
 

 

1.1  INTRODUCTION 
Let us consider a transmission network consisting of linear elements. Sinusoidal signal 
is applied to a network, the output signal is sinusoidal in the steady state conditions. 
The influence of the network circuit on the signal may be completely specified by the 
ratio of output to input amplitude and phase angle between output and input 
waveform. No other periodic waveform preserves its shape. Generally when 
transmitted through a linear network the output signal may have a little resemblance to 
the input signal. 
“The process whereby the shapes of non sinusoidal signals are shaped by passing the 
signal through the linear network is called linear wave shaping”.   

1.2  HIGH PASS RC CIRCUIT 

 

FIGURE 1.1  High pass RC circuit 

The high pass RC circuit is shown in Fig.1.1. The input is denoted by Vi(t), and the 
output as Vo(t), ‘a’ is the charge of the capacitor. 
At zero frequency the capacitor has infinite reactance and hence open circuited. 
Therefore, the capacitor blocks the dc signal not allowing it to reach output. Hence the 
capacitor is called blocking capacitor. The coupling circuit provides dc isolator 
between input and output. 
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Since the reactance of the capacitor decreases with increasing frequency the end 
output increases. 
Thus the circuit abstracts the low-frequency and it allows the high frequency to reach 
the output. Hence this circuit is called high pass RC circuit. 

1.3  SINUSOIDAL INPUT 
The sinusoidal input Vi (t) is mathematically defined as Vi (t) = Vm sin wt 

 

FIGURE 1.2   Laplace Network of high passe RC circuit 

 In the analysis of Network to sinusoidal input is obtained using Laplace transform as 
shown in Figure 1.2 applying KVL around the circuit. 
  –1 / sc I (s) – I (s) R + Vi (s) = 0  

  Vi(s)Is
1R
sc

=
 +  

 

  o
Vi(s)V (s) I(s)R R

1R
sc

= = ×
 +  

 

  o
Vi(s)R Vi(s)R sc scRVi(s)V (s) scR 1 1 (scR 1) scR 1

sc

=  × =
+ + +

 

  A = o

i

V (s) 1 Transfer function1V (s) 1
scR

= 
+

 

Numerator and De-numerator divided by SCR applying sinusoidal input varying its 
frequency 0 to α, S = jw 
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  o

i

V ( j ) 1A 1V ( j ) 1 j
j RC

ω= =
ω +

ω

 21 – j,    j –1
j

= =  

   2 fω = ∏  

  o

i

V ( j ) 1A 1V ( j ) 1 j
2 fRC

ω
= =

ω +
∏

 Frequency domain transfer function 

  o
2

i

V ( j ) 1A
V ( j ) 11

2 fRC

ω
= =

ω  +  ∏ 

 –1 1– tan
2 fRC

θ =
∏

 

At lower cut-off frequency f1, 

 1A
2

=    

 
2

1

1 1
2 11

2 f RC

=
 

+  ∏ 

  

 2

1

1 1
2 11

2 f RC

=
 

+  ∏ 

 

 
2

1

12 1
2 f RC

 
= +  ∏ 

 

Equating the Denominators 2nfRC = 1 

 f1 = 1
2 fRC∏

= lower cut of frequency of high pass RC circuit 

 o
2 2

i 1

V ( j ) 1 1A
V ( j ) 1 f1 1

2 fRC f

ω
= = =

ω    + +   ∏   

  –1 1ftan
f

 θ =  
 

  

1.4 STEP INPUT VOLTAGE 
Let us consider that the step input voltage of Magnitude a voltage is applied as an input to 
the high pass RC circuit. When the input step is applied to the circuit, the current starts 
flowing instantaneously, then the capacitor changes exponentially and the current decays 
exponentially. Due to which the output voltage also decays exponentially. When 

Fig 1.3  0 to f1 – cut off Jone gain 
frequency plot 
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capacitor charges equal to the input voltage level of voltage, current stops and the output 
voltage attains zero values in steady state conditions. 
Let us mathematically analyse the output voltage as 

   – t /
o 1 2V (t) B B e τ= +  

B1 B2 , constants 
τ is the time constant of the circuit 
   τ = RC 
The output voltage consists of two parts 

1. B1 is the steady state value of the output voltage 
 t ,→ ∞  

 ( )o 1V B∞ →  
2. The transient part represented by expression  decaying term B2 e–t/T  

The circuit is said to achieve steady state 
When the transient part completely dies out i.e., t → ∞  

 ( )
V (t) limo – t/

1 2Limt t t t (B B e )τ→ α = →α +    

       
lim

–t /
1B  as Lim t e 0τ= → =  

Let the steady state value of output voltage vf  
 B1 = Vf 
To determine the B2 (constant) 
t = 0 consider initial output voltage 
 t = 0 be Vi 
 o 1 2 it 0V (t) B B V=  + =  

 Vi = Vf + B2 
 B2 = Vi – Vf 
Substituting the value B1 and B2 

 –t /
o f i fV (t) V (V – V )e τ= +  

Thus t → ∞ the capacitor blocks d.c, hence the final steady state output voltage is 
zero 
 Vf = 0 
The voltage across the capacitor cannot change instantaneously  
 t = 0+ i.e., just after t = 0 
The voltage across capacitor is zero. It can’t change. Hence the output voltage at t 
= 0+ is same as the input voltage equal to A volt. When the capacitor is initially 
unchanged then the output is same as of input t = 0+ 
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 Vi = A voltage 
 Vo (t) = Vf + (Vi – Vf) e–t/τ 

= 0 + (A – 0)e–t/ τ 
               = A e–t/ τ 

    

 FIGURE 1.4  Step input FIGURE 1.5  Step input for different time constants 

1.5 PULSE INPUT 
An ideal pulse has the waveform shown in Figure (1.6). The pulse amplitude is V and 
pulse duration is tp. 
It has been mentioned earlier that the pulse is the sum of the two step voltages. 

 

FIGURE 1.6  Pulse input waveform 

So the response of the circuit 0 < t < tp for the pulse input is same for a step input given 
by Vo1(t) = Ve–t/RC. 
At t = tp  Vo1 (t) = Ve–tp/RC = Vp

 

Now, consider the second part of the input for t > tp. At t = tp. As the input falls by V volts 
suddenly and the capacitor voltages can’t change instantaneously, the output has to drop 
by a V volts to Vp – V 
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  t = tp i.e,   tp
+ 

 Hence the output drop by V from Vp at t = tp
t the capacitor voltage changes the output 

voltage decays exponentially to 0 
 For the second part of the pulse 
    t = tp

t     Vo2(tp
t) = Vp – V 

     Vo2(tp
t) = Ve– tp/RC – V 

    Vo2(tp
t) = V (e– tp/RC – V) 

 This is the initial output voltage for the second part of pulse   
    Vi = V(e– tp/RC – 1) 
 The output voltage final value is zero 
    Vf = 0 
    Vo2(t) = Vf + (Vi – Vf) e– t/RC 
    Vo2(t) = V(e– tp/RC – 1) (e– (t–tp)/RC  
 The output waveform RC >>tp, RC comparable to tp, and RC << tp shown in figure 1.7, 

1.8, 1.9 

   

   FIGURE 1.7  RC >> tp    FIGURE 1.8  RC comparable to tp 

 

FIGURE 1.9  RC <<tp 
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The response with large time constant RC ie, RC/Tp >>1 is as shown in figure (1.7) 
It can be observed that large time constant, the tilt is very small and undershoot also is 
very small, both the linear destruction are small. However the negative portion 
decreases very slowly 
The response with small time constant RC/tp <<1 is shown in Fig. (1.9). The output 
consists of a positive spike of amplitude V at the beginning of the pulse and a negative 
spike of the same size at the end of the pulse. This process of converting pulse into 
spikes using a circuit of small time constant is called peaking. 

1.6 SQUARE-WAVE INPUT 

 

FIGURE 1.10 RC Circuit 

  Consider the various voltages present in high pass RC circuit as shown in the fig 1.10 
  q = charge on the capacitor 

           Apply Kirchhoff law     q qc   V = 
V c

=   

  Vi = Vc + Vo 

  Vi = q
c

+ vo 

  Differentiating the equation 

     oi dvdV 1 dq
dt c dt dt

= +  i = dq
dt

 

     oi
dVdV 1 (i)

dt c dt
= +  

     Vo = iR   i = ov
R
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  Substituting in equation 

  o oi
V dVdV

dt RC dt
= +  

  Both sides multiplied by the dt 

     dVi = o
o

V
dt dV

RC
 

  Integrating the time period from 0 to T 

         
T T T

i o o
0 0 0

1dV V dt dV
RC

= +    

  
T

T T
i 0 0o o

0

1[V ] V dt [V ]
RC

= +  

  
T

i i o o o
0

1V (T) – V (0) V dt V (T) – V (0)
RC

= +  

  Under steady-state conditions,  the output waveform is repetitive with a time period T 
     i i o oV (T) V (0) and V (T) V (0)= =  

Hence 
T

o
0

v (t)dt 0.=  This integral represents this area under the output waveform over 

one cycle i.e, the average value of output response, substituting the equations. 

  
T

o
0

1 V dt 0
RC

=  

  The average level of the steady state output signal is always zero 
[1] The average level of the output signal is always zero irrespective of the average 

level of the input. The output must extend in both positive and negative direction 
with respect to the zero voltage axis and area of the part of the waveform above the 
zero axis must equal the area below the zero axis. 

[2]  When input changes continuously by amount V, the output also changes by the 
same amount in the same direction. 

[3] During any finite time interval where the input maintains a constant level, the 
output decays exponentially towards zero voltage. 
They are in the limiting case, when the ratios RC/T1 and RC/T2 are both very large 
with respect to unity, the output waveform is exactly same as the input. 
Now, consider the extreme case when RC/T1 and RC/T2 are very small as 
compared to unity. 
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FIGURE 1.11   

 

FIGURE 1.12  The high pass RC circuit with small time constant producer spikes circuit 

Under steady state condition the capacitor charger and discharges to the same voltage 
level in each cycle. 

  For 0 < t < T1 the output is given by Vo1 = V1e–t/RC 

  At t = T1 Vo1 = 1
1V  = –T /RC1

1V e  

  For T1 < t < T1 + T2 the output is Vo2 = ( )– t –T - /RC1
2V e  

     At t = T1 + T2 , Vo2 = 1
2V = –T /RC2

2V e  

       1
1V  – V2 = V and V1 – 1

2V = V 
  Expression for the percentage tilt: 

The Tilt is defined as the decay in the amplitude of the output voltage wave when the 
input maintains its level constant. 
Mathematically the percentage tilt p is defined as 

  
1

1 1V – Vp 100
input amplitude

= ×  

  When the time constant RC of the constant is very large compared to the period of the 
input waveform RC>>T  
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FIGURE 1.13   Tip tilt of a symmetrical square wave when RC >>T 

For a symmetrical square wave with zero average value 

  V1 = – V2,  i.e, V1 = 2V , 1
1V = – 1

2V   i.e, 1
1 2V V=  

 and  T1= T2 = T/2 
   RC >>T shown in figure 1.13  

  1 –T/2RC 1 –T/2RC
1 1 2 2V V e  and V V e= =  

  1
1 2V –V V=  

  1
1 1V +V V=  [Note – 1 1

2 1V V= ] 

  –T/2RC
1 1V V e = V+  

  1 –T/2RC
VV

1 e
=

+
or  (a) V = V1(1+e–T/2RC) 

  
1

1 1V – V% tilt p  ×100%
V / 2

=  

Input amplitude = v/2 

  
–T/2RC

1 1
–T/2RC

V – V e  × 200%
V(1 e )

=
+

 

  
–T/2RC

–T/2RC
1 – e  × 200%
1 e

=
+

 

When the time constant is very large T/2RC <<1 

  

2

2

11– 1 (–T / 2RC) (–T / 2RC)
2! p  × 200%11 1 (–T / 2RC) (–T / 2RC)
2!

 + +  =
+ + +
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  1 – (1 – T / 2RC)% p  × 200%
1 (1 – T / 2RC)

=
+

 –T/2RC Te 1–
2RC

=  

  Tp  × 200%2RC
2

=  

  1fT  × 100% =  × 100%
2RC f

π=  

1
1f

2 RC
=

π
is the lower cut off frequency of the high pulse RC circuit 

1.7 RAMP INPUT 
A waveform which is zero for t < 0 and which increases linearly with the time for t > 0 is 
called ramp (or) sweep voltage. Ramp input can be mathematically written as 

  
0for t < 0

Vi(t)
t to t > 0


= α

 

  Where α is the slope of the ramp 

  Vi = 0 i 0
q qV V (t) V (t)
c c

+  = +  

  Vi(t) = αt = input ramp 

  αt = 0
q V (t)
c

+  

  Differentiating the equation both side w.r.t t 

  odVdq
cdt dt

α = +   

  
o o

o
V Vdq dqNote i, , V iR,  i

dt dt R R
 = = = =  

 

  Substituting in the equation 

  o oV dV
RC dt

α = +  

  Initially capacitor is zero Vo (0) = 0  
  take Laplace form 

  o odV (t) V (t)
dt RC

+ = α  
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  o o
1V (s) S V (s)

RC S
α+ =  

  o
1 S V (s)

RC S
α + =  

 

  oV (s) 1S( S )
RC

α=
+

 

  o
1V (s) RC  1/S –

S 1/ RC
 = α  + 

 

  – t /RC
oV (t) RC  1 – e = α    

  oV (t) 0     t = 0=  

 

FIGURE 1.14  Deviation from linearity 

  
2 3

o 2 3
(–t) (–t)V (t) RC  1 – 1 (–t / RC)

(RC) 2! (RC) 3!
   = α + + + +  

    
 

   
2 2

2
t t – t tRC  t/2RC– t t –

2RC 2RC2(RC)
  α α  = α = = α     

 

  The falling away of output from input is called deviation from linearity 
  This departure of output from linearity is called the trangenmussion error denoted as et. 

  t 1
t T

tt – t 1–
Vi – Vo T2RCe f T

Vi t 2RC=

 α α  
 = = = = π
α
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FIGURE 1.15  RC << T 

1.8 EXPONENTIAL INPUT (HPF) 

  

FIGURE 1.16  HPF  FIGURE 1.17  Exponential waveform 

 

FIGURE 1.18  Output waveform 

 Let us consider the RC-high pass circuit and the exponential input denoted in the figure       
(1.16, 1.17, 1.18) 

  The exponential input can be expressed as 

  –t/Vi(t) V(1– e )τ=  
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  Repeating similar steps of the previous sections 

  o oi V (t) dV (t)dV (t)
dt RC dt

= +  

  Substituting the equation for exponential input w consider ‘w’ 

  – t /T o oV (t) dV (t)V e
RC dt

= +
τ

 

  The intial output is zero as the intial voltage on the capacitor is zero. 
 Vo(0) = 0 which makes the Laplace transform approach suitable to solve the above 
differential equations the equation is rewritten as 

  – t /o odv (t) v (t) V e
dt RC

τ+ =
τ

 

  Taking Laplace transform both sides 

     o
1 V 1S v (s) 1RC (s )

 + =  τ  +
τ

 

     o
V 1v (s) 1 1(s ) (S )

RC

=
τ + +

τ

 

     o
V 1 1 1V (s) –1 1 1S RC( ) –( ) S

RC

 
 

=  τ + +
τ τ 

 

     ( )– t /RC – t /
o

VRCv (t) e – e
(RC – )

ττ=
τ τ

 

     ( )– t /RC –t /
o

VRCv (t) e – e
RC –

τ=
τ

 

     ( )– t /RC –t/
o

VRC

v (t) e – eRC –1

ττ=

τ

 

  x and n defined as  

     tx     =
τ

 RCn =
τ

 

  Do note that RC is the circuit time constant and τ is the input time constant 
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  X may be Normalised time and n interpreted as the Normalised time constant 

  x t=
n RC

 

  The modified expression can be written as 

  ( )–x/n –xn
o

Vv (t) e – e ,
n –1

=  n 1=  

  ( )–x/n –xn
o

Vv (t) e – e ,
n –1

=
 

n 1≠  

  it make use of L hospital rule 

  

lim
–x/n –x

n

o lim

dn 1 V (e – e )
dnv (t)

dn 1 (n –1)
dn

 →  
=

→
 

  

–x/n –x –x/n
n 2lim

o

–xV(e – e ) V (–e )
nv (t) n 1

1

  +    = →  

  
lim

–x/n –x –x/n
o n 2

–xv (t) n 1 V(e – e ) V (–e )
n

  = → +    
 

  –x
ov (t) Vxe=  

It conclude our derivation by starting that the response of the RC high pass circuit for as 
exponential waveform is given by 

     –x/n –x
o

Vnv (t) (e – e )
n –1

=  for n 1≠  

  –x
ov (t) Vxe=  for n = 1 

[1] When n is large the response has larger peak amplitude as well as a wider pulse 
width. 

[2] Similarly when the n response is smaller and has as smaller peak amplitude provided 
the width of the pulse is narrow n has an effect on both peak value and the width of 
the output pulse. 

1.9 SINUSOIDAL INPUT 
The analysis of the High pass RC circuit to sinusoidal input is obtained using Laplace 
transform approach applying KVL to the circuit. 

  1–I(s) – I(s)R Vi(s) 0
sc

+ =  
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  1(s)Vi(s) I(s)R
SC

= +  

  1Vi(s) I(s) R
SC
 = +  

 

  Vi(s)I(s)
SC R

=
+

 

  Vi(s)Vo(s) I(s)R R
SC R

= = ×
+

 

  Vo(s) R 1  Tranfer function1 1Vi(s) R 1
SC S RC

= = =
+ +

+

 

  Frequency varies from 0 to ∞  s replaced by jω 

  Vo( j ) 1
1Vi( j ) 1

j RC

ω =
ω +

ω

 1 –1 
j

=   = 2 fω π  

  Vo( j ) 1
1Vi( j ) 1 –

j2 fRC

ω =
ω

π

 

  1
j1

2 fRC


+

π  

  

Frequency domain transfer function 

  
2

Vo( j ) 1A
Vi( j ) 11

2 fRC

ω= =
ω  +  π   

 

FIGURE 1.20  output waveform 

 

FIGURE 1.19  High pulse RC circuit 
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Frequency increases the gain A approaches to unity. Initially output increases as the 
frequency increases and becomes equal to input at high frequency. As f ,A 1→ ∞ → . To 
allow high-frequencies to pass.  

 A gain is 1 / 2 is called lower cout of frequency f1 of the circuit. 
  0 – f1 is cut off/zone 

  
2

1

1 1
2 11

2 f RC

=
 

+  π 

 

  2

1

1 1
2 11

2 f RC

=
 

+  π 

 

  
2

1

12 1
2 f RC

 
= +  π 

 

  12 f RC 1π =  f1 = 1
2 RCπ

= lower cut off frequency 

1.10 HIGH PASS RC CIRCUIT AS A DIFFERENTIATOR 
For high pass RC circuit of time constant is very small in comparison with the time 
required for the input signal to make an appreciable change, the circuit is called 
differentiator. 
Under this case, the drop across R is negligible compared to drop across C. Hence the 
total input vi(t) appears across C. 
The current i is given 

  dvi(t)i(t) C
dt

=  

Hence the output which drops across R is 
  Vo = iR 

  o
dvi(t)V (t) RC

dt
=  

The output is proportional to the derivative of the input. A criteria for good 
differentiation in terms of steady sate sinusoidal analysis is that if a sinusoidal is 
applied to the high pass RC circuit, the output will be a sine wave shifted by a leading 

angle θ such that c 1tan
R wRC
αθ = the output will be proportional to sin (wt + θ). In 



18| Analog and Pulse Circuits 

order to have true differentiation we must obtain cos wt. In other words θ must be 
equal to 900.  This result can be obtained only if R = 0 or C = 0. However if ω RC = 
0.01, then 1/ωCR = 100 and θ = 89.40 and for some applications this may be close 
enough to 900. 
If the peak value of input is Vm, the output is  

  m
o

2
2 2

V RV sin( t )
1R

w C

= ω + θ
+

 

and if ωRC <<1, then the output is approximately VmωRC cosωt. This results agrees 

with the expected value RC dvi(t)
dt

. If ωRC = 0.01 then the output amplitude is 0.01 

times the input amplitude. 
These facts prove that with a small time constant the high pass RC circuit behaves as a 
differentiator. 
The time constant RC of the circuit should be much smaller than the time period of the 
input signal RC<<T. 
Application: RC>>T is employed in R-C completely of amplifier where distortion 
and differentiation of waveform is to be avoided, multi libratory, flip flap 

1.11 LOW-PASS RC CIRCUIT           

 

FIGURE 1.21  low pass RC circuit 

Fig.1.21 shows a low pass RC circuit. The circuit passes the low frequencies readily, but 
attenuates high-frequencies because the reactance of the capacitor C decreases with 
increasing frequency. At very high frequencies the capacitor acts as virtual short-circuited 
and the output fall to zero. Thus, the high frequencies get attenuated. At zero frequency 
the reactance of the capacitor is infinity (capacitor is open circuit). 
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Sinusoidal input: 

 
FIGURE 1.22  low RC circuit Laplace 

If the input voltage is sinusoidal Vi(t) expressed as, 
  Vi(t) = Vm sin ωt 

It can make use of the Laplace transform and analyse the circuit in s-domain. Since there 
is no change on the capacitor. 
Applying KVL to the circuit as shown in figure 
We can write 

  1(s)Vi(s) – I(s)R 0
SC

= =  

  1(s)Vi(s) I(s)R
SC

= +  

  1Vi(s) I(s) R
SC

 = +  
 

  Vi(s)I(s)
1R

SC

=
 +  

 

  1Vo(s) I(s)
SC

= ×  

  I(s) is substituting the Vo(s) 

  Vo(s) 1 1 1
1Vi(s) (SC) SCR (SCR

SC

== × =
 + +   SC

)
 

  o

i

V (s) 1
V (s) 1 SRC

=
+

 Transfer function 
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For analysing frequency response replace S by jω 

   o

i

V ( j ) 1 1
V ( j ) 1 j RC 1 j2 fRC

ω
= =

ω + ω + π
Frequency domain of transfer function 

   o
2

i

V ( j ) 1A
V ( j ) 1 (2 fRC)

ω
= = =

ω + π
 gain of the circuit 

At the upper is off frequency f2, A = 1
2

 

   
2

1 1
2 1 (2 fRC)

=
+ π

 

   2
2

1 1
2 1 (2 f RC)

=
+ π

  Equating denominator 

   2
22 1 (2 f RC)= + π  

   f2 = 1
2 RC

=
π

upper cut off frequency 

cut off zone and from f2 on wards 

 

FIGURE 1.23  output wave form 

The magnitude of the steady state gain A and the angle θ by which output leads the input 
is given by 

  

2

1A
f1 j
f

=
 

+  
 

  and  2

2

1A
f1
f

=
 

+  
 

 

  
2

–1

2

f– tan
f

 
θ =  

 
  2

1f
2 RC

=
π

 

It can explain output signal i Vo(t) = AVmsin (ωt + θ), hence the phase angle θ is Negative 
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1.12 STEP VOLTAGE INPUT 
Consider the step input voltage of magnitude A is applied to the low pass RC circuit 
having a time constant RC. A step voltage V (t) can be mathematically written as 

  
0    for t > 0

V(t)
V   for t  0


=  ≥
 

  

 FIGURE 1.24  Step input FIGURE 1.25  Step response Low pass RC current 

If the capacitor is initially uncharged when a step input voltage is applied. The voltage 
across the capacitor can’t charge instantaneously the output will be zero at t = 0. When 
the capacitor charges the output, voltage rises exponentially towards the steady state 
value V with. 
Let V1 is the initial voltage across the capacitor  
Writing KVL around loop 

 

FIGURE 1.26  Low pass RC circuit 

  Vi (t) = i(t) R + 1 i(t)dt
c   

 
 



22| Analog and Pulse Circuits 

Differentiating the equation 

  dVi(t) Rdi(t) 1 i(t)
dt dt c

= +  Note 

  dVi(t)Vi(t) V,  0
dt

= =  di (final value-int ional value)
dt

=  

   L(t) = 1/s 
Take Laplace transform both side L(1/t) = s 

  
0 = Rdi(t) 1 i(t)

dt C
+    

1R[SI(s) – I(0 )] I(s)
c

+ +  L(I(t)) = I(s) 

  
0

1I Is s
RC+

 = +  
 ( ) 0

di(t)L SI s –  (I )s
dt

+  =  
 

    Final Initial  

The initial current 0I+ is given by  

  
1

0
V – VI

R
+ =   I(0 )I(s) 1S

RC

+

=
+

= 
1V – V
1R(S )

RC
+

 

  V0(s) = Vi(s) – I(s)R 

   = 
1(V – V )V / S –

R
R1(S )

RC
+

1V V – V– 1S S
RC

=
+

 

Taking Inverse Laplace transform both sides 
  V0(t) = V – (V – V1) e–t/RC 
V is the final voltage (v final) when the capacitor is charged  
V1 is the internal voltage across the capacitor 
V0(t) = V final – (V final – V final)e–t/RC 
The capacitor fanatically uncharged than   
  V0(t) = V(1 – e–t/RC) 

Expression for rise time:  
The rise time tr is defined as the time it take the voltage to rise from 0.1 to 0.9 of its 
final value. It gives an indication of how fast the circuit can respond to a discontinuity 
in voltage. 
Assuming the capacitor is initially uncharged. 
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The time required for the output to achieve 10% of its final value can be obtained 
  Vo (t) = V (1 – e–t/RC) 
 at  t = t1  Vo(t) = 10% (or) V = 0.1 V 

0.1 V = V (1 – e–t/RC) 
0.1 = 1 – e–t/RC 
e–t1/RC = ln 0.9 

1–t n (0.9)
RC

=  t1 = 0.1 RC 

   Similarly the time required for the o/p to achieve 90% of its final value output 
  t = t2  Vo (t)  90% (or) V = 0.9V 

  0.9 V  = V (1 – e–t
2

/RC) 

  0.9 = 1 – e–t
2
/RC 

  e–t
2

/RC = 0.1 

  2–t n (0.1)
RC

=  

  t2 = 2.3 RC 
  tr = t2 – t1 
rise time tr = 2.3 RC – 0.1 RC = 2.2 RC 
Relation between upper 3 dB frequency and rise time 

  2
1f

2 RC
=

π
 (or) 

2

1RC
2 f

=
π

 

Rise time = 2.2 RC 
2 2

2.2 0.35 035
2 f f BW

= = =
π

 

Rise time is inversely proportional to the upper 3 dB frequency and directly 
proportional to the time constant RC. 
  τ = time constant = RC in RC circuits  

1.13 PULSE INPUT VOLTAGE 
Consider the pulse input voltage having pulse width tp, applied as input to the RC 
circuit the pulse sum the two step voltages the response to a pulse for times less than 
the pulse width tp is the same as that for a step input because pulse signal is same as 
the step input for t < tp. However at the end of the pulse as the input become zero. The 
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output also drops exponentially to zero as capacitor voltage falls exponentially to zero 
as the input becomes zero. 

  

            FIGURE 1.27  RC >> tp  FIGURE 1.28  RC < tp 

 

FIGURE 1.29  RC <<tp 

Output for pulse input is given by 
       Vout = V(1 – e–t/RC) t < tp 
     Vout  = V(1 – e–t/RC) = Vp  (say) 

t = tp, input voltage becomes zero but the voltage across a capacitor can’t charge 
instantaneously. Output remain the same as it is t = tp. After that capacitor starts 
getting discharged through resistance R and voltage across it drops exponentially to 
zero. 
The output voltage t > tp 
  Vout = Vp e–(t – tp)/RC 
The above equation, discharging equation of capacitor delayed by time tp. The output 
voltage must be decreasing towards to zero. 
The output voltage will always extend beyond pulse width tp. This is because charge 
stored on capacitor during pulse cannot leak off instantaneously. 
To minimize the distortion, the resistance must be small compared with the pulse 
width tp. 
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  f2 = 
p

1
t

 r 2t 0.35f=  

 The upper 3-dB frequency f2 is chosen equal to the reciprocal of the pulse width tp. 

1.14 SQUARE WAVE INPUT 
Consider a periodic waveform whose instantaneous value is constant at ‘V’ with 
respect to ground for a V '' T1 and changes abruptly for time T2 at regular interval               
T = T1 + T2. A reasonable reproduction of the input is obtained if the resistance tr is 
small compared with the pulse width. 

 

FIGURE 1.30  Different time constant of square output waveform 
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The steady state response is drawn in fig (b) 
If the time constant RC is comparable with the period of the input square wave, the 
output will have the appearance shown in fig (c) if the time constant is very large 
compared with the input wave period, the output is exponentially linear as illustrated 
in fig (d). 
In fig (c) rising portion of the equation 

  –t /RC
o1 2V (t)V'– (V'– V )e  

Where V2 is the voltage across the capacitor at t = 0 and V ' is the level of the 
capacitor charge. 
So, the output voltage for 0 < t< T1 

  ' –t–/RC
o1 1V (t)V' (V – V )e+  

Similarly for 1 2T t T≤ ≤ , if intial voltage across capacitor is V2 and input voltage is 
constant at it V ''  and output voltage = Vo2 

  –(t–T )RC'' 1
o2 2V – V'' (V – V )e+    

  t = T1, Vo1 = V2  

  t = T1 + T2,  –T /RC1 ' 1
o1 2 1V V V (V – V )e= = +  

then t = T1   Vo2 = V1 

  V2 = –T /RC –T/RC1
1V' (1– 0 ) V e+ +  

  V1 = –T /RC'' 2
2V'' (V – V )e+  

For symmetrical wall  
  V1 = – V2,   V ' –V ''=  
  T1 = T2 = T/2 

  ( ) –T/RC2'
1 1V  –  V   – V   V ' e= + +  

  –T/RC –T/RC'2 2
1 1V V'– V e V e= +  

  –T/RC–T/2RC ' 2
1V (1 e ) V (e –1)= + =  

  
–T/RC' 2

1 –T/RC2

V (e –1)V
e 1

=
+

 

Input square wave of peak to peak voltage V 
  V ' V / 2=  

  
–T/RC2

–T/2RC
V (e –1)
2 (e 1)

=
+
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–T/2RC

2 –T/2RC
–V(e –1)V
2(e 1)

=
+

 

  
–T/2RC

–T/2RC
V 1 – e
2 1 e
 

=  + 
 

1.15  EXPONENTIAL INPUT : (LPF) 

  

(A) (B) 

FIGURE 1.31  The exponential wave form (a,b) 

 

FIGURE 1.32 The output of the RC low pass circuit 

apply KVL to the circuit we can write 

  
t

0

1Vi(t) i(t)R i(t)dt
c

= +   

  o
i o

dV
V (t) RC V (t)

dt
= + +  
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  – t / o
o

dv (t)V(1– e ) RC V (t)
dt

τ = × +  

Apply Laplace transform both sides 

  o o
V V– RCSV (s) V (s)
s s 1 /

= +
+ τ

 

  o
1V (s)

RC s(s 1 / )(s 1 / RC)
=

τ + τ +
 

  o
V V VV (s) –RC 1 1S ( –1)(S ) (1 – )(S )

RC RC

= + τ+ +
τ τ

 

  t RCX  and n = =
τ τ

 

Substituting expression, we obtain the output waveform in both the cases. 

  o
V V VV (t) –1 1 1S (n –1)(S ) (1 – )(S )

n RC

= +
+ +

τ

 

Taking in inverse Laplace transform on both side 

  – t / – t /RC
o

1 nV (t) V 1 e – e
(n –1) (n –1)

τ 
= + 

 
 

  –x –x/n
o

1 nV (t) V 1 e – e
(n –1) (n –1)

 
= + 

 
 for n ≠ 1 

This equation is not valid when n = 1 
We can find the expression for output n = 1by using L'Hospital Rule 

  
–x – x/n

Lim

o Limt

d V(n –1 e – ne
dnV (t) n 1

dn 1 (n –1)
dn

 + 
= →

→
 

  

– x/n – x/n
n 2Lim

o

–xV(1 – e ) – V e
n

V (t) n 1
1

   
      = →  

  
Lim

– x/n – x/n
o n 2

–xV (t) n 1 V(1 – e ) – V e
n

   = →    
   

    

  –x
oV (t) V(1 (1 x)e )= + +  for n = 1 
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τ = is the input time constant 
   RC  is the circuit time constant 

x may be tread normalised time x may be interpreted as the normalised time constant  

  x t
n RC

=  

  –x – x/n
o

1 nV (t) 1 e – e
n –1 n –1

 = +  
 for n ≠ 1 

  ( )– x
oV (t) 1 1 (1 x)e= + +  for n = 1 

If the time constant of this response is τ then the rise time of this exponential 
waveform can be written as tr = 2.2τ. 

1.16 LOW PASS RC CIRCUIT AS AN INTEGRATOR 
For low pass RC circuit, if the time constant is very large when compared to the time 
required by the input signal to make an appreciable change compared, the circuit acts 
as an integrator. The voltage drops across C will be very small in comparison to the 
drop across R and it may consider that the total input appears across R, then the 
current is Vi(t)/R and the output signal across C is  

  o
1 1 vi(t) 1V (t) i(t)dt dt vi(t)dt
C C R RC

= = =    

   Hence the output is proportional to the integral of the input 

  Vi(t) t,= α  the result is 2t / 2RCα  

  
2tVo(t)

2RC
α=  

As time increases, the drop across will not remain negligible compared with that 
across R and the output will not remain the integral of the input. The output will 
change from quadrate to a linear function of time. 
Low pass RC circuit time constant is very large in compression with the time required 
for the input signal the circuit acts as a integrator.             
Integrator is almost invariably preferred over differentiation in analogue computer 
application. These resource are given below. 

(i) An integrator is less sensitive to noise voltage than a differentiator because of 
its limited band with. 

(ii) It is more convenient to introduce initial conditions in an integrator. 
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(iii) The differentiator overloads the amplifier if the input changes rapidly. This is 
not the case for an integrator. 

(iv) The gain of an integrator decrease as the frequency. Hence easy to stabilise. The 
gain of the differentiator increase as the frequency, hence suffers from the 
problem of stability. 

1.17 ATTENUATORS 
It consider now the simple resistance attenuator which is used to reduce the amplitude 
of single waveform the single resistance combination of fig (1.33) would multiply the 

input signal by the ratio a = 2

1 2

R
R R+

independent of frequency. 

The potential decoder consisting of two resistances R1 and R2, used as an attenuator. 

 

FIGURE 1.33   Simple attenuator  

If the output of the attenuator the input capacitance C2 of the amplifying will be the 
stray capacitor and attenuator, the resistor R2 of the attenuator as shown in figure.1.31 

 

FIGURE 1.34  Actual attenuator  

Attenuator equivalent circuit as shown in Fig 1.3 
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Thevenin voltage is A vi which attenuated voltage and R is equal to the parallel 
combination of R1 and R2. Generally R1 and R2 are very large so that the nominal 
input impedance of the attenuator may be large enough to prevent loading down the 
input signal, the time constant RC2 of the circuit is large which is totally unacceptable. 
Due to large time constant, resistance is also large which causes destruction. The high 
frequency components get attenuated. Hence attenuator no longer remains 
independent of the frequency. 

 

FIGURE 1.35  Attenuator equal at circuit 

The attenuator may compensate so that, its attenuation is once again independent of 
frequency, by shunting R1 by a capacitor C1 as shown in figure 1.36. 

  

Figure 1.36 (a) (b) Compensated attenuator 

The circuit can be redrawn such that the two resistors and two capacitors act as four 
across of a bridge figure (1.36 (b)) 
  R1C1 = R2C2 
Under the balanced condition no current can flow through the branched joining the 
terminal x and y. Hence, for calculating output, the branch x-y can be omitted under 
balanced bridge condition. This output is equal to vi independent of frequency. 
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1.18 STEP INPUT RESPONSE  
Let us find out the output waveform, when the step voltage is applied to the 
compensated attenuator. The step input has amplitude V, applied at t = 0 so the input 
change from 0 to V instantaneously at t = 0. 
Now the voltage across C1 and C2 must change abruptly. But the voltage across 
capacitor cannot charge instantaneously if the current remain finite. Infinite current 

exists at t = 0. For an infinitesimal time so the finite charge q =
0

0–

i(t)dt
+

 is delivered to 

each capacitor. So just after t = 0 ie at 0+. 

  
1 2

q qA
c c

= +  QC
V

=  

  1 2

1 2

C CA q
C C

 +=  
 

 QV
C

=  

  1 2

1 2

C Cq A /
C C

 +=  
 

 

Output voltage at t = 0+ is voltage across the capacitor C2 at t = 0+ 

  0
2

qV (0 )
C

+ =  

  1 2
0

AC C
V (0 )+ =

1 2 2(C C ) C+
 

  1
0

1 2

ACV (0 )
(C C )

+ =
+

 

In the steady state as t → α both the capacitors act as open circuited. Hence, the final 
value of the output voltage a totally by the resistor 

  2
0

1 2

ARV ( )
R R

α =
+

 

For the perfect compensation 

  0 0V (0 ) V ( )+ = α  

  2

1 2

C A
C C+

2

1 2

R A
R R

=
+

 

  (R1+R2) C1 = R2 (C1 + C2) 
  R1C1 = R2C2 
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(A) (B) 

 

(C) 

FIGURE 1.37  Different compensator of output waveform a, b, c 

1.19 HIGH PASS RC CIRCUIT 

 

FIGURE 1.38  High pass RL circuit 
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By applying KVL we can write that 
  Vi(t) = VR(t) + VC(t) 

  Vi(t) = i(t) R + Ldi(t)
dt

 

Applying Laplace transform on both sides, we can write that 
  Vi(s) RI(s) SLI(s)= +  

  Vi(s)I(s)
R LS

=
+

 

  o
di(t)V (t) L

dt
+  we can write 

  oV (s) LsI(s)+  

  o
vi(s)V (s) Ls

R LS
+

+
 

  oV (s) LS
Vi(s) R LS

+
+

 

  oV (s) LS / RG(s)
Vi(s) 1 LS / R

= +
+

 

G(s) as the transfer function of the circuit. Frequency function can be obtained G(f) by 
replacing s = jω s = j2πf 

  
1

1 1G(f ) R 1 – j(f / f )1– j
2 fL

= =

π

 

  
1

1G(f )
1 – (f / f )

=  

Hence f1 represents the lower cut off frequency  

  f1 = 1
2 L / R

=
π

 G(f) in terms of f1 

we can write A = 
2

1

1
1 (f / f )+

 G(f) = G(f ) G(f ) A= φ  

  –1
1tan (f / f )φ =  

Hence A is the magnitude; φ  is the phase angle of the frequency function. 
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 1.20 STEP INPUT VOLTAGE OF HIGH PASS RL CIRCUIT 

  

  FIGURE 1.39  Step wave form Fig 1.40  Out wave form RL HP circuit 

Consider the RC high pass R2 circuit as shown in fig 39, 40 applied to the step input to 
the high pass R2 circuit the step function of amplitude RL can be mathematically writ 
written as Vi (t) = Vo(t) assume that the initial condition is over zero we know that the 
Laplace transform of the function 

  VVi(s)
s

=  

The transfer function of the RC high pass circuit has been obtained 

  Vo(s) Ls SG(s) RVi(A) R Ls S
L

= = =
+ +

 

  V S VVo(s) Vi(s) G(s) R RS S S
L L

 
  = = =  

  + +
 

 

  VVo(s) RS
L

=
+

 

In time domain equation can be written as  

  –Rt/LVo(s) Ve=  
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1G(s) LS1
R

=
+



ed by jw = j2 ∏

1G(t)
1 j2 f (

=
+ π

1G(t)
1 j(f /

==
+

ts 

RCUIT 

FIGURE 1.41  L

write that 
VL(t) 
Ldi(t)

dt
 

rm on both side
LSI(s) = Is(R+L

s)
Ls)

 

R
R Ls+

 

  Transfer func

∏ f 

L )
R

 

2f )
 

Low pass RL circu

 
LS) 

ction of the circ

 

uit 

cuit 



 

1.22

Hence f2 is

  f

The freque
  G

  A

  φ
Hence A is
φ is the pha

2 STEP IN

 FIGURE 1

 representing th

2
1f

2 (L / R)
=

π
 

ncy function G(
G(f ) G(f ) G(=

2

1A
1 (f / f )

=
+

–1
2tan (f / f )φ =

s the magnitude 
ase angle of the

NPUT VOL

1.42  Low pass RC

F

 C

he upper cut off 

(t) in terms of f
(f ) A= φ  

2
 

 

 frequency func

TAGE OF L

C circuit 

FIGURE 1.44  Outp

Chapter 1: Line

f frequency 

f2 

ction. 

LOW PASS

 

FIGURE 1

put wave form of

ear Wave Shapi

 RC CIRCU

1.43  The step wa

 

f step 

ng |37

UIT 

aveform of input 

7 

 



38| 

1.23

Analog and

Consider th
applied to 
mathematic
Assume tha
the circuit. 

  V

  G

  V

  




  V

In time dom

  V

3 RINGIN
The RLC 
circuit. Th
increases. 
When ξ  t
oscillations
performes 
oscillations
circuit val
cycles 
  Q

  N

d Pulse Circuit

he low pass R
the RL low 

cally written as 
at the initial co
We know the L

VVi(s)
s

=  

Vo(s)G(s)
Vi(s)

= =

Vo(s) Vi(s) G=

R / L
S(S R / L)

 
=+ 

1Vo(s) V
S




= +



main this equati
–Vo(t) V(1– e=

NG CIRCUIT
circuit which 

he RLC circui

tends to zero 
s for long 

many cy
s reduces φ =
lue, N is the 

Q N= π  

QN =
π

 

ts 

C circuit indic
pass circuit. T
Vi(t) = Vo(t). 
ndition is zero.

Laplace transfor

R
R L

RR LS S
L

=
+ +

V RG(s) ( ) (
s S

= ×
+

1 1V RS S
L

 


= +
 +
 

1
RS
L




+


 

ion can be writt
–Rt/L )  

T 
produces near

it undamped 

the circuit 
time and 

ycles, the 
= is ringing 

number of 

ated in fig 42,
The step funct

 So that we can
rm of the this fu

R
L

 

R / L )
R / L+

 







 

ten as  

rly undamped 
ratio ξ  reduce

FIGURE 

 43, 44, step i
tion of amplitu

n obtain the tran
unction 

oscillations is 
es, the oscilla

1.45  Ringing circ

nput voltage is
ude V can be

nfer function of

called ringing
ation responses

cuit 

s 
e 

f 

g 
s 



 

1.24

The ringing
For initially
When dam
of sine wav
one part of 
next part of
Then ampli

  1
2

  V

Application

4 RLC SER

RLC series
The output
Applying K

  V

Take Lapl
inductor cu

  V

  V

g circuit as show
y capacitance is

mping is made v
ve which on osc
f the cycle. It is 
f cycle. 
itude of the osc

2 2
max

1 1cv LI
2 2

=

max
LV I
C

=  

n: The ringing c

RIES CIRCU

s circuit is show
t taken across ca
KVL Loop 

Vi(t) – i (t)  R – 

lace transform 
urrent is zero 

Vi(s) I(s)R L= +

Vi(s) I(s)(R= +

 C

wn in figure 1.4
s uncharged and
very small the o
cillated in magn
converted into 

cillation is 

 

circuit is used to

UIT 

FIGURE 1.46  

wn in fig 1.46 
apacitor ‘C’ 

Ldi(t) 1– i(t)
dt c



of the above 

1 I(s)LSI(s)
c S

+  

1LS)
cS

+  

Chapter 1: Line

45  
d inductor carrie
output becomes 
netic energy ge
electrostatic en

o generate the s

RLC series circuit

)dt 0=  

equation. Initi

ear Wave Shapi

es an initial curr
undamped and

ets stored in an 
ergy stored in c

equence of puls

 

t 

ially capacitor 

ng |39

rent I. 
d takes the form
inductor during

capacitor during

se.  

is unchanged,

9 

m 
g 
g 

, 



40| Analog and Pulse Circuits 

  Vi(s)I(s) 1R LS
cS

=
+ +

 

From the circuit the output equation is  

  o
1V (t) i(t)dt
C

=   

  o
I(s)V (s)
SC

=  

I(s) substitutes the above of output equation 

  o
1 VI(s)V (s) 1SC R LS

SC

 
 

=  
 + +
 

 

  o
2

V (s) 1
Vi(s) S LC SRC 1

=
+ +

 

Numerator and denominator divided by the 1
LC

 

  o

2

1
V (s) LC

RS 1Vi(s) S
L LC

=
+ +

 

The ratio of Vo(s) to Vi(s) is called transfer function in the circuit. 
The equation obtained by equating denominator polynomial of a transform function is 
zero. 

  2 R 1S s 0
L LC

+ + =  

  S1, S2 = 

2R R 4– –
L L LC

2

 
±  

    Note: ax2 + bx + c 
2b b – 4ac

2a
±

 

   = 
22R R 1– –

2L 2L LC
 

±  
   

Critical resistance RCr: 
This resistance of value which reduce square root term to zero. Giving real, equal and 
negative roots. 
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  2
0.28 2R 0.2456 M
0.28 2

×= = Ω
+

 

  C2 = 100 + 10 = 110 pF 
  R1 = 4.7 MΩ 

a) The attenuation of the probe is,  

   2

1 2

Ra
R R

=
+

 

   
6

6 6
0.2456 10 0.04966

0.2456 10 4.7 10
×= =

× + ×  
b) C for best response is, 

   2
2

1

RC C
R

= ×  

    
6

–12
6

0.2456 10 110 18
4.7 10

×= × ×
×

 

    = 5.748 pF 

EXAMPLE 1.2 

A step input of 10 V when applied to the low pass RC circuit produces the output with 
a rise time of 200 μsec. Calculate the upper 3-dB frequency of the circuit. If the circuit 
uses a capacitor of 0.47 μF, determine the value of the resistance. 

SOLUTION  

   The rise time of the output is given by the equation,  

   r
2

2.2t
2 f

=
π  

where f2 is upper 3-dB frequency 

   2 –3
r

2.2 2.2f
2 t 2 200 10

= =
π π ×

 

    = 1.75 KHz 

Now  2
1f

2 RC
=

π
 

   1.75 KHz –6
1

2 R 0.47 10
=

π × ×
 

   R = 193.5 Ω  
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EXAMPLE 1.3 

A 10 KHz square wave is applied to high pass RC circuit which produces the output 
with a tilt of 3.8%. Calculate the lower 3-aB frequency of the circuit. If the circuit uses 
a capacitor of 0.47 μF, determine the value of the resistance. 

SOLUTION 

The % tilt in the output is given by the equation, % P 1f 100
f

π= ×  where f1 is lower 3-

dB frequency  

   1
3

f0.038
10 10

π=
×

 

    
3

1
10 10 0.038f 120.95Hz× ×= =

π
 

  Now 1
1f

2 RC
=

π
 

   120.95 = –6
1

2 R 0.47 10π× × ×
 

   R = 2.8 K Ω . 

EXAMPLE 1.4 

A 1 KHz symmetrical square wave of ± 10 V is applied to RC circuit having 1 msec 
time constant. Calculate and plot the output to the scale for RC configurations as,  

(i) High pass circuit 
(ii) Low pass circuit 

SOLUTION   

(i) High pass RC circuit 
The general response of high pass RC circuit to square wave input is described 
by the equations, 

   V1 = A1
–T /RC1e  

   A2 = V1
1 – A 

   V2
1 = A2

–T /RC2e  
   A1 = V2

1 + A  
For symmetrical square wave, 



 

   
   
   

Sub

   

   

For 

   

   
  an
   

  ∴

  an

  ∴

  an
Hen

A1 =
V1

1 
T1 =

bstituting this in

1A

1
1V

a given square 

T =

RC 
nd  A =

 = 

∴  1A

nd 1
1V

∴  1
2V

nd A2 =
nce the output c

 C

= – A2 
= – V2

1 
= T2 = T/2 
nto above equati

–T/2RC
A

1 e
=

+
 

T/2RC
A

1 e
=

+
 

wave, 

3
1 1 1 
f 1 10

= = =
×

= 1 msec 
= 10 – (– 10) 
20 = peak to pe

–0.5
20 12.

1 e
= =

+

0.5
20 7.5

1 e+= =
+

1
1–V –7.55 = =

= – A1 = – 12.4
can be shown as

FIGU
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EXAMPLE 1.8 

A 10 Hz square ware is fed to an amplifier. Calculate and plot the output waveform 
under the following conditions. 
The lower 3 dB frequency is i) 0.3 Hz ii) 3 Hz iii) 30 Hz. 

SOLUTION  

   The lower 3 dB frequency indicates that the amplifier acts as a high pass circuit. 
   F = 10 Hz and f1 = lower 3dB frequency 
   i.e., T = 1/f = 0.1 sec. 
   Let the amplitude of square wave input is A. 

   1 –T/2RC
AA

1 e
=

+
and 1 –T/2RC

1 1V A e=  

(i) f1 = 0.3 Hz 

  ∴  1
1f i.e RC = 0.5305

2 RC
= =

π
 

  ∴ 1 –0.1/2 0.5305
AA 0.5235 A

1 e ×= =
+

 

  ∴ V1
1 = 0.5235A e–0.1/2×0.5305 = 0.4764 A 

(ii) f1 = 3 Hz 

  ∴ 1
1f  i.e., RC = 0.05305

2 RC
=

π
 

  ∴ 1 –0.1/2 0.5305
AA 0.7196 V

1 e ×= =
+

 

  ∴ V1
1 = 0.7196 A e– 0.1/2×0.5305 = 0.2803 V 

(iii) f1 = 30 Hz 

  ∴ –3
1

1f  i.e., RC = 5.305×10
2 RC

=
π

 

  ∴ 1 –3–0.1/2 0.5305 10

AA 0.999 V
1 e × ×

= =
+

 

  ∴ V1
1 = 0.999 A e–0.1/2×5.305×10–3 = 8.059×10–5 A 

The wave forms are shown in the fig.1.64 
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Area means to find integration 

   ∴ 
tt t pp p – t /RC

– t /RC
1 o1

0 0 0

eA V (t)dt A(1 – e )dt A t
(1 / RC)

 
= = = + 

 
   

   = Atp + ARC e–tp/RC – ARC = Atp – ARC (1– e–tp/RC) 
   = Atp – Vp RC 

  And 
– t /RC

–(t– t )/RC t /RCp p
2 o2 p p

t t tp p p

–eA V (t)dt V e dt V e
(1 / RC)

∞∞ ∞  
= = =  

 
   

    = Vpetp/RC [0 + RC e–tp/RC] = Vp RC 
  Thus A1 + A2 = At–1

p – VpRC + VpRC = Atp 
     = Area under the input pulse 
     = Area under the output curve. 

EXAMPLE 1.10 

An ideal 1 μs pulse is fed to an amplifier. Calculate and plot the output waveform 
under the following conditions, 
The upper 3 dB frequency is: (i) 10 MHz (ii) 0.1 MHz 

SOLUTION  

The upper 3dB frequency indicated that an amplifier is a low pass circuit. For pulse 
input with low pass RC circuit, 

   Vo1(t) = A (1–e–t/RC) 
   Vo2 (t) = Vp e –(t – tp)/RC 
 where Vp = A (1 – e–tp/RC) 

 Given : tp = 1μs and f2 = 1
2 RCπ

 

(a) f2 = 10 MHz 

 ∴  –8
6

1RC 1.5915 10
2 10 10

= = ×
π× ×

 

 ∴ Vp = A [1 – e–1×6–10 / 1.5915 × 10–8] = A 
The capacitor charges very quickly to A and then discharges. The waveform is shown 
in the fig. 1.66 (a) 

(b) f2 = 0.1 MHz 

 ∴ –6
6

1RC 1.591 10
2 0.1 10

= = ×
π× ×
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T
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–6–(t–1 10 )e × / 1.5
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T 5T
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+
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 
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
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    Rcr = 1 L
2 C

 

ξ= damping constant = 
cr

R R C2R
R L1 L

2 C

= =  

The Q factor of the parallel circuit is, 

    Q = WnRC where Wn = 1
L
C

= natural frequency 

   ∴ RC CQ R
LL

C

= =  

   ∴ Q 2= ξ  ..... from damping constant. 

EXAMPLE 1.14 

An ideal 1μs pulse is fed to an amplifier. Calculate and plot the output waveform 
under the following conditions. The upper 3-dB frequency is (a) 8 MHz (b) 2 MHz  
(c) 0.2 MHz 

SOLUTION  

The upper 3-dB frequency indicates that the amplifier acts as a low-pass circuit so the 
pulse shown in fig 1.72 (a) is applied to the RC low pass circuit shown in fig 1.72 (b) 

(a) When the upper 3-dB frequency f2 = 8 MHz 

Time constant of the circuit 6
2

1 1RC 0.0198 s
2 f 2 8 10

= = = μ
π π× ×

 

  

FIGURE 1.72  (a) input wave form (b) circuit diagram 
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Since tp = 1 μs and RC = 0.0198 μs 
Since the time constant is very small in comparison with the pulse width, the capacitor 
C charges rapidly with a rise time. 
   tr = 2.2 × 0.0198 = 0.043 μs 
The output Vo is given by Vo – V (1 – e–t/RC) where V is the amplitude of the pulse 
   At t = tp 
    Vo = V (1– e–tp/RC) = V (1– e–1/0.0198) = V 
The output waveform is shown in figure 1.73 (a) 

(b) When f2 = 2 MHz 

    
2

1 1RC 0.0795 s
2 f 2 2

= = = μ
π π×

 

    tp = 1μs and RC = 0.0795 μs 
    pRC t∴ <  

Since the time constant is small the capacitor charges fast 
Rise time    tr = 2.2 RC = 2.2 ×0.0795 = 0.17 μs 
The output is given by Vo = (1 – e–t/RC) 
    At = t = tp, Vo = V (1–e–tp/RC) = V (1–e–1/0.0795) 
      =0.999 V 
The output wave form in shown in figure 1.73 (b) 

(c) When    f2 = 0.2 MHz 

    
2

1 1RC 0.0795 s
2 f 2 0.2

= = = μ
π π×

 

So tp = 1μs and RC = 0.0795 μs. RC is comparable to tp since the time constant is 
comparable to the pulse width, in the interval 0 < t< tp the capacitor charges 
exponentially according to the equation 
   Vo = V (1– e–t/RC) 
At t = tp the output voltage Vo = Vp 

   Vp = V(1– t /RCpe ) 
   Vp = (1– e–1/0.079) = 0.999 V 
For t > tp, Vo decreases according to the equation 

   Vo = Vp 
–(t /RC)pe  

    = 0.999 Ve–(t–1)/0.079 
The output wave form is shown in figure 1.73 (c) 
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FIGURE 1.73 (a), (b) and (c) output wave forms. 

EXAMPLE 1.15 

A symmetrical square wave of amplitude ± 4V and frequency 3 KHz is impressed on 
an RC low pass circuit. If R = 4 KΩ, Χ = 0.1 μf. Calculate and plot the steady state 
output with respect to time. 

SOLUTION 

   

FIGURE 1.74  
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FIGURE 1.75 

 Given  f =3 KHz, T= 1 0.3 ms
3 KHz

=  

   ∴ T1 = T2 = T 0.3 ms 0.15 ms
2 2

= =  

The time constant of the circuit T = RC = 4 ×103 × 0.1 ×10–6 = 0.4 ms 

Since RC is comparable to T
2

the capacitor charges and discharges exponentially since 

the input is a symmetrical square wave 

    
–T/2RC

1 –T/2RC
V 1– eV
2 1 e

 
= =  + 

 

where V is the peak-to-peak value of the input 

    
–0.4/1

–0.4/1
4 1 – e
2 1 – e

 
+  
 

 

     = 0.39 V 
    V2 = – V1 
     = – 0.39 V 
∴ peak – to – peak wave of output 
     = 0.39 V – (– 0.39 V) 
     = 0.78 V 

EXAMPLE 1.16 

A 5 Hz square wave is fed to an amplifier. Calculate and plot the output wave form 
under the following condition. The lower 3dB frequency is (a) 0.2 Hz (b) 2 Hz (c) 0 
Hz. 
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SOLUTION 

Since the lower cut – off frequency is specified, the amplifier acts as an RC high pass 
circuit shown in figure 1.75 
Given input frequency f = 5Hz 

   1 1T 0.2 s
f 5

= = =  

(a) When f1 = 0.2 Hz 

Time constant  RC = 
1

1 1RC 0.7957 s
2 f 2 0.2

= = =
π π×

 

  1 –T/2RC
VV

1 e
=

+
 

where Vo is the peak value of the input voltage 
Substituting the values of T and RC 

  1 –0.2/(2 0.7957)
VV

1 e ×=
+

 

   = –0.2/(2 0.7957)
1 0.5313 V

1 e × =
+

 

   = V1
1 = V1 e–T1/RC = V1e–T/2RC 

   = (0.5789 V) e–0.25/2×0.7957 
   = 0.4947 V volts 
  V2 = – V1 = – 0.5789 V volts 
  V2 = – V1 = – 0.4947 V volts 

  Also 
(b) When f1 = 2Hz 

  
1

1 1RC
2 f 2 2

= =
π π×

 

    = 0.079 S 
  T/2 = 0.1 S 

Since RC comparable to T, the output rises and decays exponentially as shown in 
   For 0 < t < T1, Volts = V1e–t/RC 
   At  t = T1, Vo = V1

1 =V1e–T1/RC = V1e–T/2RC = V1e–0.1/0.7957 = 0.510 V1 

   For  T1< t < T1 + T2 , Vo2 = ( )– t–T /RC1
2V e  
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   At  t = T, V01 = V1
2 = –T /RC2

2V e  = V2 e–0.1/0.7957 = 0.510 V2 

Since peak to –peak input is V Volts 
    V1

1 – V2 = V i.e 0.510 V1 – V2 = V 
    V1 – V2

1 = V i.e V1 – 0.510 V2 = V 
    0.510 V1 = V2 – V1 – 0.510 V2 
    V1 = – V2 

    V1 = V 0.6622V
1.510

= volts 

    V2 = – V1 = – 0.6622 V volts 
    V1

1 = 0.510 V1 = 0.510 × 0.6622 V = 0.337 V 
    V2

1 = – V1
1 = – 0.337 V 

(c) When f1 = 10 MHz  

   
1

1 1RC 0.0159 S
2 f 2 10

= = =
π π×

 

   RC << T 

EXAMPLE 1.17 

A 2 KHz symmetrical square wave of ± 5V is applied to an RC circuit having 1 ms 
constant .Calculate and plot the output for the RC configuration as (a) high-pass 
circuit. 

SOLUTION 

Given for f = 2 KHz 
   T = ms 
   ToN = 0.5 ms and Toff = 0.5 ms 
   RC = 1 ms, peak-to-peak amplitude Vpp = 5 – (–5) = 10 V 
Since RC is comparable to T the capacitor charges and discharges exponentially 
(a) High pass-circuit:- when the 2 KHz square wave shown by dotted lines in                

fig (1.75 (a)) is applied to the RC high pass circuit shown in fig 1.76(a) under 
steady state conditions, the output wave form will be as shown by the thick line in 
fig 1.76 (b) 
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Figure 1.76   (high pass circuit) (a) circuit diagram and (b) output wave forms 

The input signal is a symmetrical square wave,  
  V1 = – V2 and V1

1 = – V2
1 

  V1
1 = –T /RC2

1Ve  = V1e–0.5/1 = 0.6065 V1 

  V2
1 = –T /RC2

2V e  = V2 e–0.5/1 = 0.6065 V2 
  V1

1 + V2 = 0 
  0.6065 V1 + V1 = 10 

  1
10V 6.224 V

1.6065
= =  

  2 1V –V –6.224 V= =  
   = 3.776 V 

  1
2 1V –V –3.776 V= =  
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EXAMPLE 1.18 

If a square of 4KHz is applied to an RC high-pass circuit and the resultant waveform 
measured on a CRO was tilled from 14V to 9V, find out the lower 3-dB frequency of 
the high pass circuit. 

SOLUTION  

   The input and output wave form of the RC-high-pass circuit  
   f = 4KHz 
    V1 = 14V 
   V1

1 = 9V 
   f1 = ? (lower 3dB frequency) 

 

FIGURE 1.77 (a), (b) 
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peak-to-peak value of input V = V1 + V2 = 14 + 14 = 28 V 

   
1

1 1V – VP 100V
2

= ×    

   14 – 9P 28
2

=  

    = 5
14

= 0.357 % 

Also % tilt 

   1fP 100
f

π= ×  

   0.357 = 1
3

3.141f 100
4 10

×
×

 

   
3

1 3
0.357 4 10f 4.546 Hz

3.141 10
× ×= =

×
 

EXAMPLE 1.19 

A 1 KHz square wave output from an amplifier has rise time tr = 350 ns and tilt = 5%. 
Determine the upper and the lower 3-dB frequencies. 

SOLUTION 

The amplifier has upper and lower 3-dB frequency so it acts as a combination of low-
pass and high-pass filters, that is, as a band-pass filter. The upper cut-off frequency of 
a low-pass filter can be determined from the information about the rise time can we 
put t as ‘t’. The lower cut-off frequency of a high filter can be determined from the 
information about % tilt. 

 Rise time r
2

0.35t 2.2RC 350 ns
f

= = =  

   ∴ The upper 3-dB frequency 

    2 –9
r

0.35 0.35f 1 MHz
t 350 10

= = =
×

 

Percentage tilt    = 1 100
2RC

×  
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     = 1f 100 5
f

π × =  

   ∴ The lower 3-dB frequency 

    1
sff 15.92 Hz
100

= =
π ×

 

EXAMPLE 1.20 

A symmetrical square wave is applied to a high pass circuit having R = 10 KΩ and    c 
= 0.04 μf 
(a) If the frequency of the input signal is 2 KHz and the signal swings between ± 4 V 

draw the output waveform and indicate the voltages. 
(b) What happens if the frequency of the signal is reduced to 200 Hz? Show the output 

waveform. 

SOLUTION 

The square wave shown in figure 1.78 (b) is applied to the RC high pass circuit shown 
in figure 1.78 (a). 

(a) The time constant of the circuit RC = 10 × 0.04 = 0.5ms f = 2 KHz 

   1T 0.5 ms T/2 = 0.25;
2 KHz

= =  

  As the input is a symmetrical square wave 

   1 –T/2RC –0.25/1 –0.25
V 20 10V 12.44V

1 e 1 e 1 e
= = = =

+ + +
 

   V2 = – V1 = – 12.44 V 

   1
–T/2RC –0.25/2(0.5)1
V 20V 8.75V

1 e 1 e
= = =

+ +
 

   V1
2 = – V1

1 = – 8.75 V 
(b) If f is reduced to 200Hz when 

   1 1T 20ms
f 200

= = =  

   1 –T/2RC –0.25/2(0.5)
V 20V – 11.24V

1 e 1 e
= = =

+ +
 

   V2 = – V1 = – 11.24 V 

   1
–T/2RC –0.25/2(0.5)1
V 20V 8.1756V

1 e 1 e
= = =

+ +
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EXAMPLE 1.21 

The limited ramp show in fig 1.56 is applied to an RC differentiator draw the output 
wave form for cases (a) T = 0.1 RC (b) T= RC and (c) T = 4RC. 

  

FIGURE 1.78 (a) circuit diagram and (b) input waveform 

When the input signal frequency is reduced from 2 KHz to 200 Hz the circuit as 
differentiator as RC 10 S < T (0.25 ms).  

SOLUTION 

The limited ramp shows the dotted line in 1.56 (b) is applied to the RC high-pass 
circuit shown in figure 1.56 (a) for the ramp input slope α = V/T, where T, is the 
duration of ramp and V, the amplitude of ramp at t = T. The output for a ramp. 
   Vo(t) = α  RC (1– e–t/RC) 

(a) For T = 0.1 RC, the output at t = T is 

   –T/4TV 0.1T(1 – e )
T

= ×  

(b) For T = RC the output at t = T is 

   –T/TV T(1 – e )
T

= ×  

(c) For T = 4 RC, the output at t = T is 

   –T/(T/41)V 4T(1 – e )
T

= ×  

EXAMPLE 1.22 

A 200Hz triangular wave with peak-to-peak amplitude 8 V is applied to a 
differentiating circuit with R = 2 MΩ and c = 200. PF Calculate and sketch the wave 
form of the output. 
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SOLUTION 

The triangular wave shown by the dotted line in figure 1.80 is applied to the RC high-
pass circuit shown in figure 1.80. The time constant of the RC circuit is 
   RC = 2 × 106 × 200 × 10–12 = 400 μs 
  Frequency of the triangular wave f = 200 Hz 
     T = 1/f = 1/200 = 20 ms 
Since the time constant of the circuit is very small compared to the period of the input 
wave form, the circuit acts as a differentiator and the output waveform is in the form 
of a square wave having excursion from a RC (when slope is positive) to – dRC (when 
slope is negative) i.e., 

   –68RC 200 10 0.16V
10

α = × × =  

   Vo(t) = αRC = + 0.16 V when α is positive 
    = – αRC = – 0.16 V when αis negative 
The output is a square wave with levels + αRC and – αRC as show in figure 1.80 

 

Figure 1.79 

EXAMPLE 1.23 

A pulse with a rise time tr = 400 ns and a fall time tf = 1 μs, pulse amplitude = 10 V 
and pulse width = 10 μs is applied to differentiating circuit with C = 100 pF and R = 
400 Ω. Determine the amplitude of the differentiated output. Sketch the wave forms 
across R and C. 

SOLUTION 

The pulse shown in fig 1.81 (b) is applied to the RC high pass circuit shown in figure 
1.81 (a). The input is exponential. The time constant of the ring waveform is 

   400 nsT 181.81ns
2.2

= =  
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FIGURE 1.80 Output wave form (a) circuit diagram (b) voltage across R and voltage across C. 

Time constant of the circuit RC = 400Ω × 200PF = 90ns 

   RC 90n . 0.4950,  n < 1
T 181.81

= =  

The output is in the form of a pulse 
Pulse amplitude (i.e. peak value during rise) is 
   '(1–n) 1(1–0.4950)

n
V 10 0.4950 2.48 V= × =  

Let the time at which the maximum output occurs be t1. Then 

   n1t n 0.4950x n n 0.4950 = 0.689
T n –1 0.4950 – 1

= = =l l  

  Or t1 = 0.689 T = 0.689 × 181.81 = 125.26 ns 
The fail time  tf = 1 μs = 2.2 T1 

Fall time constant  1
1 sT 0.4545 s
2.2
μ= = μ  

   
1

RC 450 100 PFn 0.99
T 0.4545 s

Ω×= = =
μ

 

Peak value during fall is 
   Vo (max) = – 10 × 0.991(1 – 0.99) = – 9.9 V 
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Let the time at which negative peak occurs be t2 

   2

1

t n 0.99x 1n n 1n0.99 0.99
T n –1 0.99 –1

= = = =  

   t2 = xT1 = 0.99 × 0.4545 = 0.4499 μs 

EXAMPLE 1.24 

Prove that for the same input, the output from the two differentiating circuits shown in 
fig 1.80 will be the same if RC = L/R1. Assume Zero initial conditions. 

 

Figure 1.81 

SOLUTION 

(a) The RC high pass circuit shown in figure 1.81 (a) 

   i
1V idt Ri
C

= +  

   Vo = iR 

   i = oV
R

 

   Vi = Vo + o
1 V dt

RC
=   

(b)  For the RC high-pass circuit shown in figure 1.81 (b) 

  1
i 1

diV R L
dt

= +  

  Vo = L di
dt
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  oVdi
dt L

=  

 On integrating both sides 

  o
1i V dt
L

= =   

∴from the above equations for Vi if RC = L/R’, the output from the differentiator 
circuits are the same. 

EXAMPLE 1.25 

Compute and draw to scale the output waveform for (a) C1 = 45 PF (b) = C1 = 70 PF, 
and C1 = 20 PF respectively for this circuit shown in figure 1.65. the input is a 10V 
step. 

SOLUTION 

In the circuit shown in figure 1.65 (a) for respect companion 

     
2 2

1
1

R C 1 MC 45PF 45 PF
R 1 M

Ω= = × =
Ω

 

  

FIGURE 1.82   (a) circuit diagram and (b) output waveform 

(a) Therefore, when C1 = 45 PF the attenuator would be perfectly compensated. The 
rise time of the output waveform tr = 0 the output would be an exact replica of the 
input but with reduced amplitude. 

The attenuation constant 2

1 2

R 1 0.5
R R 1 1

α = = =
+ +

 

   Vo(0+) = Vo( ∞ )= 0.5 × 10 = 5 V 
(b)  When C1 = 70 PF, the attenuator is over compensated. Hence Vo(0+) > Vo ( ∞ ) 
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Initial response  Vo(0+) = 1
i

1 2

C 70V 10 6 V
C C 70 45

= × =
+ +

  

Final response  Vo( ∞ ) = 1
i

1 2

R 1V 10 5 V
R R 1 1

= × =
+ +

 

Final time constant   

   6 –121 2
1 2

1 2

R R 1 1RC (C C ) 10 (70 45) 10 57.5 s
R R 1 1
  × = + = × × + × = μ   + +  

 

Fall time,  tf = 2.2RC = 2.2 × 57.5 = 126.5 μs 
(c) When C1 = 20 PF the attenuator is under compensated. 

Initial response  Vo(0+) = 1
i

1 2

C 20V 10 3.07 V
C C 20 45

= × =
+ +

 

Final response  Vo( ∞ ) = 2
i

1 2

R 1V 10 5 V
R R 1 1

= × =
+ +

 

Rise time constant 

  6 –121 2
1 2

1 2

R R 1 1RC (C C ) 10 (20 45) 10 32.5 s
R R 1 1
  × = + = × × + × = μ   + +  

 

Rise time tr = 2.2 RC = 2.2 × 32.5 = 71.5 μs 

EXAMPLE 1.26 

For the circuit shown in figure 1.91 (a) the input is a 10 V step. Calculate and plot to 
scale the output voltage. 

SOLUTION 

In the circuit shown in figure 1.91(a) for perfect compensation the required value of 

   1 2
1

1

R C 1 50C 50 PF
R 1

×= = =  

Though the input is a step it is not impressed on te attenuator network due to source 
resistance. The input to the attenuator is therefore, given by. 

   1 1 2
1 i

1 2 s

R R 1 1V V 10 9.09V 10 V
R R R 1 1 0.2

+ += = = = =
+ + + +

 

This input step exhibits a rise time 
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  1 2
r s 1 2

1 2

C C 0.2 2 45 45t 2.2[R (R R )] 2.2 9 s
C C 0.2 2 45 45
  × ×   = + = = μ     + + +    

 

Since the attenuator is perfectly compensated, the output is a perfect replica of the 
input with reduced amplitude 

  1 12
o i i

1 2

R 1V V V 9.09 4.545 V
R R 1 1

= α = = × =
+ +

 

The rise time of the output = α × the rise time of the input =1/2 × 9 = 4.5 μs. 
The input and output of the attenuator as shown in figure 1.71 (b) 

 

Figure 1.83 

EXAMPLE 1.27 

For the circuit and the input waveform shown in figure 1.92 (a) draw roughly the 
output waveform Vo. Make reasonable approximations and estimate the rise time of 
the waveform, the magnitude of the overshoot and the time constant of the decay to 
the final value. 

 

Figure 1.84 
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SOLUTION 

In the circuit shown in fig 1.92 (a) for perfect compensation, the required value of 

   2 2
1

1

R C 1 40C 40 PF
R 1

×= = =  

The input to the attenuator therefore will be 

   1 1 2
i i

1 2 2

R R 1 1 2V V 1 0.9876 V
R R R 1 1 0.025 2.025

+ += = × = = =
+ + + +

 

The rise time of the input 

  1 2
r s 1 2

1 2

C C 0.025 2 50 40t 2.2[R 11(R R )] 2.2 1.20 s
C C 0.025 2 50 40
  × ×   = + = = μ     + + +    

 

 

Initial response  ( ) 1 1
o i

1 2

C 0.9876 50V 0  V 0.548 V
C C 50 40

+ ×= = =
+ +

 

Final response  ( ) 1 1
o i

1 2

R 0.9876 1V  V 0.493 V
R R 1 1

×∞ = = =
+ +

 

Rise time of the output = 2

1 2

R
R R

×
+

rise time of input = 0.5 × 1.20μs = 0.6 μs 

Fall time of output tf = 2.2 RC = 2.2 1 2
1 2

1 2

R R (C C ) 99 s
R R
 

+ = μ + 
 

Overshoot = Vo(0+)  – Vo ( ∞ ) = 0.548 – 0.493 = 0.055 V 
The input and output waveform of the attenuator are shown in figure 192 (b). 

Multiple Choice Questions 
1. How does a capacitor behave to sudden changes in voltage? 

 (a) Offers reactance (b) Open circuit 

 (c) Short circuit (d) Offers attenuation 

2. When a sinusoidal wave = form is transmitted through a linear waveform circuit, the 
following feature does not change:    

 (a) Time constant (b) Amplitude 

 (c) Phase (d) Frequency  
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3. The expression for the lower cut off frequency of RC-high pass filter is        

 (a) 1
2 RCπ

 (b) 2 / RC  

 (c) RC (d) 0.707 RC 
4. The function of a blocking a capacitor is     
 (a) It allows dc component                          (b) It does not allow the dc component  
 (c) It does not allow the dc and   (d)  It allow both dc and ac component 
  ac component 
5. The gain of a passive low pass filter at its lower cut off frequency is  

 (a) 3 dB up (b) 2  
 (c) Unity (d) 3 dB down 
6.  At high frequencies inductor behaves like a    
 (a) Short circuit  (b) Open circuit 
 (c) Ordinary wave (d) Offers negligible reactance  
7. A sinusoidal waveform is very useful in determining the following features in of a circuit      
 (a) Spectrum  (b) Time constant  
 (c) Bandwidth 

 
(d) Linearity 

8. The lower cult off frequency of any ideal high pass filter is  
 (a) f1  (b) Zero   
 (c) Infinity (d) Cannot be determined 
9. The average value of a output of a high-pass filter is    
  (a) Same as the input (b) Zero  
  (c) Depends on the waveform (d) Depends on the time constant 
10. At high frequencies a capacitor behaves like a   
 (a) Short circuit (b) Open circle 
 (c) Behaves normally (d) Gives rise to a spike 
11. The phase angle φ in an RC high-pass filter is  
 (a) Always lagging (b) Always leading  
 (c) Always out-of phase                          (d) In the same phase 
12. Theoretically, a transient in a circuit reaches its final value at   
 (a) Zero (b) After one time constant 
 (c) After two time constants  (d) infinity 
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13. When RC<<T, the output of a high-pass filter is 
 (a) Constant (b) Proportional to the input 
 (c) Derivative (d) Average value of the input 
14. The expression for rise time tr of a low pass filter is 
 (a) tr = 1 + 0.35/f2 (b) tr = 1 – 0.35/f2 
 (c) tr = 0.35/f2 (d) tr = 0.75/f2 
15. In an RLC circuit, when K = 1, the circuit is 
 (a) Over damped (b) Critically damped 
 (c) Under damped (d) Undamped 
16. In the case of the RLC circuit, popularly known as ringing circuit 
 (a) K<<1 and K ≠ 0 (b) K<<1 
 (c) K>> 1 and K ≠ 0 (d) K>>1 & K = 0 
17. In an ideal attenuator, the output voltage 
 (a) Depends on frequency (b) Remains constant  
 (c) Don’t depend on frequency (d) Depends on the time constant 
18. A square wave is transmitted through an RC low-pass filter when RC = T, then 
 (a) The output and input have identical shape 
 (b) The output is a series of spikes 
 (c) The output is the integration of the input waveform 
 (d) The output is a square wave with a tilt 
19. The gain of a passive high-pass filter at its lower cut off frequency is 
 (a) + 3 dB (b) 1 

 (c) 1/ 2  (d) 1.14 
20. In the case of an uncompensated attenuator with resistors, R1 and R2, the capacitance C2 

at the output terminals is neutralized when 

 (a) 1 2

1 2

R R
C C

=  (b) R1C1 = R2 C2 

 (c) R1C2 = R2C1 (d) R1C1 ≠ R1C2 
21. The delay time td is defined making use of an exponentially raising waveform 
 (a) Time interval to rise from 10% to 90% of its final value 
 (b) Time interval to rise from 10% to 50% of its final value 
 (c) Time interval to rise from 0% to 90% of its final value 
 (d) Time interval to rise from 0% to 50% of its final value 



80| Analog and Pulse Circuits 

22. When RC>>T, the output of a high pass filter is 
 (a)  Constant (b) Proportional to the input 
 (c)  Derivative of the input (d) Average value of the input 
23. In RLC circuit, when K < 1, the circuit is 
 (a) Over damped (b) Critically damped 
 (c) Under damped  (d) Undamped  
24. Condition for good differentiation of RC high-pass filter is 
 (a) RC = 10T (b) RC >>T 
 (c) RC = T (d) RC <<T 
25. Condition for good integration of RC low-pass filter is 
 (a) RC = 10T (b) RC >>T 
 (c) RC = T (d) RC<<T 
26. When RC <<1, the output of a low-pass filter is  
 (a) Constant (b) Proportional to the input 
 (c) Derivation of the input (d) Average value of the input   
27. Condition for good differentiation for RL high pass filter is 
 (a) L/R = 10T (b) 4L/R >>T 
 (c) L/R = T (d) 4L/R <<T 
28. In an RLC circuit, when K>1, the circuitis 
 (a) Over damped (b) Critically damped 
 (c) Under Damped (d) Undamped 
29. Condition for good integration of RL low-pass filter is 
 (a) L/R = 10T (b) L/R >>T 
 (c) L/R = T (d) L/R <<T 
30. The phase angle φ in a RC high-pass filter at its lower cut off frequency f1 is 
 (a) Zero (b) 90o 

 (c) 45 (d) π radians 
31. The expression for delay time td of a low-pass filter is 
 (a) td = 0.35/2 (b) td = 0.11/f2 
 (c) td = 22 / f   (d) td = 2/ fπ  

32. When RC >>T, the output of a low pass filter is 
 (a) Constant (b) Proportional to the input 
 (c) Derivative of the input (d) Integration of the input 
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33. The frequency functions G(f) of an first order low pass filter is 

 (a) G(f) = 
2

1
1 – j(f / f )

 (b) G(f) = 
2

1
1 – j(f / f )

 

 (c) G(f) = 
2

1
1 j(f / f )+

 (d) G(f) = 
2

1
1 j(f / f )+

 

34. The phase angle φ of an RC high-pass filter is expressed as 
 (a) φ = – tan–1 (f/f1) (b) φ = – tan–1 (f1/f) 
 (c) φ = tan–1(f1/f) (d) φ = tan–1 (f/f1) 
35. The series capacitor in an RC high-pass filter is called 
 (a) By-pass capacitor (b) Stabilization capacitor 
 (c) Filter capacitor (d) Blocking capacitor 
36. A ramp waveform Vi(t) = αt during the interval 0<t<T, is transmitted through an RC low-

pass filter with RC<<T. The output waveform is 

 (a) Vo(t) = 
2t

2RC
α

 (b) Vo(t) = α(t – RC) 

 (c) Vo(t) = αt (d) Vo(t) = αRC 
37. A symmetrical square wave is transmitted through a RC high pass filter with RC<<T. The 

% tilt P in the output waveform can be given by 

(a) P = π 1f( )
f

×100  

(b) The tilt P is same as that suffered by a ramp waveform        

(c) P = T 100
2RC

×  

(d) It is not possible to find P 
38.  An RC high-pass filter acts as a good differentiator when 

 (a) RC = T (b) RC<<T (c) RC = 20T (d) RC>>T 
39.  A sinusoidal waveform is transmitted through an RC low pass filter and the phase angle φ 

is found to be – 45o. What is the expression for the frequency of the sine wave when this 
condition is satisfied? 

(a) f1 = 1
2 RCπ

 (b) f2 = 
1

2 RCπ
 

(c) f1 = 
1

2 RCπ
 (d) f2 = 1

2 RCπ  



82| Analog and Pulse Circuits 

40. The gain of the RC high-pass filter is always 
(a) Around 1.414 (b) Lies in the range 0.707 and 1.41 
(c) Around 0.707 (d) Less than unity 

41. A ramp waveform Vi(t) = αt during the interval 0<t<T, is transmitted through an RC high 
pass filter with RC>>T. The output wavefrom is 

(a) Vo(t) = 
2t

2RC
α

 (b) Vo(t) = αt 

(c) Vo(t) = α(t – RC) (d) Vo(t) = αRC 
42. The frequency function G(f) of a first-order high pass filter is 

(a) G(f) = 
1

1
1– j(f / f )

 (b) G(f) = 
1

1
1– j(f / f )

 

(c) G(f) = 
1

1
1 j(f / f )+

 (d) 
1

1
1 j(f / f )+

 

43. A ramp waveform V1(t) = αt during the interval 0<t<T is transmitted through an RC high 
pass filter with RC <<T. The output wave form is 
(a) Vo(t) = αRC (b) Vo(t) = αt 

(c) Vo(t) = α(t – RC) (d) Vo(t) = 
2t

2RC
α

 

44. A symmetrical square wave is transmitted through a RC high-pass filter RC>>T. 
Percentage tilt P in the output waveform can be given by   
(a) P = π (f1/f) × 100  
(b) The tilt P is same as that suffered by a ramp waveform 
(c) P = π (f/f1) × 100 
(d) It is not possible to find P        

45. The RC low-pass filter acts as a good integrator when 
(a) RC = T/20 (b) RC << T 
(c) RC = T (d) RC >> T 




