   
by 1500 BC and as 3.1415926 by 480 AD, using this approach. 

 

Case (a)  Inscribed polygon   Case (b) Superscribed polygon 

FIGURE 1.15  Approximation of a circle by an inscribed and a superscribed polygon 

Perimeter of a circle of diameter 10 cm = πD = 31.4 cm 

Case-A : The circle of radius ‘r’ is now approximated by an inscribed              
regular polygon of side ‘s’. Then, using simple trigonometric concepts,                  
the length of side ‘s’ of any regular n-sided polygon can now be obtained                 
as s = 2 r sin (360/2n). Actual measurements of sides of regular or irregular 
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polygon inscribed in the circle were carried out in those days, in the absence of 
trigonometric formulae, to find out the perimeter. 

With a 4-sided regular polygon,   perimeter =  4 s = 28.284 
  With a 8-sided regular polygon,   perimeter =  8 s = 30.615 
  With a 16-sided regular polygon,   perimeter = 16 s = 31.215 
approaching correct value from a lower value, as the number of sides of the 
inscribed  polygon theoretically increases to infinity. 

Case-B : The same circle is now approximated by a superscribed polygon of 
side ‘s’, given by  

s = 2 r tan (360/2n) 
Then,  With a 4-sided regular polygon,   perimeter =  4 s = 40 

    With a 8-sided regular polygon,   perimeter =  8 s = 33.137 
    With a 16-sided regular polygon,    perimeter = 16 s = 31.826 
approaching correct value from a higher value, as the number of sides of the 
circumscribed  polygon theoretically increases to infinity. 

A better estimate of the value of π (ratio of circumference to diameter) was 
found by taking average perimeter of inscribed and superscribed polygons, 
approaching correct value as the number of sides increases. 

Thus with a 4-sided regular polygon, perimeter = (40+28.284) / 2 =  34.142 
With a 8-sided regular polygon, perimeter  = (33.137+30.615) / 2  =  31.876 
With a 16-sided regular polygon,  perimeter =  (31.826+31.215) / 2 = 31.520  

Example 1.11  

In order to understand the principle of FEM, let us consider one more  example, 
for which closed form solutions are available in every book of ‘Strength of 
materials’. A common application for mechanical and civil engineers is the 
calculation of tip deflection of a cantilever beam AB of length ‘L’ and subjected 
to uniformly distributed load ‘p’. For this simple case, closed form solution is 
obtained by integrating twice the differential equation. 

M  
dx

ydEI 2

2

=  

and applying boundary conditions   

y = 0 and 0
dx
dy

=      at x = 0 (fixed end, A),  
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we get, at x = L, 
EI8
L p  y

4

max =  

 This distributed load can be approximated as concentrated loads                       
(P1, P2,…PN) acting on ‘N’ number of small elements, which together form the 
total cantilever beam. Each of these concentrated loads is the total value of the 
distributed load over the length of each element (P1 = P2 = … = PN = p L / N), 
acting at its mid-point, as shown in Fig 1.16. Assuming that the tip deflection 
(at B) is small, the combined effect of all such loads can be obtained by linear 
superposition of the effects of each one of them acting independently. We will 
again make use of closed form solutions for the tip deflection values of a 
cantilever beam subjected to concentrated loads at some intermediate points. 

 

FIGURE 1.16  Cantilever beam with distributed load approximated by many 
concentrated loads 

Tip deflection of the cantilever when subjected to concentrated load PJ at a 
distance LJ from the fixed end is given by  

     ( ) ( )J
J

JB L–L.
dx
dy  y  y ⎟

⎠
⎞

⎜
⎝
⎛+=  

Closed form solutions for (y)J and (dy/dx)J can be obtained by integrating the 
beam deflection equation with appropriate boundary conditions, as  

EI 3
L P  y

4
J

JJ =  

EI 2
L P  

dx
dy 3

J
J

J

=⎟
⎠
⎞

⎜
⎝
⎛   

Deflection at B, yB, due to the combined effect of all the concentrated loads 
along the length of the cantilever can now be obtained, by linear superposition, as  

yB = [(y)1 + (dy/dx)1 (L – L1)] + [(y)2 + (dy/dx)2 (L – L2)] +… +  
     [(y)N + (dy/dx)N (L – LN)] 

The results obtained with different number of elements are given in the table 
below, for the cantilever of length 200 cm, distributed load of 50 N/cm and          
EI = 109 N cm2. 
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S. No. No. of elements Tip displacement, yB (cm) 
1 3 9.815 
2 4 9.896 
3 5 9.933 
4 6 9.954 
5 8 9.974 
6 10 9.983 
7 15 9.993 
8 20 9.996 

The exact value obtained for the cantilever with uniformly distributed load, 
from the closed form solution, is yB = 10.0 cm. It can be seen, even in this 
simple case, that the tip deflection value approaches true solution from a lower 
value as the number of elements increases. In other words, the tip deflection 
value even with a small number of elements gives an approximate solution.  

This method in this form is not useful for engineering analysis as the 
approximate solution is lower than the exact value and, in the absence of 
error estimate, the solution is not practically useful.  
 FEM approach, based on minimum potential energy theorem, converges to 
the correct solution from a higher value as the number of elements in the 
model increases. While the number of elements used in a model is selected by 
the engineer, based on the required accuracy of solution as well as the 
availability of computer with sufficient memory, FEM has become popular as it 
ensures usefulness of the results obtained  (on a more conservative side) even 
with lesser number of elements. 
 Finite Element Analysis (FEA) based on FEM is a simulation, not reality, 
applied to the mathematical model. Even very accurate FEA may not be good 
enough, if the mathematical model is inappropriate or inadequate. A 
mathematical model is an idealisation in which geometry, material properties, 
loads and/or boundary conditions are simplified based on the analyst’s 
understanding of what features are important or unimportant in obtaining the 
results required. The error in solution can result from three different sources. 
Modelling error – associated with the approximations made to the real 
problem. 
Discretisation error – associated with type, size and shape of finite elements 
used to represent the mathematical model; can be reduced by modifying mesh.  
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Numerical error – based on the algorithm used and the finite precision of 
numbers used to represent data in the computer; most softwares use double 
precision for reducing numerical error. 
 It is entirely possible for an unprepared software user to misunderstand the 
problem, prepare the wrong mathematical model, discretise it inappropriately, 
fail to check computed output and yet accept nonsensical results. FEA is a 
solution technique that removes many limitations of classical solution 
techniques; but does not bypass the underlying theory or the need to devise a 
satisfactory model. Thus, the accuracy of FEA depends on the knowledge of 
the analyst in modelling the problem correctly. 

1.8 CLASSIFICATION OF FEM 

The basic problem in any engineering design is to evaluate displacements, 
stresses and strains in any given structure under different loads and boundary 
conditions. Several approaches of Finite Element Analysis have been developed 
to meet the needs of specific applications. The common methods are : 
Displacement method – Here the structure is subjected to applied loads and/or 
specified displacements. The primary unknowns are displacements, obtained by 
inversion of the stiffness matrix, and the derived unknowns are stresses and 
strains. Stiffness matrix for any element can be obtained by variational 
principle, based on minimum potential energy of any stable structure and, 
hence, this is the most commonly used method.    
Force method – Here the structure is subjected to applied loads and/or 
specified displacements. The primary unknowns are member forces, obtained 
by inversion of the flexibility matrix, and the derived unknowns are stresses and 
strains. Calculation of flexibility matrix is possible only for discrete structural 
elements (such as trusses, beams and piping) and hence, this method is limited 
in the early analyses of discrete structures and in piping analysis  
Mixed method – Here the structure is subjected to applied loads and/or 
specified displacements. The method deals with large stiffness coefficients as 
well as very small flexibility coefficients in the same matrix. Analysis by this 
method leads to numerical errors and is not possible except in some very special 
cases.  
Hybrid method – Here the structure is subjected to applied loads and stress 
boundary conditions. This deals with special cases, such as airplane door frame 
which should be designed for stress-free boundary, so that the door can be 
opened during flight, in cases of emergencies.  
Displacement method is the most common method and is suitable for solving 
most of the engineering problems. The discussion in the remaining chapters is 
confined to displacement method. 



34 F I N I T E  E L E M E N T  A N A L Y S I S   

1.9 TYPES OF ANALYSES 

Mechanical engineers deal with two basic types of analyses for discrete and 
continuum structures, excluding other application areas like fluid flow, 
electromagnetics. FEM helps in modelling the component once and perform 
both the types of analysis using the same model. 
(a) Thermal analysis –  Deals with steady state or transient heat transfer by 

conduction and convection, both being linear operations while radiation 
is a non-linear operation, and estimation of temperature distribution in the 
component. This result can form one part of load condition along with 
internal pressure etc., for the structural analysis.  

(b) Structural analysis – Deals with estimation of stresses and 
displacements in discrete as well as continuum structures under various 
types of loads such as gravity, wind, pressure and temperature. Dynamic 
loads may also be considered.  

   1.10  BASIC STEPS IN FEA 

Basic steps in the analysis by Finite Element Method are listed out for the 
general case of structural analysis for static loads. The details in these steps will 
vary for other types of analysis, such as thermal analysis, dynamic analysis, etc. 
(a)  Creating a mathematical model from Physical model – Identifying 

structure (1-D / 2-D / 3-D) based on relative dimensions and neglecting 
insignificant details such as rivets / bolts, pins etc.;  Identifying loads 
(axial / normal) and expected behaviour of the structure (axial / in-plane / 
bending deformation); Identifying material properties (isotropic / 
orthotropic / elastic / plastic / linear / non-linear / constant / temperature-
dependent) 

(b)  Creating a Finite element model by identifying appropriate types of 
elements to represent the behaviour of the structure and discretising the 
structure  into a finite number of elements and nodes, minimising the 
model by taking advantage of symmetry wherever applicable; specifying 
material properties and section properties for all the elements 

(c)  Calculating stiffness matrix and transformation matrix for transformation 
from local to global coordinate system, for each element 

(d)  Assembling element stiffness matrices and storing banded matrix, taking 
advantage of symmetry and banded nature, to minimise memory 
requirement 

(e)  Applying specified boundary conditions, by eliminating corresponding 
rows and columns 
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(f)  Assembling load vector, using consistent nodal loads in place of 
distributed loads 

(g)  Calculating primary unknowns (nodal displacements in global coordinate 
system), by inversion of the reduced stiffness matrix 

(h)  Calculating secondary unknowns (such as stresses and strains in each 
element) in local coordinate system of each element 

(i)  Calculation of principal stresses, principal strains etc for validation of 
design. For visual check of results, plots of deformed geometry, stress 
contours can also be obtained. 

1.11  SUMMARY 

• Finite Element Method, popularly known as FEM, involves 
analysis of the entire structure, instead of separately considering 
individual elements with simplified or assumed end conditions. It 
thus helps in a more accurate estimate of the stresses in the 
members, facilitating optimum design.  

• FEM involves idealizing the given component into a finite 
number of small elements, connected at nodes. FEM is an 
extension of Rayleigh-Ritz method, eliminating the difficulty of 
dealing with a large polynomial representing a suitable 
displacement field valid over the entire structure. Over each finite 
element, the physical process is approximated by functions of 
desired type and algebraic equations, which relate physical 
quantities at these nodes and are developed using variational 
approach. Assembling these element relationships in the proper 
way is assumed to approximately represent relationships of 
physical quantities of the entire structure. 

• FEM is based on minimum potential energy theorem. It 
approaches true solution from a higher value, as the number of 
elements increases. Thus, it gives a conservative solution even 
with a small number of elements, representing a crude 
idealisation.  
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   OBJECTIVE QUESTIONS 

   1. The solution by FEM is    
  (a) always exact                         (b) mostly approximate   
  (c) sometimes exact               (d) never exact 
 2. Discrete analysis covers     
  (a) all 2-D trusses & frames               (b)  all 3-D trusses & frames  
  (c) all 2-D and 3-D trusses & frames  (d)  no trusses; only frames 
 3. FEM is a generalization of     
  (a) Rayleigh-Ritz method          (b) Weighted residual method 
  (c) Finite difference method       (d) Finite volume method 
 4. Variational principle is the basis for     
  (a) Displacement method            (b) Weighted residual method 
  (c) Finite difference method        (d) Finite volume method 
 5. Displacement method is based on minimum  
  (a) potential energy                       
  (b) strain energy 
  (c) complementary strain energy       
  (d) work done 
 6. Hybrid method is best suited for problems with prescribed  
  (a) displacements    (b) forces    (c) stresses (d) temperature 
 7. Primary variable in FEM structural analysis is  
  (a) displacement     (b) force      (c) stress       (d) strain 
 8. Stress boundary conditions can be prescribed in  
  (a) displacement method        (b) hybrid method   
  (c) force method                     (d) mixed method   
 9. Prescribed loads can form input data in  
  (a) displacement method        (b) hybrid method   
  (c) force method                     (d) mixed method   
      10. Stiffness matrix approach is used in    
 (a) displacement method     (b) stress method    
 (c) force method                  (d) mixed method 
      11. Displacement method of FEM for structural analysis gives   
 (a) stiffness matrix               (b) flexibility matrix 
 (c) conductance matrix        (d) mixed matrix 
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      12. Flexibility matrix approach is used in   
 (a) displacement method     (b) stress method    
 (c) force method                  (d) mixed method 




