
1.  Basic Governing Equations 

1.1  Introduction 

Many of the atmospheric motion systems are driven by differential heating. 
Examples of this are the atmospheric general circulation as also some weather 
systems. In particular, tropical cyclones are driven by the release of latent heat 
in the central region. Thus we need equations of fluid dynamics and 
thermodynamics for the study of such systems. 
 
The basic governing equations of atmospheric motion are: 

(i) Equation of motion 
(ii) Continuity equation 
(iii) Equation of state 
(iv) First law of thermodynamics 

1.2  Equation of Motion 

This is a statement of Newton’s second law of motion for a parcel of air (of 
unit mass) in the atmosphere. It is written as 
 

 2
→

→ → → →
= −α∇ + − Ω × +

d V p g V F
dt

 

 

where p is pressure, 
1

α =
ρ

, ρ  is density, 
→
V  is vector wind, 

→
g  is gravity, 

→
Ω  

is angular velocity of earth, 
→
F  is frictional force. 

 
The acceleration is equal to the vector sum of all forces (per unit mass, as 
mentioned above) acting on the parcel, such as 
 

(i) Pressure gradient force1 
(ii) Gravity 
(iii) Coriolis force 
(iv) Frictional force 
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The coriolis force arises from the rotation of the earth. We begin with a non-
rotating co-ordinate system fixed at the centre of the earth and then transform 
to a rotating co-ordinate system2. 
 
It is more convenient to decompose this vector equation into its three scalar 
components in a local Cartesian system with the x-axis pointing to the east, y-
axis pointing to the north and vertical axis pointing upwards. 
 
The component scalar equations are 
 

 
∂

= −α + +
∂ x

du p fv F
dt x

 

 
∂

= −α − +
∂ y

dv p fu F
dt y

 

 
∂

= −α − +
∂ z

dw p g F
dt z

 

where u, v, w are the scalar components of the wind 
→
V  along the x, y and z 

co-ordinates and 2 sin= Ω φf  is known as the coriolis parameter. φ is the 
latitude. 
 
In the vertical equation of motion, for large-scale motion, the vertical 
acceleration is usually small and there is a very good balance between gravity 
and the vertical pressure gradient force. This is known as hydrostatic balance. 
 

 
∂

−α =
∂
p g
z

 

 

The total derivative 
du
dt

 is a derivative following the fluid parcel. 

 

 
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

du u u u uu v w
dt t x y z

 

 

where 
∂
∂
u
t

 is the local derivative at a location and ,∂ ∂
∂ ∂
u uu v
x y

 and 
∂
∂
uw
z

 are 

known as advection terms. 
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1.3  Continuity Equation 

This is a statement of the physical principle of conservation of mass. 
 
Consider a fixed volume dx dy dz. 
 
Rate of inflow of fluid at wall = ρA udy dz  
(Fig. 1.1) 
 

 

Fig. 1.1 

At wall B it is ( ){ }∂
− ρ + ρ

∂
u u dx dy dz

x
 

 
It is an outflow. 
 

Net inflow = ( )∂⎛ ⎞ρ − ρ + ρ⎜ ⎟∂⎝ ⎠
udy dz u u dx dy dz

x
 

      = ( )∂
− ρ
∂

u dx dy dz
x

 

 
Similarly, inflow at all the six walls 
 

      ( ) ( ) ( )∂ ∂ ∂⎧ ⎫= − ρ + ρ + ρ⎨ ⎬∂ ∂ ∂⎩ ⎭
u v w dx dy dz

x y z
 

 

This is equal to the local rate of change of mass ( )∂
ρ

∂
dxdy dz

t
. 
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Therefore, 
 

 ( )→∂ρ
= −∇⋅ ρ

∂
V

t
 

       
→ →

= − ⋅∇ρ −ρ∇ ⋅V V  
 

i.e., 
→ρ

= −ρ∇⋅
d V
dt

 

 

or 1 →ρ
= −∇ ⋅

ρ
d V
dt  

1.4   Equation of State 

By combining Charles and Boyle’s laws, we get the equation of state  
 

upV nR T=  for n moles. 
 
For unit mass it is = ρp RT  
 
or   α =p RT  where R (gas constant) is for unit mass. 
 
For the temperature range we encounter in the massive part of the atmosphere, 
we can treat the atmosphere as a perfect gas (mixture of perfect gases). See 
Appendix 3. 

1.5   First Law of Thermodynamics 

If we add a small quantity of heat dQ to a fluid, part of it goes to increase the 
internal energy (dU) and part of it goes to do work (dW). 
 
Thus, = +dQ dU dW  
 
  = + αdQ dU pd  for unit mass. 
 
If heat is added at constant volume 0α =d .  
 
Then = = vdQ dU C dT  
 
Therefore, in general vdQ C dT pd= + α  
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Now,  α =p RT  
 
Differentiating 
  
 α+α =pd dp RdT  
 
Therefore, = + −αvdQ C dT RdT dp  
 
Now, if we add heat at constant pressure dp = 0 
 
Therefore, ( )= = +p vdQ C dT C R dT  
 
Therefore in general, 
 
 = −αpdQ C dT dp  
 
Writing these as differential equations 
 

 
α

= +v
dQ dT dC p
dt dt dt

 

        = −αp
dT dpC
dt dt

 

 
It is convenient to define a new variable called potential temperature. 
 

 0
κ

⎛ ⎞θ = ⎜ ⎟
⎝ ⎠

pT
p

  

 

where κ =
p

R
C

 and 0p  is a reference pressure usually taken as 1000 hpa (or 

1000 mb). 
 
The potential temperature θ of a parcel at temperature T and pressure p is 
defined as the temperature attained by it when it is adiabatically brought 
(compression or expansion) to 1000 hpa. Adiabatic process is one in which 
heat is neither added nor taken out i.e., dQ = 0. 
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1.6   Co-ordinate Systems 

The most commonly used co-ordinate system is the local co-ordinate system. 
This is a right-handed Cartesian co-ordinate system on a local tangential 
plane, which is fixed to the earth at the local point of consideration. x-axis 
points to the east. Distance towards the east is positive and to the west is 
negative. y-axis points to the north. Distance towards north is positive and 
towards south is negative. z-axis points upwards, distance upwards is positive 
and downwards is negative. (Fig. A2.2) 
 
∧
i , 

∧
j , 

∧
k  are unit vectors. 

 

The position vector 
→ ∧ ∧ ∧
= + +r x i y j z k  

 

 =
dx u
dt

,  =
dy v
dt

,  =
dz w
dt

 

 
The velocity (vector) 
 

 
→ ∧ ∧ ∧

= + +V u i v j w k  
 
Acceleration, 

 
→

∧ ∧ ∧
= + +

d V du dv dwi j k
dt dt dt dt

 

 

Now,  
∂ ∂ ∂ ∂

= + + +
∂ ∂ ∂ ∂

du u u u uu v w
dt t x y z

 

 

∂
∂
u
t

 is known as the local derivative or local change and ,∂ ∂
∂ ∂
u uu v
x y

 are 

known as the horizontal advection terms and 
∂
∂
uw
z

 is known as the vertical 

advection term. 
 
The physical significance of these terms needs to be understood clearly. It is 
easier to understand if we use the variable, temperature T. 
 

∂
∂
T
t

 is the local change of temperature. If we measure temperature at one 

location, say the meteorological observatory at Bangalore and note the rate of 
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change of temperature with respect to time at this location, it is known as the 
local change. 
 
If we have a situation such that isotherms (line connecting places of same 
temperature) run north-south as shown in the diagram and we have a westerly 
wind (wind blowing from the west) then air is moving from colder region to a 
warmer region. This is a case of cold advection. Fig. 1.2(a) 
 
If we have isotherms and wind as in the next diagram, we have a case of 
warm advection. Fig. 1.2(b). 
 
If we have isotherms running east-west and a southerly wind (wind blowing 
from the south) as shown in the next diagram, we have cold advection.               
Fig. 1.2(c). 

 

 

Fig. 1.2  Horizontal advection 

 

Fig. 1.2c Horizontal advection 
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Thermal advection is very important in the middle and higher latitudes (extra-
tropics). When there are strong northerly winds blowing from Canada towards 
USA during (northern) winter, it is a case of cold advection. It is sometimes 
referred to as the Canadian express. 
 
In Asia if there are strong northerly winds (winds blowing from the north) 
blowing from Siberia in winter, it is a case of cold advection. It can be 
referred to as the Siberian express. India is protected from these cold winds by 
the mighty Himalayas. 

 
In the tropics thermal advection is less pronounced. Here moisture advection 
is prominent. There is large moisture advection by the monsoon south-
westerly and southerly winds from the Arabian sea and the Indian ocean. 

1.7   Spherical Polar Co-ordinates  

As the earth is almost a sphere it is most natural to use spherical polar co-
ordinates. The co-ordinates are λ the longitude, φ the latitude and z the 
vertical distance above the surface. (Fig. 1.3). 

 

 

Fig. 1.3 Spherical polar co-ordinates 

 
Now cos= φ λdx a d   and  = φdy a d  



 Chapter 1   Basic Governing Equations 9 

The velocity is 
 

 
→ ∧ ∧ ∧

= + +V i u j v k w  
 

where cos λ
= φ

du a
dt

,  
φ

=
dv a
dt

  and  =
dzw
dt

 

 
 = + ≈r a z a  
 
where a = radius of the earth. 

It is to be noted that the unit vectors 
∧
i , 

∧
j  and 

∧
k are functions of the position 

on the earth. 
 
Taking this into consideration, the component equations are 
 

 
tan 2 sin 2 cosφ ∂

− + = −α + Ω φ− Ω φ+
∂ x

du uv u w p v w F
dt a a x

 

 
2 tan 2 sinφ ∂

+ + = −α − Ω φ+
∂ y

dv u v w p u F
dt a a y

 

 
2 2

2 cos+ ∂
− = −α − + Ω φ+

∂ z
dw u v p g u F
dt a z

 

 
For synoptic and large scale motions, the horizontal length scales are of the 
order of 1000 km, time scale is of the order of a day (105 second), vertical 
height scale is of the order of 10 km and horizontal wind speed is of the order 
of 10 ms–1. However, the vertical wind speed is much smaller and is of the 
order of 1 cms–1. 
 
For these scales (or small Rossby number3 regime), the equations of motion 
take the simpler form 
 

 
∂

= −α + +
∂ x

du p fv F
dt x

 

 
∂

= −α − +
∂ y

dv p fu F
dt y

 

 
∂

= −α − +
∂ z

dw p g F
dt z
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For large scale motion, the accelerations are one order of magnitude smaller. 
So, 
 

 

∂ α ∂ ⎫+α ≈ = ⎪∂ ∂ ⎪
⎬∂ α ∂ ⎪+α ≈ − = −
⎪∂ ∂ ⎭

g

g

p pfv v
x f x
p pfu u
y f y

 

 

This is known as geostrophic balance and 
→ ∧ ∧

= +g g gV u i v j  is the geostrophic 
wind. 
 
In vector notation 
 

 0
∧ →

−α∇ − × =H gp f k V  

i.e., 
→ ∧α

= − ∇ ×g HV p k
f  

 
Large scale wind blows parallel to lines of constant pressure or isobars. See 
Fig. 1.5c. 
 
During the monsoon season the pressure gradient over peninsular India is 
from south to north. Therefore the zonal wind is westerly (with low pressure 
to the left in the northern hemisphere). 
 
In addition, we have, of course, the hydrostatic balance i.e.,  

 

 
∂

α = −
∂
p g
z

 

1.8  Pressure Co-ordinates 

Now,  = − ρdp g dz  
 
As the large scale atmosphere is in good hydrostatic balance it is possible to 
use pressure as a vertical co-ordinate (independent variable) instead of height 
z. Then z, the height of constant pressure surface or g zφ = , the geopotential 
becomes the dependent variable. 
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In, x, y, p – co-ordinates; =x u ,  y v= ,  ω =
dp
dt

. 

 
The total derivatives is 
 

 
∂ ∂ ∂ ∂

= + + +ω
∂ ∂ ∂ ∂

du u u u uu v
dt t x y p

 

 
The equations of motion in this co-ordinate system are 
 

 
∂φ

= − + +
∂ x

du f v F
dt x

 

 
∂φ

= − − +
∂ y

dv f u F
dt y

 

 
1∂ ∂φ

− = − = = α
∂ ∂ ρ

zg
p p

    or    
∂φ

α = −
∂p

 

 
The continuity equation is 
 

 0∂ ∂ ∂ω
+ + =

∂ ∂ ∂
u v
x y p

 

 
Thus it becomes simpler. 

1.9  Natural Co-ordinates 

We consider a unit vector t
∧

 parallel to the horizontal wind vector (or 

streamline) and n
∧

 perpendicular to the wind, positive to the left of the flow 
direction. 
 

k
∧

 is directed vertically upwards. 
 

 
→ ∧
=V V t  

Fig. 1.4 Natural coordinates
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→ ∧

∧
= +

d V dV d tt V
dt dt dt  

 

From the figure 1.4,  
∧ ∧
= αd t d n  

 

 
→

∧ ∧α
= +

d V dV t V n
dt dt

 

         
1∧ ∧α

= +
r dV t V n

r dt
    

 
where r = radius of curvature 
 

          
2∧ ∧

= +
VV t n
r

 

 

=
dVV
dt

 is the tangential acceleration 

 
2V

r
 is the centrifugal acceleration 

 
Since the Coriolis force acts always normal to the direction of motion 
 

 
∧ → ∧

− × = −f k V f V n  
 
The equations of motion in natural co-ordinates are 
 

 
∂

= −α
∂

dV p
dt s

 

 
2 ∂
+ = −α

∂
V pf V
r n  

 
Along the direction of motion, the tangential pressure gradient accelerates the 
wind. In the normal direction, the pressure gradient force is balanced by 
Coriolis force and centrifugal force. 
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1.10 Gradient Wind 

Here the flow (wind) is parallel to isobars and is called gradient wind.                     
(Fig. 1.5 a, b) 
 
The tangential acceleration, 
 

 0=dV
dt

 

 
2 ∂
+ = −α

∂
V pf V
r n

 

 
There is a balance between pressure gradient force, coriolis force and 
centrifugal force. 
 
In a low pressure area (Fig. 1.5a) the flow is anticlockwise in the northern 
hemisphere. In regions of high pressure the flow is clockwise. Regions of low 
pressure or cyclonic circulation in the lower levels are usually associated with 
weather. An exception is the shallow heat low over northwest India-Pakistan 
during the monsoon season. Regions of high pressure or anticyclones                  
(Fig. 1.5b) in the lower levels are usually associated with sinking and clear 
weather. 
If →∞r  

The flow is in a straight line 

 
∂

= −α
∂g
pf V
n

 

This is geostrophic wind. 
There is a balance between pressure gradient force and coriolis force.              
(Fig. 1.5 c). 

 

Fig. 1.5 (a & b) Gradient wind 
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Fig. 1.5 (c)  Geostrophic wind 

1.11  Thermal Wind-variation of Wind in the Vertical 

The geotrophic wind 
→ ∧

= − ∇ ×g p
gV z k
f

 

 

In the vertical ( )
→ ∧

Δ = − ∇ Δ ×gz p
gV z k
f

 

  = − ρdp g dz  
  α = −dp g dz  
  α =p RT  

  = − = − φ
dpRT g dz d
p

 

 ln= −
RTdz d p
g

 

 ( )lnΔ = − Δ
RTz p
g

 

      1

2
ln⎛ ⎞= ⎜ ⎟
⎝ ⎠

pRT
g p

 

 

Thermal wind 1

2
ln

→ ∧⎛ ⎞Δ = − ∇ ×⎜ ⎟
⎝ ⎠

g p
R pV T k
f p

 

 
The thermal wind blows parallel to isotherms with low temperature to the left 
(in the northern hemisphere). During monsoon the thermal wind is easterly. 
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1.12   Vorticity and Divergence 

There are two quantities derived from the wind V
→

, which are very useful. 
 

Vorticity   
→ ∧ ∧ ∧

∇× = ξ + η + ζV i j k  
 
The vertical component of vorticity is 
 

  
∧ → ∂ ∂

ζ = ⋅ ∇ × = −
∂ ∂
v uk V
x y

 

 
The circulation around ABCDA (Fig. 1.6) 
 

  .
→

= ∫V dl  

 
2 2

∂ ∂⎛ ⎞ ⎛ ⎞= − + +⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

u dy v dxdC u dx v dy
y x

 

 
2 2

∂ ∂⎛ ⎞ ⎛ ⎞− + − −⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

u dy v dxu dx v dy
y x

 

       
2 2

∂ ∂
= − + +

∂ ∂
u dy v dxudx dx vdy dy
y x

 

   
2 2

∂ ∂
− − − +

∂ ∂
u dy v dxudx dx vdy dy
y x

 

       ∂ ∂⎛ ⎞= −⎜ ⎟∂ ∂⎝ ⎠

v u dx dy
x y  

 

 

Fig. 1.6 Circulation and vorticity 
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The circulation per unit area  
 

 
∂ ∂

ζ = = −
∂ ∂

dC v u
dA x y

 

 
Vorticity shows rotation, 
 
Divergence 
 

 ( )→ ∧ ∧ ∧ ∧ ∧ ∧⎛ ⎞∂ ∂ ∂
= ∇⋅ = + + ⋅ + +⎜ ⎟∂ ∂ ∂⎝ ⎠

D V i j k i u j v k w
x y y

 

     ∂ ∂ ∂⎛ ⎞= + +⎜ ⎟∂ ∂ ∂⎝ ⎠

u v w
x y z

 

 
Horizontal divergence 
 

 
∂ ∂

= +
∂ ∂H
u vD
x y

 

 
Now the horizontal wind can be expressed as 

 
→ ∧

= × ∇ψ +∇χV k  

      
→ →
ψ χ= +V V  

 
where, ψ - the stream function 
 χ - velocity potential 
 

 
→ ∧ ∧ ∧
ψ

⎛ ⎞∂ψ ∂ψ
= × +⎜ ⎟∂ ∂⎝ ⎠

V k i j
x y

 

      
∧ ∧∂ψ ∂ψ

= −
∂ ∂

j i
x y

 

 ψ
∂ψ

= −
∂

u
y

;  ψ
∂ψ

=
∂

v
x

 

 

Similarly, 
 

 
→ ∧ ∧
χ

∂χ ∂χ
= +

∂ ∂
V i j

x y
 

 χ
∂χ

=
∂

u
x

;  χ
∂χ

=
∂

v
y
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Therefore, 
 
 ψ χ= +u u u  

    
∂ψ ∂χ

= − +
∂ ∂y x

 

 
∂ψ ∂χ

= +
∂ ∂

v
x y

 

 
The vertical component of vorticity 
 

 ∂ ∂ ∂ ∂ψ ∂χ ∂ ∂ψ ∂χ⎛ ⎞ ⎛ ⎞ζ = − = + − − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

v u
x y x x y y y y

 

     
2 2

2
2 2

∂ ψ ∂ ψ
= + = ∇ ψ
∂ ∂x y

 

 
Only ψ component (the rotational part of wind) contributes to vorticity. 
 
The horizontal divergence 
 

 
∂ ∂

= +
∂ ∂H
u vD
x y

∂ ∂ψ ∂χ ∂ ∂ψ ∂χ⎛ ⎞ ⎛ ⎞= − + + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠x y x y x y
 

      
2 2

2
2 2x y

∂ χ ∂ χ
= + = ∇ χ
∂ ∂

 

 
Only χ component of wind contributes to divergence. 

1.13   Vorticity Equation 

From the two component equations of motion along the x (longitude) and y 
(latitude) directions, it is convenient to obtain a derived equation known as the 
vorticity equation. 
 

 
∂ ∂ ∂ ∂ ∂

+ + + = −α + +
∂ ∂ ∂ ∂ ∂ x
u u u u pu v w f v F
t x y z x

      … (1.1) 

 
∂ ∂ ∂ ∂ ∂

+ + + = −α − +
∂ ∂ ∂ ∂ ∂ y
v v v v pu v w f u F
t x y z y

      … (1.2) 
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Taking 
y
∂
∂

 of equation (1.1) and subtracting from 
x
∂
∂

 of equation (1.2) 

 

 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + + + + +⎜ ⎟⎢ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠ ⎝ ⎠⎣

u u u u v u uu v
t y y x y x y y y y

 

 ∂ ∂ ∂ ∂ ∂α ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = − − α + +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
w u u p p vw f
y z y z y x y x y

 

 ∂ ⎤β + ⎥∂ ⎦
xFv

y
      … (1.3) 

 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎡ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞+ + + + + +⎜ ⎟ ⎜ ⎟⎢ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎣

v u v v v v vu v
x t x x x x x y x y

 

 ∂ ∂ ∂ ∂ ∂α ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞+ = − − α − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

w v v p p uw f
x z x z x y x y x

 

 
∂ ⎤

⎥∂ ⎦
yF

x
      … (1.4) 

 
Regrouping and adding terms of similar type 
 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞ ⎛ ⎞− + − + − +⎜ ⎟ ⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠

v u v u v uu v
t x y x x y y x y

 

 ∂ ∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎛ ⎞− + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

v u u v v uw
z x y x y x y

 

 ∂ ∂ ∂ ∂⎛ ⎞− =⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

w v w u
x z y z

∂α ∂ ∂α ∂ ∂ ∂⎛ ⎞ ⎛ ⎞− − − + −⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

p p u vf
x y y x x y

 

 
∂ ∂

β + −
∂ ∂

y xF Fv
x y

 

 

i.e., 
∂ζ ∂ζ ∂ζ ∂ζ

+ + + +β
∂ ∂ ∂ ∂

u v w v
t x z z

 

 

 ( ) ∂ ∂ ∂ ∂ ∂ ∂α ∂ ∂α⎛ ⎞ ⎛ ⎞= − ζ + + − + − +⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
H

w u w v p pf D
y z x z x y y x

 

 
∂⎛ ⎞∂

−⎜ ⎟∂ ∂⎝ ⎠

yx FF
x y
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i.e., ( ) ( ) ∂ ∂ ∂ ∂⎛ ⎞ζ + = − ζ + + − +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠
H

d w u w vf f D
dt y z x z

 

 
∂⎛ ⎞∂∂ ∂α ∂ ∂α⎛ ⎞− + −⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠

yx FFp p
x y y x x y

 

 
The absolute vorticity of a fluid parcel can change by (i) divergence term,          
(ii) tilting term, (iii) solenoidal term and, (iv) friction term. 
 
The largest term is the divergence term. In regions of horizontal convergence 
( HD  negative), the vorticity increases. 
 
The second term is called the vortex tube term. This term converts horizontal 
component of vorticity into the vertical component. 
 
The third term is called the solenoidal term. If iso-lines of α (or ρ) and iso-
lines of pressure or isobars intersect at an angle, we have pressure-specific 
volume solenoids. 
 
As an approximation 
 

  
ζ

≈ −ζa
a H

d D
dt

    or    
→

ζ ≈ − = −∇ ⋅n
a H H

dl D V
dt

 

 
If the divergence is zero, as in a nondivergent barotropic atmosphere, then 
 

 0ζ
=ad

dt
 

 
Thus, in this case the absolute vorticity is conserved. 

1.14   Humidity 

The atmosphere contains a variable amount of moisture. Water occurs in all 
three phases – ice/snow, water and vapour. 
 
Water vapour is a very important constituent of the atmosphere. Obviously, it 
is an essential ingredient for cloud and rain formation. It also absorbs 
terrestrial infrared radiation and keeps the earth warm. 
 
When water vapour condenses to water the released latent heat is an important 
secondary source of heating for tropical and monsoon disturbances as well as 
for the maintenance of monsoon circulation and the Hardley circulation. 
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There is always evaporation from the oceans and other water bodies. The 
amount of evaporation depends upon wind speed and the vertical gradient of 
water vapour above the water surface.  
 
The partial pressure of water vapour is referred to as vapour pressure, e. 
Under equilibrium conditions, when the maximum possible water vapour has 
evaporated, the atmosphere is said to be saturated. Then the vapour pressure is 
referred to as saturation vapour pressure, se . The mixture of air and water 
vapour, when it is saturated is referred to as saturated air. When vapour 
pressure is less than saturation vapour pressure, air is said to be unsaturated. 
When saturated air is cooled – as it happens when air rises: 
 

(i) when air flows over a mountain barrier or 
(ii) in regions of low level convergence as in low pressure areas, 

depressions or storms, the saturation vapour pressure at the new lower 
temperature is less. The atmosphere can hold less amount of water. 
The excess water vapour usually condenses. 

 
The latent heat of vaporization is the amount of heat required to change unit 
mass (one gram or kilogram) of water into water vapour at the same 
temperature. On the other hand when one gram or kilogram of water vapour 
condenses to water, latent heat is released. 
 
The equation of state for water vapour is  
 
  =ρv ve R T  
 
where vR  is gas constant of water vapour. 
 
Clausius-Clapeyron equation  
 

 2
1

=s lv

s v

de L
e dT R T

 

 
This tells us about the variation of saturation vapour pressure with 
temperature. Saturation vapour pressure increases with temperature. At higher 
temperatures as in the tropics, saturation vapour pressure is higher. The 
atmosphere can hold more moisture. 
 
As said earlier moist air is a mixture of dry air and water vapour. There are 
different ways of expressing the moisture content in the atmosphere. 
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Mixing ratio is the mass of water vapour per unit mass of dry air in the 
mixture. 
 

 
ρ

= = =
ρ

v
v v

dd d

M
M Vm MM

V

  

 
Specific humidity q is the mass of water vapour per unit mass of (moist) air. 
 

 ρ
= = =

+ ρ + ρ
v v v

d v d v

M M
q

M M M
 

 
m and q are dimensionless. They are expressed in gram per kilogram. 
 
Relative humidity is the ratio of the observed mixing ratio and the saturation 
mixing ratio. 
 

 = ≈
s s

m er
m e

 

 
Relative humidity is generally expressed as a percentage. 

1.15   Hydrostatic Stability 

When a small parcel of air is displaced vertically (without any mixing), if it 
comes back to its original position, then the atmosphere is said to be in 
hydrostatic equilibrium. If the parcel moves away, the atmosphere is unstable. 
If the parcel rests in any position it is moved to, it is in neutral equilibrium. 
 
The surrounding air is in hydrostatic equilibrium 
 
i.e., = − ρdp g dz        … (1.5) 
 
The parcel (of density ′ρ ) may not be in hydrostatic equilibrium. 
 

 1 ∂⎛ ⎞= − − ⎜ ⎟′ρ ∂⎝ ⎠
dw pg
dt z

       … (1.6) 

 
′ρ  is the density of displaced parcel, ′ =p p  pressure adjusts quickly. 
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Eliminate 
∂
∂
p
z

 

 

 1 ′ρ −ρ⎛ ⎞= − + ρ = ⎜ ⎟′ ′ρ ρ⎝ ⎠

dw g g g
dt

       … (1.7) 

       ( )′γ − γ
=

g z
T

 

 

where 
∂

γ = −
∂
T
z

 is the lapse rate 

 
If ′γ > γ   Unstable 

If ′γ = γ   Neutral 

If ′γ < γ   Stable 
 
The displacements are adiabatic. 
 
In the atmosphere which contains moisture, 
γ < γs  absolutely stable 

γ < γ < γs d  conditionally unstable, stable till the parcel is unsaturated, 
unstable when it becomes saturated. 
γ > γd  absolutely unstable4 
 
γd  is dry adiabatic lapse rate (DALR) and γs  is saturation adiabatic lapse 
rate (SALR). 
 

Now,   0⎛ ⎞θ = ⎜ ⎟
⎝ ⎠

p
R

CpT
p

 

 

 ln ln ln∂ θ ∂ ∂
= −

∂ ∂ ∂p

T R p
z z C z

 

                                                            
4Appendix 5 
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 1 1 1∂θ ∂ ∂
= −

θ ∂ ∂ ∂p

T R p
z T z C p z

 

          1 ∂ ρ
= +

∂ ρp

T R g
T z C RT

 

 ( )1 1∂θ
= −γ +

θ ∂ p

g
z T C T

 

 

or 
∂θ

= γ − γ
θ ∂ d
T

z
 

 
For dry or unsaturated air 
 

 0∂θ
<

∂z
    Unstable 

 0∂θ
=

∂z
    Neutral 

 0∂θ
>

∂z
    Stable 

 
 

 
   




