CHAPTER

1

Linear Wave Shaping

1.1

INTRODUCTION

Let us consider a transmission network consisting of linear elements. Sinusoidal signal
is applied to a network, the output signal is sinusoidal in the steady state conditions.
The influence of the network circuit on the signal may be completely specified by the
ratio of output to input amplitude and phase angle between output and input
waveform. No other periodic waveform preserves its shape. Generally when
transmitted through a linear network the output signal may have a little resemblance to
the input signal.

“The process whereby the shapes of non sinusoidal signals are shaped by passing the
signal through the linear network is called linear wave shaping”.

1.2

HIGH PASS RC CIRCUIT

FIGURE 1.1 High pass RC circuit

The high pass RC circuit is shown in Fig.1.1. The input is denoted by V(t), and the
output as V(t), ‘a’ is the charge of the capacitor.

At zero frequency the capacitor has infinite reactance and hence open circuited.
Therefore, the capacitor blocks the dc signal not allowing it to reach output. Hence the
capacitor is called blocking capacitor. The coupling circuit provides dc isolator
between input and output.
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Since the reactance of the capacitor decreases with increasing frequency the end
output increases.

Thus the circuit abstracts the low-frequency and it allows the high frequency to reach
the output. Hence this circuit is called high pass RC circuit.

1.3 SINUSOIDAL INPUT

The sinusoidal input V; (t) is mathematically defined as Vi (t) = V,, sin wt

+2 it 2t
+ -
+<>
Vi(s) /;(% TR v
—_ O O —

FIGURE 1.2 Laplace Network of high passe RC circuit

In the analysis of Network to sinusoidal input is obtained using Laplace transform as
shown in Figure 1.2 applying KVL around the circuit.

—1/scI(s)-1(s)R+Vi(s)=0
Vi(s)

V,(s)=1(s)R =

Is=

Vi(s)

_ Vi(s)R - Vi(s)R wS¢ scRVi(s)

xR

V_(s)

o) TSR +1 I " (scR+1) scR+1
sc
A = ! = Transfer function
\/i (S) 1 + L
scR

Numerator and De-numerator divided by SCR applying sinusoidal input varying its
frequency 0 to o, S = jw
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V(o)1 1

. 2
o -=-J 1 =-1
ViGo) g1 ]
JORC
o=2[If
V,(j 1 . .
=2 (? @ = Frequency domain transfer function
2[IfRC
|A| = —| = ! 0=—tan"' !
| Vi(jo)| RY 2TTfRC
1+
[arie)
At lower cut off frequency fj,
[Al=7
\/> gain
1 1 Al :
2 | |
0707 =—F - = - [
2Hf RC V2 | :
| I
—_= | |
2 1 2 | |
I+ 0 f, — f
2[IfRC
2
2=1+ 1 Fig 1.3 0 to f; — cut off Jone gain
2[1f,RC frequency plot
Equating the Denominators 2nfRC =1
fi = L lower cut of frequency of high pass RC circuit
2[IfRC
— Vo(.]('o) — 1 — 1 e:tanfl (%J

Vi(jw) : 1 2 | f| 2
+(2HfRCj +(f]

1.4 STEP INPUT VOLTAGE

Let us consider that the step input voltage of Magnitude a voltage is applied as an input to
the high pass RC circuit. When the input step is applied to the circuit, the current starts
flowing instantaneously, then the capacitor changes exponentially and the current decays
exponentially. Due to which the output voltage also decays exponentially. When
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capacitor charges equal to the input voltage level of voltage, current stops and the output
voltage attains zero values in steady state conditions.

Let us mathematically analyse the output voltage as
V,(t)=B, +B,e "
B, B, , constants
T is the time constant of the circuit
t=RC
The output voltage consists of two parts
1. B, is the steady state value of the output voltage
t — oo,
Vo () =B,
2. The transient part represented by expression decaying term B, ¢
The circuit is said to achieve steady state

When the transient part completely dies out i.e., t — oo

) Vo (t) lim ,
Limt t — o(t)=t—o(B, +B,e™"")

=B, as Lim th—m>eft/"" =0
Let the steady state value of output voltage v¢
B =V;
To determine the B, (constant)
t = 0 consider initial output voltage
t=0be V;
V,(0|_, =B +B, =V,

Vi=Vi+ B,
By=Vi-V;
Substituting the value B, and B,
V, (0 =V, +(V; = Vp)e "
Thus t — eo the capacitor blocks d.c, hence the final steady state output voltage is
Zero
V=0
The voltage across the capacitor cannot change instantaneously
t=0"i.e., justaftert=0

The voltage across capacitor is zero. It can’t change. Hence the output voltage at t
= 0" is same as the input voltage equal to A volt. When the capacitor is initially
unchanged then the output is same as of input t = 0"
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V; = A voltage
Vo ()= Vi+ (Vi-Vpe'
=0+(A-0)""

=Ae""
V.o 4 Vo(® /v \z
A > RC Large
RC Small
VO
V()
V()
> 0 \b RC Very small '
FIGURE 1.4 Step input FIGURE 1.5 Step input for different time constants

1.5 PULSE INPUT

An ideal pulse has the waveform shown in Figure (1.6). The pulse amplitude is V and
pulse duration is t,.

It has been mentioned earlier that the pulse is the sum of the two step voltages.

Vo®

_, ~RC

Vo)

I
l—— Vo () —!
1

FIGURE 1.6 Pulse input waveform

So the response of the circuit 0 < t < t, for the pulse input is same for a step input given
by Vi (t) = Ve RC.

Att=t, Vg, (t)=Ve ™=V,

Now, consider the second part of the input for t > t,. At t =t,. As the input falls by V volts
suddenly and the capacitor voltages can’t change instantaneously, the output has to drop
by a Vvoltsto V, -V
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t=tyie, t,

Hence the output drop by V from V, at t = t,' the capacitor voltage changes the output
voltage decays exponentially to 0
For the second part of the pulse
t=t, Vo(t,)=V,—-V
Voolty) = Ve PRC v
Valty) =V (e "= V)
This is the initial output voltage for the second part of pulse
Vi=V(e "*-1)
The output voltage final value is zero
V=0
Voalt) = Vi + (Vi = V) e K€
Voo(t) = V(e PRE_ 1) (¢ “PRC

The output waveform RC >>t,, RC comparable to t,, and RC << t, shown in figure 1.7,
1.8,1.9

V() Vo®

\Y \%

0 p t
/<(V e—(Hp)/I{L‘

S )

FIGURE 1.7 RC>>t,

FIGURE 1.9 RC <<t,
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The response with large time constant RC ie, RC/T, >>1 is as shown in figure (1.7)

It can be observed that large time constant, the tilt is very small and undershoot also is
very small, both the linear destruction are small. However the negative portion
decreases very slowly

The response with small time constant RC/t, <<I is shown in Fig. (1.9). The output
consists of a positive spike of amplitude V at the beginning of the pulse and a negative
spike of the same size at the end of the pulse. This process of converting pulse into
spikes using a circuit of small time constant is called peaking.

1.6 SQUARE-WAVE INPUT

<— Ve —>

C
(o | *]
A I A
\Y% b3
i 4: R VO
v v
O O

FIGURE 1.10 RC Circuit

Consider the various voltages present in high pass RC circuit as shown in the fig 1.10
g = charge on the capacitor

Apply Kirchhoff law =4 y=4
c

a
v
Vi=V.+V,

Vi = ﬂ + vo
c
Differentiating the equation
dvi _1ldq N dv, . dq
dt cdt dt dt

dv. 1, . dV
= () +—2
dt ¢ dt

Vo=iR i=-e
R
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Substituting in equation

dVi Vo dVo
dt RC dt
Both sides multiplied by the dt
A%
dv,= —dt dv
RC °

Integrating the time period from 0 to T

T 1 T T
[dvi=—[V dt+[aV,
0 RCO 0

1 T
V.]p =—— |V dt+[V 1)
[Vily RC! dt+[V 1

T
VD)= V() == [V de+V, (1) -V, 0)
0

Under steady-state conditions, the output waveform is repetitive with a time period T
Vi(D=V;i(0) and V_(T)=V (0)

T

Hence I v, (t)dt =0. This integral represents this area under the output waveform over
0

one cycle i.e, the average value of output response, substituting the equations.

1 T
—det:O
RCy °

The average level of the steady state output signal is always zero

[1] The average level of the output signal is always zero irrespective of the average
level of the input. The output must extend in both positive and negative direction
with respect to the zero voltage axis and area of the part of the waveform above the
zero axis must equal the area below the zero axis.

[2] When input changes continuously by amount V, the output also changes by the
same amount in the same direction.

[3] During any finite time interval where the input maintains a constant level, the
output decays exponentially towards zero voltage.
They are in the limiting case, when the ratios RC/T; and RC/T, are both very large
with respect to unity, the output waveform is exactly same as the input.
Now, consider the extreme case when RC/T; and RC/T, are very small as
compared to unity.
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Vo

ov

/y Zero voltage

t

FIGURE 1.12 The high pass RC circuit with small time constant producer spikes circuit

T

Under steady state condition the capacitor charger and discharges to the same voltage

level in each cycle.

For 0 <t < T, the output is given by V,, = Ve RC
Att=T, Vo, =V] = Ve "'R¢

For T; <t<T, + T, the output is Vo, = V,e

~(t-Ty-)/RC

Att= T] + T2 5 V02 = Vzl = VZC_Tz/RC

V| -V,=VandV,-V,=V

Expression for the percentage tilt:

The Tilt is defined as the decay in the amplitude of the output voltage wave when the
input maintains its level constant.

Mathematically the percentage tilt p is defined as

Vi-Vi

P= input amplitude

x100

When the time constant RC of the constant is very large compared to the period of the

input waveform RC>>T
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Vl —t/RC

/, 72 72 ’
________ 4 I - e

v/2 V,y = Vye (TT/RC

FIGURE 1.13 Tip tilt of a symmetrical square wave when RC >>T

For a symmetrical square wave with zero average value
Vi=-Vy, ie, Vi=|V,|, V==V, ie, V] =|V,|
and T=T,=T/2
RC >>T shown in figure 1.13

1 ~T/2R 1 -T/2R
V, =Ve € and V) = V,e "/2R¢

V-V, =V
V+V =V [Note —V, =V, ]

V, = or (a) V=V,(I+e k%)

1+ efT/ZRC

1

% tilt p= V{/‘/\; x100%

Input amplitude = v/2
V, - Ve T/2RC
= V(l+¢ TR X 200%

~T/2R
1—¢ T2RC

- —~T/2R
1+e T/2RC

When the time constant is very large T/2RC <<1

x 200%

1- {1 +(-T/2RC)+(-T/2RC)? 21'}

2 1

I+1+(-T/2RC)+(-T/2RCY
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%pzl—(l—T/zRC) ‘200% grme _y_ T
1+(1—T/2RC) 2RC
— T [
P=2RC x 200%
2
T nf)

= x 100% = —L x 100%
2RC f

1 . : o
f,= TRC is the lower cut off frequency of the high pulse RC circuit
T

1.7 RAMP INPUT

A waveform which is zero for t < 0 and which increases linearly with the time for t > 0 is
called ramp (or) sweep voltage. Ramp input can be mathematically written as
, Ofor t<0
Vi(t) =
attot>0
Where o is the slope of the ramp

vi=div, = v =3+v,1)
C C

Vi(t) = ot = input ramp

at= 14V, (1)

C

Differentiating the equation both side w.r.t t

dq dV,
o=—-1+
cdt dt
Note ﬂ:i,ﬂ:&, V, =iR, izﬁ
dt dt R R
Substituting in the equation
_ Ve N dv,
RC dt

Initially capacitor is zero V, (0) =0
take Laplace form
4V, Vo0 _
dt RC
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1 o
V.(8) S+—V () =—
,(s) RC () S

1 o
|: S+E:|VO(S)_§
S( S+R—C)

V.(s)=0RC| 1/S——1
S+1/RC

Vo(t)=ocRc[ 17e—“RC]
V,()=0 t=0

RC>>T output

Deviation from
linearity

FIGURE 1.14 Deviation from linearity

. o 0> v’
Vo(t)—ocRC{l {1+( t/RC)+(RC)22!+(RC)33!+H

2 2
—aRC| 12RC-——— | == L
2(RC) 2RC 2RC
The falling away of output from input is called deviation from linearity
This departure of output from linearity is called the trangenmussion error denoted as e.

ot — ot l—L
. _Vi-Vo| 2RC)_ T _ _or
Vi oy ot 2RC
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oct = input

Vo

o« RC

— &

v

RC <<T

FIGURE 1.15 RC<< T

1.8 EXPONENTIAL INPUT (HPF)

0 +

Vo(t)

FIGURE 1.16 HPF

Vi®
\%

W =v(-¢")

FIGURE 1.17 Exponential waveform

i/o

Let us consider the RC-high pass circuit and the exponential input denoted in the figure

(1.16, 1.17, 1.18)

The exponential input can be expressed as

Vi(t)=V(1-e ")

FIGURE 1.18 Output waveform
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Repeating similar steps of the previous sections
dVi(D) _ Vo(®) AV, ()
dt RC dt
Substituting the equation for exponential input w consider ‘w’
Xe—t/T _V.(®) + dv, (t)
T RC dt
The intial output is zero as the intial voltage on the capacitor is zero.

V,(0) = 0 which makes the Laplace transform approach suitable to solve the above
differential equations the equation is rewritten as

dvy(0) , V() _ Ve
dt RC 1
Taking Laplace transform both sides

1 } A
S+—|v,(s)=—
{ RC T (S_’_%)

1

v
Vo(s)=? 1 1
(s+;) (S+R—C)

VO(S)=V 1 1 1 S IRC_ 11
T +
Yy o (— S + =
(T) (RC)
. (t) — VRCT (eft/RC _ eft/T)
T(RC-1)
VRC / _re  —in
v (t)=——¢ —e
o (D) MFJ )
VRC
_ “URC _ _-t/1
v, (t)= —LC ) (e e )
T
x and n defined as
t RC
X=— n=—
T T

Do note that RC is the circuit time constant and T is the input time constant
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X may be Normalised time and n interpreted as the Normalised time constant

EIL
n RC
The modified expression can be written as
V., [ —xm -
v () =—2(e™" —e™), n=1
(0= )
Vo (xm
v,(t)=—2-(e " —e ™), n#l
(0= )

it make use of L hospital rule

lim
n— 1;[Vn (e —e™ )]
v, (t)= film

l—(n-1
n— dn(n )

|:V(ex/n _ef)()_l_vn (_ex/n)|:_);:|:|
n
1

lim

v (t)=n—1

v,()=n o 1{\/((3’”n —e )+ V, (- ¥m )[;—fﬂ
v, (t) = Vxe ™

It conclude our derivation by starting that the response of the RC high pass circuit for as
exponential waveform is given by

A%
v, (1) :—n(e”‘/'1 —e ) for n#1
n-1
v, (t)=Vxe™ forn=1
[1] When n is large the response has larger peak amplitude as well as a wider pulse

width.

[2] Similarly when the n response is smaller and has as smaller peak amplitude provided
the width of the pulse is narrow n has an effect on both peak value and the width of
the output pulse.

1.9 SINUSOIDAL INPUT

The analysis of the High pass RC circuit to sinusoidal input is obtained using Laplace
transform approach applying KVL to the circuit.

—I(s)i —I(s)R +Vi(s) =0
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Vi(s) = % +I(s)R

Vi(s) =1(s) {é + R}

I(s) = Vi(s)
SC+R
Vi(s)
Vo(s) =I(s)R =——=x%R
©)=1) SC+R
V(_)(S) = R = ! = Tranfer function
Vi) ry 14
SC S+RC
Frequency varies from 0 to e s replaced by jo
Vo(jo) _ 1 : 1/SC
Vijo) , | R g R
joRC
Vo(jw) 1 :
Vi(jw) B 1 1 Vi(s) /@ FR Vo)
j2nfRC
1
T ¥
— . .
2nfRC FIGURE 1.19 High pulse RC circuit

Frequency domain transfer function

A [ Vo(jo)| _ 1
| Vi(joy | 1Y
1+
2nfRC
gain A A
I
1 I
—=0.707 p————————5
V2 ! |
Lo
L
Lo
Lo
Lo
Lo
P S
0 fi —— T

FIGURE 1.20 output waveform
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Frequency increases the gain A approaches to unity. Initially output increases as the
frequency increases and becomes equal to input at high frequency. As f — e, A —1. To

allow high-frequencies to pass.

A gainis 1/ V2 is called lower cout of frequency fj of the circuit.
0 —f) is cut off/zone

1
2nf,RC =1 fi= = lower cut off frequency
2nRC

1.10 HIGH PASS RC CIRCUIT AS A DIFFERENTIATOR

For high pass RC circuit of time constant is very small in comparison with the time
required for the input signal to make an appreciable change, the circuit is called
differentiator.

Under this case, the drop across R is negligible compared to drop across C. Hence the
total input vi(t) appears across C.

The current i is given

o~ dvi(t)
1(t)_c—dt

Hence the output which drops across R is
V,=iR

V(6= Re 2O

The output is proportional to the derivative of the input. A criteria for good
differentiation in terms of steady sate sinusoidal analysis is that if a sinusoidal is
applied to the high pass RC circuit, the output will be a sine wave shifted by a leading

1
angle 0 such that tanG:%—the output will be proportional to sin (w, + 6). In
wRC
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order to have true differentiation we must obtain cos w. In other words 6 must be
equal to 90°. This result can be obtained only if R = 0 or C = 0. However if ® RC =
0.01, then 1/mwCR = 100 and 6 = 89.4° and for some applications this may be close
enough to 90°.
If the peak value of input is Vy,, the output is
R .
Vv, = Llsm(wt +0)
R*+——
w2C?
and if ®RC <<1, then the output is approximately V,,00RC coswt. This results agrees
i(t . .
with the expected value RC % If ®RC = 0.01 then the output amplitude is 0.01
times the input amplitude.
These facts prove that with a small time constant the high pass RC circuit behaves as a
differentiator.
The time constant RC of the circuit should be much smaller than the time period of the
input signal RC<<T.
Application: RC>>T is employed in R-C completely of amplifier where distortion
and differentiation of waveform is to be avoided, multi libratory, flip flap
1.11 LOW-PASS RC CIRCUIT

+ f W o +
! R
input V‘(t) /D C == Vo(t) output
v 4
-0 .4

FIGURE 1.21 low pass RC circuit

Fig.1.21 shows a low pass RC circuit. The circuit passes the low frequencies readily, but
attenuates high-frequencies because the reactance of the capacitor C decreases with
increasing frequency. At very high frequencies the capacitor acts as virtual short-circuited
and the output fall to zero. Thus, the high frequencies get attenuated. At zero frequency
the reactance of the capacitor is infinity (capacitor is open circuit).
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Sinusoidal input:

4 R
+0 o +
A A
__+
V(s) I(s) T- é V,(s)
4 v
_Y Y _

FIGURE 1.22 low RC circuit Laplace
If the input voltage is sinusoidal Vi(t) expressed as,
Vi(t) = V,, sin ot

It can make use of the Laplace transform and analyse the circuit in s-domain. Since there
is no change on the capacitor.

Applying KVL to the circuit as shown in figure

We can write

Vi(s)—1(s)R = g =0
i(s) = 1)
Vi(s)=I(s)R + SC

. 1
Vi(s) = I(S)|:R + SC}

Vi(s)

I(8) =——
Regel
SC

1
Vo(s)=1(s) XE

I(s) is substituting the Vo(s)
Vo(s) 1 « 1 1
Vis)  [p, L] SO ¢
[R+ SC} (SCR+g)

Vo 1

= Transfer function
V.(s) 1+SRC
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For analysing frequency response replace S by jo
VoGoy 1
V.(jo) 1+joRC 1+ j2nfRC

Frequency domain of transfer function

_[VoGo)|_ 1
Vi) | Ji+@niRC)?
!

N

= gain of the circuit

At the upper is off frequency f;,

Al=

1 I
V2 i+ eniRe)
1 1

—=———— Equating denominator
2 1+(2nf,RC)

2=1+(2nf,RC)*
1

f2 =
2nRC
cut off zone and from f, on wards

= upper cut off frequency

A/\
1

=0.707 |r——mmmm 2

€
V2

<—— Bandwidth—>!

0

2

il

FIGURE 1.23 output wave form

The magnitude of the steady state gain A and the angle 6 by which output leads the input
is given by

Aeel ana jae
| £ f
I+ — 1+ —
f, f,

2
0=—tan i f,= !
f, 2nRC

It can explain output signal i V,(t) = AV,,sin (ot + 0), hence the phase angle 0 is Negative
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1.12 STEP VOLTAGE INPUT

Consider the step input voltage of magnitude A is applied to the low pass RC circuit
having a time constant RC. A step voltage V (t) can be mathematically written as

0 fort>0
V(t)=

V fort > 0
V(\ N .
v Al 99.8%
I
' 90% or 0.9y |-————————= :
i |
! I
! I
| I
10% or 0.1v |- —ﬁl I
I
: , |
0 1 5 t
0 t t=22RC Fig:1.25
FIGURE 1.24 Step input FIGURE 1.25 Step response Low pass RC current

If the capacitor is initially uncharged when a step input voltage is applied. The voltage
across the capacitor can’t charge instantaneously the output will be zero at t = 0. When
the capacitor charges the output, voltage rises exponentially towards the steady state
value V with.

Let V' is the initial voltage across the capacitor

Writing KVL around loop
R
o WW- o
-+
Vi® /;t)> C = V()
o ]

FIGURE 1.26 Low pass RC circuit

Vi(t)=i(t) R + 1 j i(t)dt
C
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Differentiating the equation

dVvi(t) _ Rdi(t) +li ) Note
dt dt c
Vi(t)=V, dvi) =0 di = (final value-intional value)
dt dt
L(t)y=1/s
Take Laplace transform both side L(1/t)=s
Rdl(t)
— it
" ( )
R[SI(s) - 1(0")]+— I(S) L{A®) =1(s)
c
B 1 di(t) .
IO+—IS|:S+R—C:| l: dt :| Sj( )— (IO)S
Final Initial
The initial current I is given by
1 + oyl
IgzV—V I(s) = I(Ol) _ Vv V1
R S+ R(S+—)
RC RC

Vo(s) = Vi(s) — I(s)R

1
Cvgl (V- V)K V V-V

s 1
}((s+—) S+ e

Taking Inverse Laplace transform both sides
Vo(t) =V = (V-V")eR¢
V is the final voltage (v final) when the capacitor is charged
V' is the internal voltage across the capacitor
Vo(t) =V final — (V final — V final)e '*¢
The capacitor fanatically uncharged than
Vo) = V(1 - ")
Expression for rise time:

The rise time t, is defined as the time it take the voltage to rise from 0.1 to 0.9 of its
final value. It gives an indication of how fast the circuit can respond to a discontinuity
in voltage.

Assuming the capacitor is initially uncharged.
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The time required for the output to achieve 10% of its final value can be obtained
Vo (1) =V (1 —e R
at t=t;  Vo(t)=10% (or) V=0.1 V
0.1 V=V(1 e RO

0 1 7’[/ RC

e’”/RC =1n0.9

n(0.9 t,=0.1 RC
RC =[n(0.9) i

Similarly the time required for the o/p to achieve 90% of its final value output

t=t, Vo (t) =90% (or) V=09V

09)/ )/(1 —t/RC

0.9=1_¢RC
*l/RC 01

—é=|n(0.1)

tz = 23 RC
tr = tz — tl
rise time t.=2.3 RC-0.1 RC=2.2RC

Relation between upper 3 dB frequency and rise time

1
f,= (or) RC= !
2nRC 2nf,

22 035 035
onf, f, BW

Rise time =2.2 RC =

Rise time is inversely proportional to the upper 3 dB frequency and directly
proportional to the time constant RC.

T = time constant = RC in RC circuits

1.13

PULSE INPUT VOLTAGE

Consider the pulse input voltage having pulse width t,, applied as input to the RC
circuit the pulse sum the two step voltages the response to a pulse for times less than
the pulse width t, is the same as that for a step input because pulse signal is same as
the step input for t < t,. However at the end of the pulse as the input become zero. The
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output also drops exponentially to zero as capacitor voltage falls exponentially to zero
as the input becomes zero.

v v

_URC v
Vi vo=v(l-e IjR() __/__l) _____

Ve A \%
v =v(l _e’tp/RC) 90% or 0.9v |-—————=
el p

7(1—1p)/RC
vV, = Ve

o

10% or 0.11v

- —_——_———————

FIGURE 1.27 RC>>1t, FIGURE 1.28 RC< t,

A% Vi
V/\__z

FIGURE 1.29 RC <<t,

Output for pulse input is given by

Vou=V(1-e®)t<t,

Vo = V(1 —e R = V, (say)
t = t,, input voltage becomes zero but the voltage across a capacitor can’t charge
instantaneously. Output remain the same as it is t = t,. After that capacitor starts

getting discharged through resistance R and voltage across it drops exponentially to
Zero.

The output voltage t > t,
Vou = V, & - PRC

The above equation, discharging equation of capacitor delayed by time t,. The output
voltage must be decreasing towards to zero.

The output voltage will always extend beyond pulse width t,. This is because charge
stored on capacitor during pulse cannot leak off instantaneously.

To minimize the distortion, the resistance must be small compared with the pulse
width t,,.
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1
f,= — t, =0.35f,
t,

The upper 3-dB frequency f; is chosen equal to the reciprocal of the pulse width t,.

1.14 SQUARE WAVE INPUT

Consider a periodic waveform whose instantaneous value is constant at ‘V’ with
respect to ground for a V"T; and changes abruptly for time T, at regular interval
T =T, + T,. A reasonable reproduction of the input is obtained if the resistance tr is
small compared with the pulse width.

1
v

RC<CT

[
[
_— ==
[
|
[
|

vdc RC~T

(=}

L

t——7——
|
|
I

BN

T
|
|
| F———————— e RC =T
f
|
|

<
¢

I I |
0 I I I
| | |
| | [

FIGURE 1.30 Different time constant of square output waveform
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The steady state response is drawn in fig (b)

If the time constant RC is comparable with the period of the input square wave, the
output will have the appearance shown in fig (c) if the time constant is very large
compared with the input wave period, the output is exponentially linear as illustrated
in fig (d).

In fig (c) rising portion of the equation
Vo (OV=(VE=Vy)e M

Where V, is the voltage across the capacitor at t = 0 and V'is the level of the
capacitor charge.

So, the output voltage for 0 <t< T,

Vo, (OVH(V, = V)e k¢
Similarly for T, <t<T,, if intial voltage across capacitor is V, and input voltage is
constant at it V" and output voltage =V,

Vo, = V" (V, = V)e (TIRE

t=T, Vo=V,

t=T + T, V, =V,=V'+(V,-V)e ¥
then t=T, Vo=V,

Vo= VH+(1-0 "R+ Ve TRE

V= V' (V, - V)e 2k
For symmetrical wall

Vi==V, V'=-V"

Tl = T2 =T/2
-T/RC»

Vi= -V + (-V, + Ve
\/1 =V- Vle—T/RCZ + V'e—T/RC2
\/1 — (1 + efT/ZRC) — V'(e_T/RCZ _ 1)

V'(e*T/RCZ _ 1)
Vi= o T/RCy |

Input square wave of peak to peak voltage V
V'=V/2
v (e TR 1)
2 (e—T/ZRC + 1)
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7V(e—T/2RC _ 1)
V=" 7
2 2(6—T/2RC +1)

v[]_e T2RE
:? |+ o T/2RC

1.15 EXPONENTIAL INPUT : (LPF)

R Vl(t)/\
+o o+
Voo __
V.(t C =—= V,(® CoRe
® V) =v(-e ")
-0 o — S
= 0

(A) (B)

FIGURE 1.31 The exponential wave form (a,b)

FIGURE 1.32 The output of the RC low pass circuit

apply KVL to the circuit we can write

Vi(t) =i(t)R + lji(t)dt
C 0

dv
V.(t)=RC+ dt" +V, (1)



281 Analog and Pulse Circuits

V(- %)= RCX¥+VO(0

Apply Laplace transform both sides

y__Vv =RCSV,(s)+V,(s)
s s+l/71
1
Vo (s) =
RCts(s+1/1)(s+1/RC)
Vo) =g+ RC - N mV I
—-DES+-) (1-——)S+—
(T X T) ( RC)( RC)
X=£andn=R—C
T T

Substituting expression, we obtain the output waveform in both the cases.
\Y v v

Vo=5+ 1 1
(n—l)(S+;) (1_;)(S+R7C)

Taking in inverse Laplace transform on both side

1 _ n _
o T o V/RC

Vo(t):V[1+(n_1) 1)

V,(t)=V| 1+ ! eX L _gwm forn #1
(n-1) (n-1)

This equation is not valid when n =1
We can find the expression for output n = 1by using L'Hospital Rule

i[V(n —l+e ™ —ne ™" ]

Lim d
V,()=n—190-
n—>1—(m-1
dn( )
_ aX/ny —x/n ;X
L {V(l e ) V{e (nzjﬂ

V,(t)=n—1 0

Lim L > X
oisfo e fo (3]

V,(t)=V(I+1+x)e™) forn=1
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T =is the input time constant
RC is the circuit time constant

x may be tread normalised time x may be interpreted as the normalised time constant

x__t

n RC

V,(t)= 1+Le’x B exm forn#1
n-1 n—1

Vo(t)=1(1+(1+x)e*) forn=1

If the time constant of this response is T then the rise time of this exponential
waveform can be written as t, = 2.21.

1.16

LOW PASS RC CIRCUIT AS AN INTEGRATOR

For low pass RC circuit, if the time constant is very large when compared to the time
required by the input signal to make an appreciable change compared, the circuit acts
as an integrator. The voltage drops across C will be very small in comparison to the
drop across R and it may consider that the total input appears across R, then the
current is Vi(t)/R and the output signal across C is

V. () :é [icHat :%j Vi

i, 1.
o dt_RCjw(t)dt

Hence the output is proportional to the integral of the input

Vi(t) = at, the result is ot / 2RC

at?
2RC
As time increases, the drop across will not remain negligible compared with that

across R and the output will not remain the integral of the input. The output will
change from quadrate to a linear function of time.

Vo(t) =

Low pass RC circuit time constant is very large in compression with the time required
for the input signal the circuit acts as a integrator.

Integrator is almost invariably preferred over differentiation in analogue computer
application. These resource are given below.

(i) An integrator is less sensitive to noise voltage than a differentiator because of
its limited band with.

(i) It is more convenient to introduce initial conditions in an integrator.
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(iii) The differentiator overloads the amplifier if the input changes rapidly. This is
not the case for an integrator.

(iv) The gain of an integrator decrease as the frequency. Hence easy to stabilise. The
gain of the differentiator increase as the frequency, hence suffers from the
problem of stability.

1.17 ATTENUATORS

It consider now the simple resistance attenuator which is used to reduce the amplitude
of single waveform the single resistance combination of fig (1.33) would multiply the

input signal by the ratio a = R independent of frequency.

1t R,
The potential decoder consisting of two resistances R; and R,, used as an attenuator.
I{l
+ o o +
N N
Vi RZ SE Vo
A4 v
— O o —

FIGURE 1.33 Simple attenuator

If the output of the attenuator the input capacitance C, of the amplifying will be the
stray capacitor and attenuator, the resistor R, of the attenuator as shown in figure.1.31

+ 0 W o+
N /S
Rl
< £
Vi RZ 3 — C2 Vo
V4 v
—_ O —

FIGURE 1.34 Actual attenuator

Attenuator equivalent circuit as shown in Fig 1.3
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Thevenin voltage is A v; which attenuated voltage and R is equal to the parallel
combination of R; and R,. Generally R; and R, are very large so that the nominal
input impedance of the attenuator may be large enough to prevent loading down the
input signal, the time constant RC, of the circuit is large which is totally unacceptable.
Due to large time constant, resistance is also large which causes destruction. The high
frequency components get attenuated. Hence attenuator no longer remains
independent of the frequency.

A N

+
a Vv, ey \A
¥ v

FIGURE 1.35 Attenuator equal at circuit

The attenuator may compensate so that, its attenuation is once again independent of

frequency, by shunting R, by a capacitor C, as shown in figure 1.36.
Cl

=

(3]

WW
<

Figure 1.36 (a) (b) Compensated attenuator

The circuit can be redrawn such that the two resistors and two capacitors act as four
across of a bridge figure (1.36 (b))

R,C; =R,C,
Under the balanced condition no current can flow through the branched joining the

terminal x and y. Hence, for calculating output, the branch x-y can be omitted under
balanced bridge condition. This output is equal to v; independent of frequency.
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1.18 STEP INPUT RESPONSE

Let us find out the output waveform, when the step voltage is applied to the
compensated attenuator. The step input has amplitude V, applied at t = 0 so the input
change from 0 to V instantaneously at t = 0.

Now the voltage across C; and C, must change abruptly. But the voltage across

capacitor cannot charge instantaneously if the current remain finite. Infinite current
0+

exists at t = 0. For an infinitesimal time so the finite charge q = j i(t)dt is delivered to
0—

each capacitor. So just after t =0 ie at 0.

A9, 9 c=Q

¢, ¢ A%

A=q C +C, V:g

C,C, C
q=A/ C, +C,
CICZ

Output voltage at t = 0" is voltage across the capacitor C; att=0"

V,(0") =L
0(07) c,
Vo(o+)=M

(€, +C)¢gf

V, (0 =—2C1
(€ +Cy)

In the steady state as t — o both the capacitors act as open circuited. Hence, the final
value of the output voltage a totally by the resistor

AR,
R, +R,

Vo(a) =

For the perfect compensation
Vo (07) = Vg (o)

C, }(Z R, /a(
+C,

R, +R,

Cl
(Ri+Ry) C; =Ry (C; + ()
R1C1 = R2C2
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A\ _
V,=A v v,
A == 4 __________ A f=-———————— ..4 ___________
Vﬂ _r
T -
* v (0
Vo (0) V(o) N
l V()(a)
0 t=0 t v L l’
. 0 t=0 . t
Perfect Composation Over Composation
V(0" = V() V(0" >V (o)
C] = % CI > RZ_CZ
R, 1
(A) (B)
\% V.
-\ T ..4__1 _________
) V()
Volo )
0 t=0 under Composation t
V(0) < V(@)
o <R
1
(c)

FiGURe 1.37 Different compensator of output waveform a, b, c

1.19 HIGH PASS RC CIRCUIT

V.

i

FIGURE 1.38 High pass RL circuit



341 Analog and Pulse Circuits

By applying KVL we can write that
Vi(t) = VR(t) + VC(t)

Vi) = ity R + 24O

Applying Laplace transform on both sides, we can write that
Vi(s) = RI(s)+ SLI(s)
I(s) =)
R+LS
di(t)
dt
V, (s) +Lsl(s)

Vo(s)+LsL(S)
R+LS

Vo(s)+ LS

Vi(s) R+LS

Vo(s)+ LS/R

Vi(s) 1+LS/R

V,(t)+L we can write

G(s) =

G(s) as the transfer function of the circuit. Frequency function can be obtained G(f) by
replacing s =jw s = j2xnf

1 1
G(f) = =
® 1] R 1-j(f, /1)
2nfL
G(f)= _ 1
1-(f, /1)
Hence f; represents the lower cut off frequency
1
fi== G(f) in terms of f
' onL/R & 1
1
we can write A = ————— G(f) = |G(1)||G(f) = A|¢
JI+(£ /)
d=tan"'(f, /)

Hence A is the magnitude; ¢ is the phase angle of the frequency function.
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1.20 STEP INPUT VOLTAGE OF HIGH PASS RL CIRCUIT

V)4 V.o

\Y4 A"

V() =Ve "

S
7
t

(e
~V
(e}

FIGURE 1.39 Step wave form Fig 1.40 Out wave form RL HP circuit

Consider the RC high pass R, circuit as shown in fig 39, 40 applied to the step input to
the high pass R, circuit the step function of amplitude RL can be mathematically writ
written as Vi (t) = Vo(t) assume that the initial condition is over zero we know that the
Laplace transform of the function

Vi(s) = v
s
The transfer function of the RC high pass circuit has been obtained
G(s) = V.o(s) _ Ls _ SR
Vi(A) R+Ls gy
L
Vo(s) = Vi(s) G(s) = (X) SR = VR
ST+ | s+
L L
Vo(s)=
S+-—
L

In time domain equation can be written as

Vo(s)= Ve RV/E
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1.21 LOW PASS RL CIRCUIT

L
+o 121! o+
N N
Vi(t) R V()
Y v
— O o —

FIGURE 1.41 Low pass RL circuit

By applying KVL we can write that
Vi(t) = Vr(t) + V(1)
Ldi(t)
dt
Applying Laplace transform on both side
Vi(s) = RI(s) + LSI(s) = Is(R+LS)
I(s)= Vi(s)
R+Ls
Vo(t) =i(t) R
We can write
Vo(s)=1I(s)R
Vi(s)
(R+Ls)

Vo(s) R
Vi(s) R+Ls

Vi(t) =i()R +

Vo(s)=R
G(s)=

G(s) = ;LS = Transfer function of the circuit
1+ R

S is replaced by jw =21 f

G(t) = !

L
1+ 2nf(—
J (R)

1

A P I)



Chapter 1: Linear Wave Shaping 137
Hence f, is representing the upper cut off frequency
_ 1
> 2m(L/R)
The frequency function G(t) in terms of f,
G(f) =|G(D)||G(f) = Al¢
A= L
J1+(f/1£,)?
d=tan'(f/f,)
Hence A is the magnitude
0 is the phase angle of the frequency function.
1.22 STEP INPUT VOLTAGE OF LOW PASS RC CIRCUIT
L V()4
o (ST °
A A
v
V(1) R V(0
¥ ¥ 0 1
FIGURE 1.42 Low pass RC circuit FIGURE 1.43 The step waveform of input
V.ot
V __________________
Vi =va-¢ "
0 T

FIGURE 1.44 Output wave form of step



381

Analog and Pulse Circuits

Consider the low pass RC circuit indicated in fig 42, 43, 44, step input voltage is
applied to the RL low pass circuit. The step function of amplitude V can be
mathematically written as Vi(t) = V,(t).

Assume that the initial condition is zero. So that we can obtain the tranfer function of
the circuit. We know the Laplace transform of the this function

Vi(s) = X
s
R
Vo(s) R L

Vi) R+LS ¢ R
L

G(s)=

Vo(s) = Vi(s) G(s) = (%) x (%)

R/L 11
— == |=v|—+
S(S+R/L) ST

L

1

S+E
L

In time domain this equation can be written as

Vo(t)=V(1-e®')

1
Vo(s)=V| =+
(s) S

1.23

RINGING CIRCUIT

The RLC circuit which produces nearly undamped oscillations is called ringing
circuit. The RLC circuit undamped ratio & reduces, the oscillation responses

increases. 2t
When & tends to zero the circuit
oscillations for long time and

performes  many  cycles, the
oscillations reduces ¢ = is ringing TﬁgT TC€ R Vo®
circuit value, N is the number of
cycles
Q=nN v
O —
_Q o
N=— FIGURE 1.45 Ringing circuit

T
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The ringing circuit as shown in figure 1.45
For initially capacitance is uncharged and inductor carries an initial current I.

When damping is made very small the output becomes undamped and takes the form
of sine wave which on oscillated in magnetic energy gets stored in an inductor during
one part of the cycle. It is converted into electrostatic energy stored in capacitor during
next part of cycle.
Then amplitude of the oscillation is

1

2
5 CV' max

Vmax = I\/E
C

Application: The ringing circuit is used to generate the sequence of pulse.

e
2

1.24

RLC SERIES CIRCUIT
L
+o +R_ TR 2 +
L
Vi) p(t) -T Vo®
¥ ¥

FIGURE 1.46 RLC series circuit

RLC series circuit is shown in fig 1.46
The output taken across capacitor ‘C’
Applying KVL Loop

Ldiy 1

C

Vi(t) —i (t) R— [i(t)dt=0
Take Laplace transform of the above equation. Initially capacitor is unchanged,
inductor current is zero

Vi(s) =I(s)R + LSI(s) + 116)
c

Vi(s) =I(s)(R +LS) + 1
cS
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Vi(s)

R+LS+i
cS

I(s) =

From the circuit the output equation is

V,(t) = éj i(t)dt

Vo=

I(s) substitutes the above of output equation

V(s)—i VI(s)
o sC 1
R+Ls+§

Vo(s) _ 1
Vi(s) S’LC+SRC+1

. .. 1
Numerator and denominator divided by the —

1

V.8 1c
VI(S) 82 + R78 + L
L LC

The ratio of Vo(s) to Vi(s) is called transfer function in the circuit.

The equation obtained by equating denominator polynomial of a transform function is
ZEero.

R, {Rz}ét

L \|L | LC b++b’ -4

Sy, S, = 5 Note: ax’ + bx + ¢ 2—ac
a

Critical resistance RCr:

This resistance of value which reduce square root term to zero. Giving real, equal and
negative roots.
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Re_ [T
2L LC
C

(i) Damping ratio (&): it is denoted by Greek letter zeta (&)
The ratio of a dual resistance in the circuit to the critical resistant.

g= R Rt

RC, 2
(i) Characteristic independence: the term +/L/C is called characteristic
independence

, L

iV £>1 R> 2\/2 —> 0 new depend

=1 R= 2J£ —> Critical depend
C

£<1 R< 2\/2—) under depend
YANRVANIVAN c
ISR WA VA S ?

FIGURE 1.47 RLC Series circuit of current response

(iii)) Natural frequency w(n)
1
o(n) = E
1.25 RLC PARALLEL CIRCUIT

R
+0 o+
N N
0 g L =C Vol(t)
v v
Y Y_

FIGURE 1.48 RLC parallel circuit
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SOLVED EXAMPLES

EXAMPLE 1.1

An oscilloscope test probe is indicated in the fig. 1.49. Assume that cable capacitance
is 100 pF. The input impedance of the scope is 2 M £ in parallel with 10 pF. What is,

a) Attenuation of the probe and
b) C for best response

¢ cable
Input To Scope
i Fom—m = i
Signal 4TMO —4- input
: 0.28MQ =
Figure 1.49

SOLUTION

Considering the cable capacitance and the scope input impedances equivalent
circuit can be obtained as shown in the fig. 1.50.

C
[yl
Al
VW 0
4.7MQ
< 0.28 L 100 < £ 10
Input 2 — 32 -
npu 20 PF 3 2MQ PF
l ]
Figure 1.50

Combining the resistances in parallel and capacitors in parallel.

C
[Vd
AT

AMA-
o WY

R, =4.7MQ

e

Input R, 3

<
<

Figure 1.51
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_0.28x2
27 0.28+2
C,=100+10=110 pF
R, =4.7MQ
a) The attenuation of the probe is,
__R
" R,+R,

=0.2456 MQ

B 0.2456x10°
0.2456x10° +4.7x10°
b) C for best response is,
R
C=—2xC,
R

1

=0.04966

~0.2456x10°
4.7x10°
= 5.748 pF

x110x187"

EXAMPLE 1.2

A step input of 10 V when applied to the low pass RC circuit produces the output with
a rise time of 200 psec. Calculate the upper 3-dB frequency of the circuit. If the circuit
uses a capacitor of 0.47 UF, determine the value of the resistance.

SOLUTION
The rise time of the output is given by the equation,
2.2 .
t, = where f; is upper 3-dB frequency
2nf,
2.2 2.2
2nt, 2m200x10~
=1.75 KHz
Now f, = !
2nRC
1.75 KHz = !

2R x0.47x107¢
R=193.5Q
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EXAMPLE 1.3

A 10 KHz square wave is applied to high pass RC circuit which produces the output
with a tilt of 3.8%. Calculate the lower 3-aB frequency of the circuit. If the circuit uses
a capacitor of 0.47 UF, determine the value of the resistance.

SOLUTION

The % tilt in the output is given by the equation, % P = RTfIXIOO where f) is lower 3-

dB frequency

0.038=— "1
10x10
3
fl:10><10 XO’O38=120.95HZ
T
1
Now f, =
2nRC
120.95 = 1 —
2nx R x0.47x10
R=28KQ.

EXAMPLE 1.4

A 1 KHz symmetrical square wave of 10 V is applied to RC circuit having 1 msec
time constant. Calculate and plot the output to the scale for RC configurations as,

(i) High pass circuit
(i1) Low pass circuit

SOLUTION

(i) High pass RC circuit
The general response of high pass RC circuit to square wave input is described
by the equations,

Vl — A1 e—T]/RC
A2 = V]l —-A
V21 — A2 e—Tz/RC
A] = Vzl +A

For symmetrical square wave,
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A1 = - Az

V]l = - Vzl

T,=T,=T/2

Substituting this into above equations and solving for A; and V,' we get,

A

A= |+ T/2RC
A

1 _
Vl - 1+ eT/2RC

For a given square wave,

1
=—= - =1 msec
f 1x10
RC =1 msec
and A=10-(-10)
=20 = peak to peak of input
20
A= =1245V
P 4e®
2
and vl‘:1 (105:7.55\/
+e
V,=-V/=-755V
and Ay=—A;=-1245V

Hence the output can be shown as in the fig. 1.52

A A asy

\ Input Scale
1Cm = 4v

] ) A
0= ——- V=755V — — == -

A=20V

output —
¥ _1__ _ _

T2

FIGURE 1.52
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(i1)) Low pass RC circuit
For symmetrical square wave,

A eZX71
V=25
2e
where X = L
4RC
and V,=-V,
1x107°
X=——— =025
4x1x10™
20 e0.571
V2 ZTW - 745 V
and Vi=-745V

the response is shown in the fig. 1.53

A

Scale
3em = 10r

(6)Y

Y

FIGURE 1.53

EXAMPLE 1.5

For the attenuator circuit shown in the fig. 1.54, calculate and plot the output for the
cases :

a) C;50pF and C, = 150pF
The input V; is a step of 10V.
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—
C’l
T
Vi IMQ ¥ ]- 100pF Vo
o]
B R v_
FIGURE 1.54
SOLUTION
From the circuit above
R] = Rz =1 MQ
C, =100 pF
For bridge balance,
R
C,=—2C, =100 pF=Cp
Rl
C, =150 pF
Case |
The capacitor C;< Cp, hence it is under compensated.
The input step is of magnitude A = 10
AC 10x
V, (0+) = L= 050 =333V
C,+C, (50+100)
R 1
While V, (o) = L_A= x10=5V

R, +R, 1+1
The rise from V((0+) to V(o) is exponential in nature.
__RiR,
R, +R,
C=C;+C,=150pF
t=RC =75 usec

=0.5 MQ
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A

iwpPb0-r————————————————————————

Perfect Compensation

e

5y —— —_——

33v /Output V(0 V() = 5v

Y

FIGURE 1.55
Case I
C, 150 pF
The capacitor C;> C,, hence it is over compensated
AC 10x1
V, (04) = L 10x150
C,+C, (100+150)
and Vy(eo)=5V
R _psma
R, +R,

C:C] +C2:250pF
Output decays exponentially from Vy(0+) to V(e ) as shown in the fig 1.56

/ Input 1Cm = 2.5v
wWkF—F———— - - — — — -

" \
Sv

FIGURE 1.56
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EXAMPLE 1.6

The input to the attenuator shown in the fig 1.57 is a step of 20 V. Calculate and plot
the output for i) perfect compensation and ii) over compensation case.

wr
Al
(.]
\I MO 3 = S0pF Vv,
FIGURE 1.57
SOLUTION
From the figure above
Rl = R2 = lM Q
C,=50pF

(i) Perfect compensation

R 1
C,=—2C,=-x50=50 pF
R, 1
The output will be perfect step response
R
R 1 45
R, +R, 1+1
V() =aA=0.5x20=10V

The response is as shown in the fig 1.58

A
Wy =————————————=

lem=5v
Input

5 V() = 10v

FIGURE 1.58
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R
(i) Now Cp = R_2C2 =50 pF
1

For over compensation C;> Cp

Let C, = 100pF
AC
V,(0+) = 2 where A =20
C, +C,
= 20x100 55y
100+50

AR, :20><1:1
R, +R, (+1)

The response is as shown in the fig 1.59.

And Viy(e0) =

‘/ Tnput lem = 5v

15v

V(0" =13.33v \ S Output

10v 4+ -

5v V() = 10v

Ov Y

FIGURE 1.59

EXAMPLE 1.7

For the attenuator shown in the fig 1.60draw the output wave forms for C; = 50 pF, C,
= 75pF and C; = 25 pF. The input is a 20 V step

Cl
.4
Al
+o o+
1MQ
Vi IMQ 2 I S0pF Yo
b4 v
D 4 -

FIGURE 1.60
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SOLUTION

From the above figure
R =R,=1MQ
C,=50pF
Consider the various value of C,. But before that calculate C,

Cp:&c1 :%XSO:50 pF

1
Case 1 Ci=50pF=Cp
This is perfectly compensated attenuator.
V, (0+) =V, (e0) =aVi
R, 1

a= =
R,+R, 2
and Vi=A=20V

Vo(oo):20x%=10r

The response is as shown in the fig 1.82

A Input lem = 5v
W H+——*F——————— — — — — =
15v
10v y'y
S5v V() = 10v
Y >t
Ov
Figure 1.61
Case II Ci=75pF>Cp

This is over compensated attenuator
AC,  20x75 _ 12
C,+C, 75+50

V,(0+) =
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V, () =20><%=10 \%

The response is exponential from Vy(0+) to V(e ) as shown in the fig. 1.62.

lem = 5v
W0y +———— -2 K T
15v
V(0 =12v

10v -:_\_.

~ Perfect

V' compensation V() = 10v

v >
0
FIGURE 1.62
Case III Ci=25pF<Cp
This under compensated attenuator
AC 20x25
Vo (04) = - =667V
C,+C, 25+50
Vy(e0)=10V
The response is exponentially rising from V, (0+) to V(o) as shown in the fig.
1.62
A Input lem =4y

W A— —m o — -

16v

12v o

8v 1 7 A

VU(()+) =6.67v VO(OO) =10v
4v
A 4 >
Ov

FIGURE 1.63
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EXAMPLE 1.8

A 10 Hz square ware is fed to an amplifier. Calculate and plot the output waveform
under the following conditions.

The lower 3 dB frequency is i) 0.3 Hz ii) 3 Hz iii) 30 Hz.

SOLUTION

The lower 3 dB frequency indicates that the amplifier acts as a high pass circuit.
F =10 Hz and f; = lower 3dB frequency

re., T=1/f=0.1 sec.

Let the amplitude of square wave input is A.

1_ ~T/2RC
Al =mand \/1 —Ale
(i) fi=03Hz
1 )
f= =1e RC=0.5305
2nRC
A
A= |+ o 01205305 =0.5235 A
o V'=0.5235A ¢ M08 = 0 4764 A
(i) fi=3Hz
f, = ! i.e., RC =0.05305
2nRC
A
A= |4 o 0-1/205305 =0.7196 V

Vll =0.7196 A 670.1/2X0.5305 =0.2803 V
(i) f,=30Hz

f, = i.e.,, RC=5.305%10"

A

~0.1/2%0.5305%10>

=0.999 V

A=
I+e
Vi'=0.999 A ¢ *1#330103 = 8 059x107° A

The wave forms are shown in the fig.1.64
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FIGURE 1.64

EXAMPLE 1.9

For a low pass RC circuit, with a pulse input, prove that the area under the pulse is
same as the area under the output waveform across the capacitor.

SOLUTION

For a low pass circuit
Voi(t) = A(1—e ™*9)...0< t<t,
Vo(t) =V, e TPRE t>1,
Where V,=A (1-e RO
The waveform is shown in the figure 1.65

Input —>|r [

>t
N ks 1P

FIGURE 1.65
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Area means to find integration

tj') tj‘3 /RC o U/RC tp
A=V (dt=| Al -e " )dt=A| t+ }
0 0 (1/RC) |,
= At, + ARC e "*“ — ARC = At, — ARC (1-¢ "*%)
= At,— V,RC
[ T —t/RC |
And A, = IVoz(t)dt :J‘ Ve VRC 4 _y otp/RC et
tp b ’ (1/RC) |,
p

= V,eP* [0+ RC ¢ P*¢] =V, RC
Thus A +A,=At',— V,RC + V,RC = At,
= Area under the input pulse
= Area under the output curve.

EXAMPLE 1.10

An ideal 1 pus pulse is fed to an amplifier. Calculate and plot the output waveform
under the following conditions,

The upper 3 dB frequency is: (i) 10 MHz (ii) 0.1 MHz

SOLUTION

The upper 3dB frequency indicated that an amplifier is a low pass circuit. For pulse
input with low pass RC circuit,

Vai(t) = A (1-¢ %)
V02 (t) — Vp e —(t—tp)/RC
where V, = A (1 — e P%)

. 1
Given : t,=1lus and f, =
v > 2mRC
(a) f,=10MHz
RC=;6=1.5915><10*8
2nx10x10

V,=A[l-e""/1.5915x10°]=A

The capacitor charges very quickly to A and then discharges. The waveform is shown
in the fig. 1.66 (a)

(b) £,=0.1 MHz
1

C=—————=1591x10"°
21x0.1x10
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_6
Vo=A[l-e ™" /1.591x10°=0.4665 A
From V,,; capacitor discharges according to an equation,

—6
Vo, (1) =0.4665 A [e ™™ /1,59 x 107

'y

tp > - >— — — —

(a) f,=10MHz (b) f,=0.1MHz

FIGURE 1.66

EXAMPLE 1.11

The limited ramp shown in the fig. 1.67 is applied to a RC differentiator. Draw the
wave forms for the case,

(i) T=0.2RCii) T=RC and iii) T =5 RC.

»

A0k

Slope V/T

il 4

FIGURE 1.67

SOLUTION

The differentiator is high pass RC circuit. The output equation for the ramp of slope o is
given by,

Vo(t) = o.RC (1 — e R%)
(i) T=0.2RCsooutputatt="Tis,
Vo(t) = o RC (1 — e "2RRE) ¢ RC x 0.1812

But OC=X and RC:i:ST
T 0.2
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v, (1) _ =Y S 5TX0.1812=0.9063 V
o t=T T

After t = T the output falls exponentially.
(ii)) T=RCsooutputatt="Tis,
4 =
V, (0] _; =¥><T><[1 —¢'1=0.6321V
(iii) T=5RCsooutputatt="Tis,
_v. T ~5RC/RC _
\AG = —?xgx[lfe 1=0.1986 V

The waveforms are shown in the fig 1.68

V(0 A Input
/ T 0.9063v
/| f
N/ 0.6321v
/ | outputs for
/ 0.1986v
/, T=0.2RC
/ |
/ |
Y/ T=RC
Vi
|
| A
' > t
T=5RC
FIGURE 1.68

EXAMPLE 1.12

The periodic waveform shown is applied to an RC integrating circuit whose time
constant is 10 us. Sketch the output. Calculate the maximum and minimum values of

the output voltage with respect to ground under steady state conditions.

100v

Ov

Figure 1.69
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SOLUTION

LetTy=10usand T, =1 us
When input is 100 V, capacitor charges to 100 V from initial voltage V,
Vi = Vz, Vf: 100V

Vor = Vi=— (Vi— V) e 'RC= 100 — (100 - V) 1090
Att=10 ps, Vo = 100 — (100 — V5) 1040707103107
But at t = 10 us, Vol = V; up to capacitor charges.

V,=100-100e " +V,e '

V, =-0.3678V, =63.212
During 1ps, the capacitor discharges from V; to V,

Vo, =0—(0-V,)e /R¢

Att=1us; Vo, =V,

V, — Ve M0 1040 _ g 9048y,

V,=94.742V,
V,=85.722 V.
The wave form is shown in the fig. 1.70

____'I ______ | Lo

______ [———

94.742v

85.722v

output -

FIGURE 1.70

EXAMPLE 1.13

For a parallel RLC circuit, an input V; is applied. Derive the Q factor of the circuit.

SOLUTION

The parallel RLC circuit and its Laplace network is shown in fig.1.71
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1

1 SLx—
Z'(s)=SL11— = _slc
SC sL+ -
SC
R R
Wy e R YW 4 )y

v
i 1
@ L% C == VoV (s) SL T sc Vo

O L 2 O
R
+ ﬁ W R +
Vis) /;D [Z6)] v
v A 4
- & o

FIGURE 1.71 (a, b, )

1(5)=—V0) nd V()= I(5)Z/(s)

R+Z'(s)
Vo(s) = Vi(s) % Z(s) = Vi(s) x[ i SL }
R +Z'(s) [ . SL } S’LC+1

S’LC+1
g L

Vo(s) _ SL B RC

Vi(s) S’RLC+SL+R ¢4 gy b
RC LC

The characteristic equation is,
1 1
S*+—S+—=0
RC LC

2 2
S 1LY (1
P72 ore T\ 2RC JLC




60! Analog and Pulse Circuits

1 [L
R«e=2vc
R R C
= damping constant = — =———=2R, [—
g ping R, 1L ,/L
2\ C

The Q factor of the parallel circuit is,

Q= W,RC where W, =

RC C
=——=R.|—
S

Q=28 ... from damping constant.

= natural frequency

-

EXAMPLE 1.14

An ideal 1us pulse is fed to an amplifier. Calculate and plot the output waveform
under the following conditions. The upper 3-dB frequency is (a) 8 MHz (b) 2 MHz
(c) 0.2 MHz

SOLUTION

The upper 3-dB frequency indicates that the amplifier acts as a low-pass circuit so the
pulse shown in fig 1.72 (a) is applied to the RC low pass circuit shown in fig 1.72 (b)

(a) When the upper 3-dB frequency f, = 8 MHz
1 1
2nf, 2mx8x10°

Vi@ /I(LD

Time constant of the circuit RC = =0.0198 us

\
1
@]

V(0

0 1ps

% e _—

FIGURE 1.72 (a) input wave form (b) circuit diagram
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Since t, =1 us and RC =0.0198 s

Since the time constant is very small in comparison with the pulse width, the capacitor
C charges rapidly with a rise time.

t,=2.2x0.0198 =0.043 pus
The output V, is given by Vo — V (1 — ¢ "*%) where V is the amplitude of the pulse
At t=t,
Vo=V (I—¢ PR =y (1= ¢ 1001%) _y
The output waveform is shown in figure 1.73 (a)
(b) When f, =2 MHz
1 1

= = =0.0795us
2nf, 2mx2
t, = 1us and RC = 0.0795 us
~RC<t,

Since the time constant is small the capacitor charges fast

Rise time t.=2.2RC=2.2x0.0795=0.17 us

The output is given by Vo= (1 — eft/RC)

At=t=t,, Vo=V (l_e—tpmc) -V (1—e’”°'0795)

=0.999 V
The output wave form in shown in figure 1.73 (b)
(c) When f,=0.2 MHz
! =0.0795 ps

C = =
2nf, 2mx0.2

So t, = 1us and RC = 0.0795 ps. RC is comparable to t, since the time constant is
comparable to the pulse width, in the interval 0 < t< t, the capacitor charges
exponentially according to the equation

Vo=V (1-¢*%

At t =t, the output voltage V, =V,

V, = V(- e

V,=(1-¢ ") =0999 V
For t>t,, V, decreases according to the equation
Vo=V, e P
=0.999 Ve (D007
The output wave form is shown in figure 1.73 (¢)
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— Ips

(a) (b)

(c)

FIGURE 1.73 (a), (b) and (c) output wave forms.

EXAMPLE 1.15

A symmetrical square wave of amplitude =4V and frequency 3 KHz is impressed on
an RC low pass circuit. If R = 4 KQ, X =0.1 uf. Calculate and plot the steady state
output with respect to time.

SOLUTION
R

+ AW + [T [ input T T |

| |

l l output |
V,=03% V,=0.39v

| I I

Vi I(t) -—C V(0 | | |

| | |

V,=039v | I |

| I I

T,=0.15ms : T,=0.15ms |V3_70“w‘. :

_v _ e N

T _ 7 I ____

FIGURE 1.74
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FIGURE 1.75
Given f=3 KHz, T= ! =0.3 ms
3 KHz
Ty =Ty= L2030 15 ms
2 2

The time constant of the circuit T=RC =4 x10°> x 0.1 x10% = 0.4 ms

. . T . . . .
Since RC is comparable to > the capacitor charges and discharges exponentially since

the input is a symmetrical square wave
gy
2 |l+e
where V is the peak-to-peak value of the input

4 [1-e04n
L]
=039V
Vz = - V1
=-039V
.. peak — to — peak wave of output

=039V -(~0.39 V)
=078V

EXAMPLE 1.16

A 5 Hz square wave is fed to an amplifier. Calculate and plot the output wave form
under the following condition. The lower 3dB frequency is (a) 0.2 Hz (b) 2 Hz (c) 0
Hz.
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SOLUTION

Since the lower cut — off frequency is specified, the amplifier acts as an RC high pass
circuit shown in figure 1.75

Given input frequency f= 5Hz
T=1-l_02s
f 5
(a) When f; =0.2 Hz
1 1

Time constant RC=RC=—-—-= =0.7957 s
2nf,  2mx0.2
A%
Vi= |+ T/2RC
where Vo is the peak value of the input voltage
Substituting the values of T and RC
v
Vi= 1+ o 02/(2x07957)
p— 1 —
- 1 4 o 02/(2x0.7957) =0.5313V

—V,' =V, e TVRC = v/ ¢ T2RC
— (O 5789 V) 670.25/2><0.7957
=0.4947 V volts
V,=-—V;=-0.5789 V volts
V2 =— Vl =-0.4947 V volts

Also
(b) When f; =2Hz
RC=— =
2nf,  2mx2
=0.079 S
T/2=0.1S

Since RC comparable to T, the output rises and decays exponentially as shown in
For 0<t<T,, Volts=V,eR¢

At t=T,, Vo=V, =V, TVRC = v, T2RC = o 0107957 _ (g 510 v,

For T\<t<T;+T,,Veu= Vzef(thn/RC
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At t=T,Vy=Vh=V,e 2R =y, 077 =510V,
Since peak to —peak input is V Volts
V,'-V,=Vie0510V,-V,=V
Vi-V,)=VieV,-0510V,=V
0.510 V; =V, -V, -0.510 V,

V] =— V2
\Y%
V= ——=0.6622V volts
1.510

V,=-V;=-0.6622 V volts
V' =0510V,=0.510 x 0.6622 V =0.337 V
V) '=-V,'=-0337V
(¢) When f; = 10 MHz
1 1

RC=—-=
2nf,  2mx10

RC<<T

=0.0159 S

EXAMPLE 1.17

A 2 KHz symmetrical square wave of £5V is applied to an RC circuit having 1 ms
constant .Calculate and plot the output for the RC configuration as (a) high-pass
circuit.

SOLUTION

Given for f=2 KHz

T=ms

Ton = 0.5 ms and Ty = 0.5 ms

RC =1 ms, peak-to-peak amplitude V,, =5 - (-5)=10V
Since RC is comparable to T the capacitor charges and discharges exponentially

(a) High pass-circuit:- when the 2 KHz square wave shown by dotted lines in
fig (1.75 (a)) is applied to the RC high pass circuit shown in fig 1.76(a) under
steady state conditions, the output wave form will be as shown by the thick line in
fig 1.76 (b)
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@}

T~

+ R

\20) W IR V(1)

V,=6.224
output

5V tl/ input 5{— - —

V! =-3.776v

0 [&— 0.5ms —>{€¢— 0.5ms —>

-t —-—-

V, = -5v V, = -3.776v
fé| L _ _| S

V,=-6.224

Figure 1.76 (high pass circuit) (a) circuit diagram and (b) output wave forms
The input signal is a symmetrical square wave,
V] :—V2 (cll’ld\/]1 :—Vzl
V= Ve 2R = v =0.6065 V,

V,'= Ve 2R = v, e =0.6065 V,
Vll + Vz =0
06065 V] + V] = 10

10
' 1.6065

V,=-V,=-6224V
=3.776 V
V,=-V,=3.776 V

=6.224 V
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EXAMPLE 1.18

If a square of 4KHz is applied to an RC high-pass circuit and the resultant waveform
measured on a CRO was tilled from 14V to 9V, find out the lower 3-dB frequency of
the high pass circuit.

SOLUTION
The input and output wave form of the RC-high-pass circuit

f=4KHz

V=14V

V=9V

fi = ? (lower 3dB frequency)

C
+ I +

Vi) W R Vo)

S
IC<

VlI =0Ov \%

v, V, =-9v
/ === 7/
V,=-l14v

FIGURE 1.77 (a), (b)
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peak-to-peak value of input V=V, +V,=14+14=28 V
_Vi- Vi

P="1""14100
2
14-9
T
2
=2 -0357%
14
Also % tilt
p ="M 100
£
141f
0357 = > %100
4%10
3
f1=0'357X4X13O 4546 1
3.141x10
EXAMPLE 1.19

A 1 KHz square wave output from an amplifier has rise time t, = 350 ns and tilt = 5%.
Determine the upper and the lower 3-dB frequencies.

SOLUTION

The amplifier has upper and lower 3-dB frequency so it acts as a combination of low-
pass and high-pass filters, that is, as a band-pass filter. The upper cut-off frequency of
a low-pass filter can be determined from the information about the rise time can we
put tas ‘t’. The lower cut-off frequency of a high filter can be determined from the
information about % tilt.

035

2

Rise time t =2.2RC =350 ns

T

The upper 3-dB frequency

£, = 0.35 _ 0.35 =1 MHz
t,  350x10”
Percentage tilt = L><100

2RC
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™ 100=5
f
The lower 3-dB frequency
L ST St
nx100
EXAMPLE 1.20
A symmetrical square wave is applied to a high pass circuit having R =10 KQ and ¢
=0.04 uf

(a) If the frequency of the input signal is 2 KHz and the signal swings between =4 V
draw the output waveform and indicate the voltages.

(b) What happens if the frequency of the signal is reduced to 200 Hz? Show the output
waveform.

SOLUTION
The square wave shown in figure 1.78 (b) is applied to the RC high pass circuit shown

in figure 1.78 (a).
(a) The time constant of the circuit RC =10 x 0.04 = 0.5ms =2 KHz

1

=0.5ms T/2=0.25;

T 2KHz
As the input is a symmetrical square wave
v 20 10
Vi= 14+ ¢ T/2RC - 14+ 025 = 1o 05 =12.44V
V==V, =-1244V
1_ A\ 3 20 ~
V= |40 T2RC ~ |4 o 0252005) =8.75V

Vh=-Vv,'=-875V
(b) Iffisreduced to 200Hz when

= 1 = L =20ms
f 200
A\ 20
V= 4o T2RC = |+ o 025/2005) =11.24v
V2:—V1 =-11.24V
| A\ 20
V= 1+ o T/2RC = 1+ o 025/2(05) =8.1756V
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EXAMPLE 1.21

The limited ramp show in fig 1.56 is applied to an RC differentiator draw the output
wave form for cases (a) T=0.1 RC (b) T= RC and (c) T =4RC.

Vl] A C
+ I +
uv "
70 w IR V()
0
< Sl -
-Uv -V -

FIGURE 1.78 (a) circuit diagram and (b) input waveform

When the input signal frequency is reduced from 2 KHz to 200 Hz the circuit as
differentiator as RC 10 S < T (0.25 ms).

SOLUTION

The limited ramp shows the dotted line in 1.56 (b) is applied to the RC high-pass
circuit shown in figure 1.56 (a) for the ramp input slope oo = V/T, where T, is the
duration of ramp and V, the amplitude of ramp at t = T. The output for a ramp.

Vo(t) = o RC (1-¢*)
(a) For T=0.1 RC, the outputatt=T is

=¥x0.1T(1 —e T

(b) For T =RC the outputatt=T is
V -T/T
=—XT(-e
T ( )
(¢) For T=4RC, the output att=T is

— ¥X4T(1 _ efT/(T/41))

EXAMPLE 1.22

A 200Hz triangular wave with peak-to-peak amplitude 8 V is applied to a
differentiating circuit with R = 2 MQ and ¢ = 200. PF Calculate and sketch the wave
form of the output.
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SOLUTION
The triangular wave shown by the dotted line in figure 1.80 is applied to the RC high-
pass circuit shown in figure 1.80. The time constant of the RC circuit is
RC =2 x10°% 200 x 107> =400 ps
Frequency of the triangular wave f= 200 Hz
T=1/f=1/200 =20 ms

Since the time constant of the circuit is very small compared to the period of the input
wave form, the circuit acts as a differentiator and the output waveform is in the form
of a square wave having excursion from a RC (when slope is positive) to — dRC (when
slope is negative) i.e.,

ocRC:%XZOOXIO’é =0.16V

Vo(t) = aRC =+ 0.16 V when « is positive
=—0oRC =-0.16 V when ais negative
The output is a square wave with levels + oRC and — aRC as show in figure 1.80

A Vo
PN l EaN
/s N +«RC N
7
/s AN / N
v AN Ve
// 9 \\ 4
Ov ; £ >t
s *«RCN\ s
\ < I A
N 7 € 10ms 3

Figure 1.79

EXAMPLE 1.23

A pulse with a rise time t, = 400 ns and a fall time t; = 1 ps, pulse amplitude = 10 V
and pulse width = 10 us is applied to differentiating circuit with C = 100 pF and R =
400 Q. Determine the amplitude of the differentiated output. Sketch the wave forms
across R and C.

SOLUTION

The pulse shown in fig 1.81 (b) is applied to the RC high pass circuit shown in figure
1.81 (a). The input is exponential. The time constant of the ring waveform is

400 ns

T= =181.81ns
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c /\?luul pulse
+R { € + with t; and t;
I\
N
«— t,=1ms

|
|
|
| t, = 400ns
|
|
|
|

|
!
|
1
|
Vi(» W IR V() |
|
|
ik

T/f

—\J - = b \ /

oV

FIGURE 1.80 Output wave form (a) circuit diagram (b) voltage across R and voltage across C.

Time constant of the circuit RC =400 x 200PF = 90ns
_RC 90
T T (18181

The output is in the form of a pulse

=0.4950, n< 1

Pulse amplitude (i.e. peak value during rise) is
VI =10%0.4950"040 =248 v

Let the time at which the maximum output occurs be t;. Then
t, n , , 04950
X=—= n" =
T n-1 0.4950 -1
Or t; =0.689 T=0.689 x 181.81 = 125.26 ns
The fail time te=1us=22T,

/n 0.4950 = 0.689

Fall time constant T = 12L25 =0.4545 us

| _RC _ 450 Qx100 PF
T, 0.4545 pis

=0.99

Peak value during fall is
V, (max) =—10x 0.99'0 " =_9 9V
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Let the time at which negative peak occurs be t,
t, n 0.99

x==2=—Inn= 1n0.99 =0.99
T, n-1I 0.99-1

t; = xT; = 0.99 x 0.4545 = 0.4499 us

EXAMPLE 1.24

Prove that for the same input, the output from the two differentiating circuits shown in
fig 1.80 will be the same if RC = L/R'. Assume Zero initial conditions.

C lt‘\ YWWW /'!\

+ o I +

N
V(0 IR v, Vi W g - o

W v b 4
- O —1— - @ 2t

(a) (b)
Figure 1.81

SOLUTION

(a) The RC high pass circuit shown in figure 1.81 (a)
V=l [idt+Ri
C
=iR
VO
R

Vo

—

Vi=V, + L:.[Vodt
RC

(b) For the RC high-pass circuit shown in figure 1.81 (b)

Vi:R}JrLE
dt

v &
dt
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di 'V,

dt L
On integrating both sides

i:%:_[vodt

. from the above equations for V; if RC = L/R’, the output from the differentiator
circuits are the same.

EXAMPLE 1.25

Compute and draw to scale the output waveform for (a) C; = 45 PF (b) = C, = 70 PF,
and C; = 20 PF respectively for this circuit shown in figure 1.65. the input is a 10V
step.

SOLUTION

In the circuit shown in figure 1.65 (a) for respect companion

R,C, 1MQ

C, = —"" X 45PF =45 PF
R, 1MQ

10v

C
: .
output for C,= 70PF
A'A'A‘A n + 6V
R, = 1MQ r output for C,= 45PF
G= Sv
40PF
Vi R,=1IMQF T Vo
- 1 . output for C,= 20PF

b4 b4

>0

)

FIGURE 1.82 (a) circuit diagram and (b) output waveform

(a) Therefore, when C; = 45 PF the attenuator would be perfectly compensated. The
rise time of the output waveform t, = 0 the output would be an exact replica of the
input but with reduced amplitude.

. R, 1
The attenuation constant =—>—=—=
R,+R, 1+1

Vo(0") = V(o0 )=0.5x10=5V
(b) When C; = 70 PF, the attenuator is over compensated. Hence V,(0") >V, ()

0.5
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70

C
Initial response V(0 =V, L =10x =6V
C +C, 70+45
. R, 1
Final response Vo(eo )=V, =10x——=5V
R, +R, 1+1

Final time constant

C:{ RlRé }(C1+C2)=|:ﬁ:| 10°x(70+45)x107* =57.5 s

 +R, 1+1
Fall time, tr=2.2RC =2.2x57.5=126.5 us
(c) When C; = 20 PF the attenuator is under compensated.
C 20
Initial response Vo(0H) = V,—L—=10x =3.07V
C +C, 20+45
. R, 1
Final response V(o )=V, =10x—=5V
R, +R, 1+1

Rise time constant
RiR,
R, +R,

RC{ }(Cl+Cz):{%}<106x(20+45)x1012:32.5 us
+

Rise time t,=2.2 RC=2.2x32.5=71.5us

EXAMPLE 1.26

For the circuit shown in figure 1.91 (a) the input is a 10 V step. Calculate and plot to
scale the output voltage.

SOLUTION
In the circuit shown in figure 1.91(a) for perfect compensation the required value of
R,C, 1x50
1{l

C = =50 PF

Though the input is a step it is not impressed on te attenuator network due to source
resistance. The input to the attenuator is therefore, given by.

R, +R, 0 I+1

V) =V, =9.09V =10V

"R, +R,+R, 141402

This input step exhibits a rise time
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t, =2.2[R (R, +R,)] GG, :2'2{0.2x2}[45x45}:9
C+C, 0.2+2 | 45+45

Since the attenuator is perfectly compensated, the output is a perfect replica of the
input with reduced amplitude

R, i !

V():(x\/ilz 1
R, +R, 1+

" x9.09=4.545V

The rise time of the output = o % the rise time of the input =1/2 x 9 =4.5 us.
The input and output of the attenuator as shown in figure 1.71 (b)

V
wF————-——=—=—=—- 9.09v
C,=45PF
Vi
+ | | o+ L
T R=102  R,=1MQ T ' 4.545v
v,
Vi R=IMQE T, Vo
=
45PFJ!
Figure 1.83
EXAMPLE 1.27

For the circuit and the input waveform shown in figure 1.92 (a) draw roughly the
output waveform V,. Make reasonable approximations and estimate the rise time of
the waveform, the magnitude of the overshoot and the time constant of the decay to
the final value.

R\
+ AW v
25MO A%
~ iv p—m—m—m—————————
iv - C,=50PF L R=IMQ 0.9876v
3 v
V 0SSV —F A —m————— — —
* T 0.493y
» C,=40PF |
R g =i Vo Vo
>t

Figure 1.84
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SOLUTION
In the circuit shown in fig 1.92 (a) for perfect compensation, the required value of
R,C, 1x40
R,

C = =40 PF

The input to the attenuator therefore will be
: R, +R, L 1+1 2

=V, =Ix= = =0.9876 V
R, +R, +R, 1+1+0.025 2.025
The rise time of the input
 =22[R IR, +R,)]| &2 | 2.2{ 0.025%2 }{ 5040 } =120 us
C, +C, 0.025+2 ]| 50+40
Initial response V, <0+) =V € _09876x30 0.548 V
'C +C, 50+40
R .
Final response V, (o) = V! L 0.9876x1 =0493V

iR,+R, 1+

R2
R, +R,

Rise time of the output = Xrise time of input = 0.5 x 1.20us = 0.6 us

R,R
Fall time of output tr=2.2 RC=2.2 [ﬁ} (C,+C,)=99 us

1 2

Overshoot = V,(0") — V, (o0 ) =0.548 —0.493 =0.055V

The input and output waveform of the attenuator are shown in figure 192 (b).

Multiple Choice Questions

1. How does a capacitor behave to sudden changes in voltage?
(a) Offers reactance (b) Open circuit
(c) Short circuit (d) Offers attenuation
2. When a sinusoidal wave = form is transmitted through a linear waveform circuit, the
following feature does not change:
(a) Time constant (b) Amplitude

(c) Phase (d) Frequency
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3. The expression for the lower cut off frequency of RC-high pass filter is

1
@ S (b) ~2/RC
(¢) RC (d) 0.707 RC
4. The function of a blocking a capacitor is
(a) Itallows dc component (b) It does not allow the dc component
(c) It does not allow the dc and (d) It allow both dc and ac component

ac component

5. The gain of a passive low pass filter at its lower cut off frequency is

(a) 3dBup (b) 2
(c) Unity (d) 3 dB down
6. At high frequencies inductor behaves like a
(a) Short circuit (b) Open circuit
(¢) Ordinary wave (d) Offers negligible reactance
7. A sinusoidal waveform is very useful in determining the following features in of a circuit
(a) Spectrum (b) Time constant
(c) Bandwidth (d) Linearity
8. The lower cult off frequency of any ideal high pass filter is
(a) f (b) Zero
(c) Infinity (d) Cannot be determined
9. The average value of a output of a high-pass filter is
(a) Same as the input (b) Zero
(c) Depends on the waveform (d) Depends on the time constant

10. At high frequencies a capacitor behaves like a

(a) Short circuit (b) Open circle

(c) Behaves normally (d) Gives rise to a spike
11. The phase angle ¢ in an RC high-pass filter is

(a) Always lagging (b) Always leading

(c) Always out-of phase (d) In the same phase
12. Theoretically, a transient in a circuit reaches its final value at

(a) Zero (b) After one time constant

(c) After two time constants (d) infinity
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13.

14.

15.

16.

17.

18.

19.

20.

21.

When RC<<T, the output of a high-pass filter is
(a) Constant (b) Proportional to the input
(c) Derivative (d) Average value of the input

The expression for rise time t, of a low pass filter is

(a) t.=1+0.35/f (b) t.=1-0.35/f,

() t,=0.35/1 (d) t.=0.75/f

In an RLC circuit, when K = 1, the circuit is

(a) Over damped (b) Critically damped
(¢) Under damped (d) Undamped

In the case of the RLC circuit, popularly known as ringing circuit
(a) K<<land K#0 (b) K<<l

(c) K>>1andK #0 (d K>>1&K=0

In an ideal attenuator, the output voltage

(a) Depends on frequency (b) Remains constant
(c) Don’t depend on frequency (d) Depends on the time constant

A square wave is transmitted through an RC low-pass filter when RC = T, then
(a) The output and input have identical shape

(b) The output is a series of spikes

(c) The output is the integration of the input waveform

(d) The output is a square wave with a tilt

The gain of a passive high-pass filter at its lower cut off frequency is

(a) +3dB ®d 1

@) 12 d) 1.14

In the case of an uncompensated attenuator with resistors, R; and R,, the capacitance C,
at the output terminals is neutralized when

R, R
(2) C_ll :C_j (b) RiCi=R,C,
(C) R;C; =RyC (d) R,C,#RC,

The delay time t4 is defined making use of an exponentially raising waveform

(a) Time interval to rise from 10% to 90% of its final value
(b) Time interval to rise from 10% to 50% of its final value
(c) Time interval to rise from 0% to 90% of its final value
(d) Time interval to rise from 0% to 50% of its final value
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22. When RC>>T, the output of a high pass filter is
(a) Constant (b) Proportional to the input
(c) Derivative of the input (d) Average value of the input
23. In RLC circuit, when K < 1, the circuit is
(a) Over damped (b) Ceritically damped
(¢) Under damped (d) Undamped
24. Condition for good differentiation of RC high-pass filter is
(a) RC=10T (b) RC>>T
(c) RC=T (d) RC<<T
25. Condition for good integration of RC low-pass filter is
(a) RC=10T (b) RC>>T
(c) RC=T (d) RC<<T
26. When RC <<1, the output of a low-pass filter is
(a) Constant (b) Proportional to the input
(c) Derivation of the input (d) Average value of the input
27. Condition for good differentiation for RL high pass filter is
(a) L/R=10T (b) 4L/R>>T
(c) L/R=T (d) 4L/R <<T
28. Inan RLC circuit, when K>1, the circuitis
(a) Over damped (b) Critically damped
(c) Under Damped (d) Undamped
29. Condition for good integration of RL low-pass filter is
(a) L/R=10T (b) L/R>>T
(c) L/R=T (d) L/R<<T
30. The phase angle ¢ in a RC high-pass filter at its lower cut off frequency f; is
(a) Zero (b) 90°
(c) 45 (d) mradians
31. The expression for delay time t; of a low-pass filter is
(a) t4=0.3572 (®) t4=0.11/f;
©) te=~2/f, d) ty=n/f,
32.  When RC >>T, the output of a low pass filter is

(a) Constant (b) Proportional to the input
(c) Derivative of the input (d) Integration of the input
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33.

34.

35.

36.

37.

38.

39.

The frequency functions G(f) of an first order low pass filter is

1 1
(@ G(H)= 60 (b) G(f)= 13¢/E)
1
(o G(H)= T+ iE/6) (d) G(f)= P
The phase angle ¢ of an RC high-pass filter is expressed as
(a) ¢o=—tan' (F/f) (b) 6 =—tan" (fi/f)
(c) ¢=tan '(fi/f) (d) ¢=tan"' (f/f)
The series capacitor in an RC high-pass filter is called
(a) By-pass capacitor (b) Stabilization capacitor
(c) Filter capacitor (d) Blocking capacitor

A ramp waveform V(t) = at during the interval 0<t<T, is transmitted through an RC low-
pass filter with RC<<T. The output waveform is

2

(@) Vo(t)= ;‘;C (b) Va(t) = ot - RC)
(c) Vo()=ot (d) Vi(t)=oaRC

A symmetrical square wave is transmitted through a RC high pass filter with RC<<T. The
% tilt P in the output waveform can be given by

(a) P=m (%) %100
(b) The tilt P is same as that suffered by a ramp waveform
(c) P= L><100

2RC

(d) Itis not possible to find P
An RC high-pass filter acts as a good differentiator when
(a) RC=T (b) RC<<T (c) RC=20T (d) RC>T
A sinusoidal waveform is transmitted through an RC low pass filter and the phase angle ¢
is found to be — 45°. What is the expression for the frequency of the sine wave when this
condition is satisfied?
(@) fi= ®) fi=
a e =
' 2mRC * 2mRC

1 1
fl=— d f=
© fi 21/RC @ L= Re
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40. The gain of the RC high-pass filter is always
(a) Around 1.414 (b) Lies in the range 0.707 and 1.41
(c) Around 0.707 (d) Less than unity
41. A ramp waveform Vj(t) = at during the interval 0<t<T, is transmitted through an RC high
pass filter with RC>>T. The output wavefrom is
at’
(@) Vo(t)= SRC (b) Vo(t)=ot
(c) Vi()=o(t—RC) (d) Vot)=0oRC
42.  The frequency function G(f) of a first-order high pass filter is
1 1
(@) G(H= 1670 (b) G(H= -16/1)
1
© SO MRS GD)
43. A ramp waveform V(t) = at during the interval 0<t<T is transmitted through an RC high
pass filter with RC <<T. The output wave form is
(a) Vo(t)=0oRC (b) Vi) =ot
©) Vil = 0t~ RO) @ Vil - 2
2RC
44. A symmetrical square wave is transmitted through a RC high-pass filter RC>>T.
Percentage tilt P in the output waveform can be given by
(a) P=m(fi/f) x 100
(b) The tilt P is same as that suffered by a ramp waveform
(c) P=m(/fi) x 100
(d) It is not possible to find P
45. The RC low-pass filter acts as a good integrator when

(a) RC=T/20 (b) RC<<T
(¢) RC=T (d) RC>>T





